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Abstract

Pairwise Markov random field networks—including Gaussian graphical models (GGMs) and Ising 

models—have become the “state-of-the-art” method for psychopathology network analyses. 

Recent research has focused on the reliability and replicability of these networks. In the present 

study, we compared the existing suite of methods for maximizing and quantifying the stability and 

consistency of PMRF networks (i.e., lasso regularisation, plus the bootnet and 

NetworkComparisonTest packages in R) with a set of metrics for directly comparing the detailed 

network characteristics interpreted in the literature (e.g., the presence, absence, sign, and strength 

of each individual edge). We compared GGMs of depression and anxiety symptoms in two waves 

of data from an observational study (n = 403) and reanalyzed four posttraumatic stress disorder 

GGMs from a recent study of network replicability. Taken on face value, the existing suite of 

methods indicated that overall the network edges were stable, interpretable, and consistent 

between networks, but the direct metrics of replication indicated that this was not the case (e.g., 

39–49% of the edges in each network were unreplicated across the pairwise comparisons). We 

discuss reasons for these apparently contradictory results (e.g., relying on global summary 

statistics versus examining the detailed characteristics interpreted in the literature), and conclude 

that the limited reliability of the detailed characteristics of networks observed here is likely to be 

common in practice, but overlooked by current methods. Poor replicability underpins our concern 

surrounding the use of these methods, given that generalizable conclusions are fundamental to the 

utility of their results.
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The central tenet of the network theory of mental disorders is that psychopathology is due to 

dynamic causal interactions among symptoms (Borsboom, 2017). This theory encourages 

the quantification of the symptom-level structure of psychopathology using network analysis

—a method with rapidly growing popularity in psychopathology research. Network analysis 

of psychopathology symptoms is promoted to improve clinical prevention and intervention 

strategies by indicating which symptoms are more strongly connected to other symptoms in 

a network (i.e., more central), as well as which symptoms act as bridges between disorders 

in comorbidity networks (Fried et al., 2017). In formative papers on the utility of symptom 

networks, it has been proposed that targeting “central” symptoms and the causal chains 

among them may be the most effective route to symptom reduction and blocking the 

pathways to the development of comorbidity between disorders (e.g., Borsboom & Cramer, 

2013; Fried et al., 2017; see also Bringmann, Elmer, Epskamp, & Snippe, 2018; Fried et al., 

2018 for alternative perspectives).

Recently, there has been an emphasis on the potential limitations of the methods that 

dominate the psychopathology network literature (Bos et al., 2017; Bringmann & Eronen, 

2018; Bulteel, Tuerlinckx, Brose & Ceulemans, 2016; Epskamp, Borsboom & Fried, 2017; 

Forbes, Wright, Markon & Krueger, 2017a; Forbes, Wright, Markon & Krueger, 2017b; 

Fried & Cramer, 2017; Guloksuz, Pries & van Os, 2017; Steinley, Hoffman, Brusco & Sher, 

2017; Terluin, de Boer & de Vet, 2016; Wichers, Wigman, Bringmann & de Jonge, 2017). 

Correspondingly, methods have been evolving rapidly with the aim of addressing the 

reliability and replicability of parameter estimates (e.g., Epskamp et al., 2017; van Borkulo 

et al., under review). Psychopathology network models are exploratory and often highly 

parameterized, making them prone to overfitting the data by capitalising on chance. Further, 

the focus on conditionally dependent relationships (e.g., partial correlations) between 

symptoms assessed by single self-report or interview items make the network edge estimates 

vulnerable to measurement error.

The pitfalls of interpreting conditionally dependent relationships have long been known in 

the contexts of interpreting partial correlations and multiple regression coefficients (e.g., 

Cohen & Cohen, 1983; Gordon, 1968). For example, the presence of shared variance among 

symptoms of psychopathology is well-established (e.g., Kotov et al., 2017), and the 

systematic patterns of overlap among symptoms and syndromes are often modelled using 

factor analytic methods that summarise these patterns as latent variables. When modelled in 

this way, the symptom-level structure of psychopathology is often robust (e.g., Anderson & 

Hope, 2008; Clark & Watson, 1991; Lambert, McCreary, Joiner, Schmidt & Ialongo, 2004; 

Teachman, Siedlecki & Magee, 2007). It is the reliable variance shared among multiple 

symptoms that underpins the robustness of these models (Allen & Yen, 2002). However, this 

shared variance is largely excluded in the estimation of psychopathology networks; each 

edge is based on the variance shared by each pair of symptoms after removing the variance 
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they share with all other symptoms in the network. In other words, as soon as more than two 

symptoms in the network measure the same construct, this reliable shared variance is 

removed from the model. Modelling the remaining variance captured in the conditionally 

dependent relationships thus increases the likelihood of unreliability in estimates of network 

edges and node centrality, particularly when the symptoms of interest are substantially 

correlated.

Unreliability is a significant problem for psychopathology networks because both the 

reliability of parameter estimates within networks and replicability between networks are 

fundamental to their generalizability, as well as a prerequisite for making inferences 

regarding differences in network structure between groups, or regarding changes in network 

structure over time (e.g., Beard et al., 2016; Fried, Epskamp, Nesse, Tuerlinckx & 

Borsboom, 2016; van Borkulo et al., 2015). Because network theory depends on direct 

causal associations between symptoms, the utility of these methods relies on the 

generalizability of specific network features as they are interpreted in the literature: the 

presence, absence, sign, and strength of each individual edge, and correspondingly which 

specific and individual symptoms are most/least central (Epskamp et al., 2017). Recent 

developments in the literature have consequently focused on implementing methods to 

maximize and quantify the accuracy, stability, and consistency of psychopathology network 

characteristics.

Current Psychopathology Network Methods

Edges in pairwise Markov random field (PMRF) networks represent the relationship 

between each pair of symptoms after controlling for their shared variance with all other 

symptoms in the network (i.e., conditionally dependent relationships). They are currently 

considered the “state-of-the-art” in psychopathology network modelling and have become 

the “default network model”, representing 62% of psychopathology network studies and 

growing (Borsboom et al., 2017, p. 990). Consequently, much of the recent development in 

methods has aimed to maximize and quantify the accuracy, stability, and consistency of 

parameters within and between PMRF networks specifically.

There are three primary tools used to this end, including regularisation as well as bootstrap 

and permutation tests (using the bootnet and NetworkComparisonTest (NCT) packages in R, 

respectively). First, regularisation-based model selection uses a least absolute shrinkage and 

selection operator (LASSO; Tibshirani, 1996) with a tuning parameter to minimize the 

Extended Bayesian Information Criterion (EBIC; Chen & Chen, 2008). This technique 

limits the total sum of absolute edge weights, thus shrinking many estimates to zero (i.e., 

excluding them from the network), resulting in a sparse network that is described as having 

high specificity for excluding spurious edges and identifying only “true” symptom-to-

symptom relationships (Epskamp et al., 2017; Epskamp & Fried, in press; Fried & Cramer, 

2017). In small sample sizes, using LASSO regularisation with EBIC for model selection is 

a conservative approach to network estimation because even moderately large edge weights 

may be set to zero, which may increase false negatives (i.e., “true” edges may not be 

estimated), but is intended to maximize specificity for avoiding any false positives (Epskamp 

et al., 2017; Epskamp & Fried, in press).
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Second, the bootnet package (Epskamp et al., 2017) in R (R Core Team, 2013) uses three 

bootstrapping routines to examine the stability of edge weight and node centrality estimates 

within networks. (1) A non-parametric bootstrap draws many (e.g., 1000; Fried et al., 2018) 

different subsamples with replacement from the observed data. The network edges estimated 

in these subsamples are pooled to generate a sampling distribution for each edge. A 

bootstrapped 95% confidence interval (CI) for each edge is constructed from its sampling 

distribution. Narrower bootstrapped CIs indicate greater stability of edge weight estimates, 

but the authors of the package emphasise that the CIs do not represent significance tests; 

model selection is performed by LASSO regularisation with EBIC (as described above), so 

if an edge is present it is expected to be part of the true network and the presence, absence, 

and sign of the edge are interpretable (Epskamp et al., 2017; Epskamp & Fried, in press). (2) 

A case-dropping bootstrap (without replacement) can also be used to examine centrality 
stability—that is, stability of the order of centrality estimates as increasing proportions of 

participants are excluded from the analyses. These results are usually summarised using a 

CS-coefficient that quantifies the proportion of participants that can be dropped while 

retaining a 95% likelihood that the estimated centrality indices correlate at least 0.7 with the 

original centrality coefficients. Epskamp et al. (2017) recommended this proportion should 

be at least 25% (ideally 50%) to interpret centrality estimates. (3) Bootstrapped difference 
tests can also be performed for the estimated weights for each pair of non-zero edges, and 

for the centrality estimates for each pair of the symptoms: A bootstrapped CI of the 

difference between each pair of edges (and each pair of centrality estimates) is generated in 

the same non-parametric bootstrap routine described in (1) above. The null-hypothesis test 

of whether each pair of edge weights (and each pair of centrality estimates) differ from one 

another is conducted by checking if zero is in the uncorrected 95% bootstrapped CI. Plots 

are generated based on these three bootstrap routines to inspect sampling variation in the 

estimates of edge weights and centrality indices, and to summarize the results of the 

significance tests. These results are used to indicate which edges are the strongest and most 

stable, which nodes are the most and/or least central in the network, and more broadly 

whether edge weights and centrality estimates are interpretable within a given network.

Finally, the NCT package (van Borkulo et al., under review) uses permutation testing to 

quantify differences between pairs of networks with, ideally, similar sample sizes. This test 

works by pooling the data from the two networks that are being compared, and then 

repeatedly randomly re-assigning the data into two groups to estimate many (e.g., 5000; 

Fried et al., 2018) new pairs of networks. This process results in a reference distribution of 

differences between the two networks, representing the null hypothesis that the networks are 

drawn from the same population. These reference distributions are used to test three 

hypotheses regarding the invariance of the original pairs of networks. (1) The first test is for 

the null hypothesis that the structures of the two networks (i.e., the matrices of all edge 

weights) being compared are identical. This omnibus test of network structure invariance is 

conducted by finding the maximum absolute difference in edge weight between the two 

observed networks (i.e., the difference corresponding to the edge that changes most from 

one network to the other) and comparing it to a reference distribution comprised of the 

maximum absolute differences in each of the permuted networks. If the observed difference 

is larger than 95% of the distribution of permuted differences (i.e., p < .05), the null 
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hypothesis is rejected, suggesting the network structures are different, in aggregate. (2) The 

second test quantifies how many of the individual edges differ between the two networks, 

based on the null hypothesis that each edge is identical between networks (i.e., the 

individual edge invariance test). This test is conducted by comparing the observed (absolute) 

difference in each edge to the reference distribution of differences for that edge. If the 

observed difference is at or beyond the upper extremity of the reference distribution (i.e., p 
< .05, typically after a Holm-Bonferroni correction for multiple testing), the edge is deemed 

significantly different between the networks. (3) The third test is for the null hypothesis that 

global strength (i.e., the sum of the absolute values of all edges in the network) is the same 

in each network (i.e., the global strength invariance test). As above, this is based on 

comparing the difference in the observed global strength values for each network to the 

reference distribution of differences from the permuted networks. In addition to these three 

tests, networks are often also compared using a “coefficient of similarity” (i.e., a Spearman 

rank correlation of the edges lists from a pair of networks; e.g., Borsboom et al., 2017; Fried 

et al., 2018; Rhemtulla et al., 2016).

Borsboom et al. (2017) described the methods in the bootnet and NCT packages as 

“powerful tools” for assessing the stability and consistency of PMRF networks (p. 990), and 

together with LASSO regularization they have become the default suite of methods for 

research on PMRF psychopathology networks. Most of the latest studies use these methods 

to interpret cross-sectional networks, to examine change in networks over time, and to 

conduct replication studies (e.g., Beard et al., 2016; Fried et al., 2018; Fried et al., 2016; van 

Loo et al., 2018). These studies have largely concluded that network characteristics (i.e., 

estimated edges and symptom centrality estimates) are accurate, sufficiently stable to 

interpret, consistent over time, and largely generalizable.

However, recent work on the replicability of parameters in networks of major depression and 

generalized anxiety symptoms has highlighted that different methods for quantifying 

similarities and differences between networks can lead to vastly different conclusions 

(Borsboom et al., 2017; Forbes et al., 2017a; Forbes et al., 2017b; Steinley et al., 2017). 

Forbes et al. (2017a) examined the replicability of four different types of psychopathology 

networks—including PMRFs in binary data1 (i.e., Ising models; van Borkulo et al., 2014)—

in two nationally representative population surveys. Inconsistencies were evident in the edge 

estimation and node centrality rank-orders of PMRFs that were obscured in a reanalysis of 

the same data using the suite of methods described above (Borsboom et al., 2017). For 

example, 13–14% of the edges failed to replicate between the two samples, including 47% 

of the bridging edges. In contrast, bootnet results suggested that most of the edge weights 

were stable and interpretable; the edge lists correlated at r > .95; and—despite being well-

powered—the NCT omnibus test failed to reject the null hypothesis that the network 

structures were identical. Forbes et al. (2017a) concluded that that there were notable 

1We focus on discussing the PMRF results here, in line with the focus of the present study. It is noteworthy, however, that the other 
two methods examined in Forbes et al. (2017a) based on conditionally dependent relationships also demonstrated limited replicability. 
For example, in the directed acyclic graphs 18–21% of the edges were unreplicated between samples, and 16–36% of the edges were 
unreplicated between pairs of random split-halves within each sample. In contrast, uncensored relative importance networks include 
all possible edges—and all edges are positive (i.e., R2 values)—which of course means that all edges are consistently represented 
between pairs of networks. However, despite this inherent consistency in comparisons of the estimated edges in these networks, there 
was still evident variation in edge strength and substantial variability in node centrality rank-order within and between samples.
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differences between the estimated networks. Borsboom et al. (2017) concluded that these 

networks were “nearly identical” (pp. 990 and 995). Forbes et al. (2017b) subsequently 

suggested that these contradictory conclusions may be because the bootnet methods, NCT 

tests, and coefficients of similarity do not focus on the detailed characteristics of networks 

that are interpreted in the literature (i.e., the presence, absence, sign, and strength of each 

individual edge; and correspondingly which symptoms are most/least central; Epskamp et 

al., 2017). The data that were used in that work were drawn from two large (n > 8,000) 

population surveys, and the symptom data had substantial systematic patterns of missingness 

due to the structured interview format of the surveys. Psychopathology network studies tend 

to be based on self-report data in clinical and/or community samples, so the very large 

samples and patterns of missingness were not typical of the literature, and may have inflated 

the stability and consistency of the networks.

The Present Study

The aim of this study was to compare (1) the conclusions based on the existing suite of 

methods for maximizing and quantifying the accuracy, stability, and consistency of PMRF 

networks to (2) the conclusions based on direct metrics of consistency in the detailed 

characteristics of networks that are interpreted in the literature (i.e., the presence, absence, 

sign, and strength of each individual edge; and correspondingly which symptoms are most/

least central; Epskamp et al., 2017). To achieve this aim, we selected data that are typical of 

the extant psychopathology network literature. The primary analyses were based on 

examining symptom networks of depression and generalized anxiety symptoms in two 

waves of data from a community sample (n = 403) measured one week apart. We 

hypothesized that depression and anxiety symptoms would have substantial shared variance 

that would be consistent over time, but that the detailed characteristics of the networks 

would be less consistent.

To ensure the results were not solely due to key methodological features of the primary 

analyses (e.g., a focus on depression and generalized anxiety symptom networks, the use of 

a community sample, a moderate sample size, or subjectivity in interpreting bootnet results), 

we also did secondary analyses of the networks estimated in Fried et al.’s (2018) recent 

study of the replicability of four posttraumatic stress disorder (PTSD) symptom networks. 

Fried et al. (2018) shared their correlation matrices, model output, and code in the 

Supplementary Materials and encouraged reanalysis of the data for further replicability 

research. A summary of the relevant results and corresponding conclusions reported in Fried 

et al. (2018) is presented in Table 1. Using the existing suite of methods described above, 

Fried et al. concluded that “Despite differences in culture, trauma type, and severity of the 

samples, considerable similarities emerged, with moderate to high correlations between 

symptom profiles (0.43[sic]-0.82), network structures (0.62–0.74), and centrality estimates 

(0.63–0.75).”2 (p. 1). We hypothesized that direct metrics of consistency in the detailed 

2In Fried et al. (2018) the lower bound of the symptom profile correlations was reported as rs = .43, but re-analysis of the means made 
available in the Supplementary Materials to the article indicate that the correct value is rs = .34. The average correlation of rs = .60 is 
calculated correctly based on rs = .34 instead of rs = .43, indicating that the source of this mistake is a transcription error. This was 
confirmed in personal correspondence with the first author.
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characteristics of the four networks would highlight substantial differences between them 

that were obscured by the existing suite of methods.

Method

Analytic Samples

The primary analyses were based on a subset of community participants from a larger 

longitudinal study. The methods have been described in detail elsewhere (Forbes, Baillie & 

Schniering, 2016). Analyses included 403 participants who completed questions online 

regarding depression and anxiety symptoms two times one week apart. The participants 

lived in Australia, had an average age of 32 (standard deviation [SD] = 12.0) and were 

largely female (n = 315, 78.2%), married or living with a partner (n = 212, 52.6%), had at 

least some university education (n = 253, 62.8%), and were in paid employment (n = 261, 

64.8%).

Secondary analyses were conducted based on the networks estimated in Fried et al. (2018), 

where the methods of the study are described in detail. Briefly, the study included four 

samples of traumatized patients receiving treatment, including: patients from a Dutch mental 

health center (n = 526, average age = 47.0, 35.9% female; Sample 1); patients from a Dutch 

outpatient clinic (n = 365, average age = 35.6, 72.1% female; Sample 2); previously 

deployed Danish soldiers (n = 926, average age = 36.2, 5.2% female; Sample 3); and 

refugees with a permanent residence in Denmark (n = 965, modal age category = 40–49, 

42.0% female; Sample 4).

Measures

Analyses of the community sample were based on self-report measures of symptoms of 

depression and generalized anxiety. The Patient Health Questionnaire (PHQ-9; Kroenke, 

Spitzer & Williams, 2001) is a 9-item measure of depression symptoms with cut-off scores 

that indicate clinically significant levels of major depression (Lowe, Kroenke, Herzog & 

Grafe, 2004). At wave one, 29.8% of participants had clinically significant (moderate or 

stronger) depression, and 23.3% at wave two. In the present study, the PHQ-9 had good 

internal consistency at both time points (α = .90) and good test-retest reliability (r = .78). 

The Brief Measure for Assessing Generalized Anxiety Disorder (GAD-7; Spitzer, Kroenke, 

Williams & Lowe, 2006) is a 7-item measure of anxiety symptoms with cut-off scores that 

indicate clinically significant levels of generalized anxiety (Spitzer et al., 2006). At wave 

one, 23.1% of participants had clinically significant anxiety, and 18.6% at wave two. In the 

present study, the GAD-7 had good internal consistency at both time points (α = .90), and 

good test-retest reliability (r = .75). The PHQ-9 and GAD-7 have the same stem (“Over the 

last 2 weeks, how often have you been bothered by any of the following problems?”) and 

response options (0 “Not at all”, 1 “Several days”, 2 “More than half the days”, 3 “Nearly 

every day”).

The symptom networks in Fried et al. (2018) were based on PTSD symptoms assessed by 

the 16-item Harvard Trauma Questionnaire (HTQ; Mollica et al., 1992), the 17-item 

Posttraumatic Stress Symptom Scale Self-report (PSS-SR; Foa, Cashman, Jaycox, & Perry, 
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1997), and the 17-item Civilian version of the PTSD Checklist (PCL-C; Weathers, Litz, 

Herman, Huska, & Keane, 1993). Fried et al. (2018) combined the physiological and 

emotional reactivity items in the PSS-SR and PCL-C to allow for comparison with the HTC, 

and rescaled the five-point Likert response scale of the PCL-C to a four-point Likert scale 

for comparison with the other measures. Fried et al. (2018) indicated that 59.3–100% of the 

patients in each sample had (probable) PTSD diagnoses, and reported good internal 

consistency for the measures in each sample (α = .85 to α = .94).

Data Analysis

The raw data for the primary analyses and the analytic code for all analyses are available at 

https://osf.io/6fk3v/. The correlation matrices, model output, and code used in Fried et al. 

(2018) are available in the online Supplementary Material for that article.

To start, we quantified the mean level, variability, and bivariate relationships of depression 

and anxiety symptoms in the community sample within and between waves. To establish 

whether there was a consistent pattern of shared variance underlying depression and anxiety 

symptoms at each wave (i.e., whether it was reasonable to expect consistency in the 

symptom networks), we estimated a two-factor exploratory structural equation model 

(ESEM). We examined longitudinal measurement invariance, as well as consistency over 

time in the unconstrained ESEM described below. Longitudinal measurement invariance was 

tested treating the data as ordinal using delta parameterisation and the means and variances 

adjusted weighted least squares (WLSMV) estimation. An unconstrained model was 

estimated first with free factor loadings and indicator thresholds, identifying the model by 

fixing factor means to 0 and scale factors to 1. This model was compared to a constrained 

model with factor loadings and indicator thresholds fixed to equality between waves, and 

with factor means and scale factors freed at wave two (Muthén & Muthén, 1998–2015). 

Model comparisons were based on fit indices and chi-square difference tests in MPlus. We 

also compared the pattern of factor loadings across the two waves in the unconstrained 

model using Tucker’s factor congruence coefficient, which is an index of factor similarity 

based on deviations of the factor loadings from zero.

Psychopathology Networks

Existing suite of methods: The depression and anxiety symptom networks in the primary 

analyses were estimated as Gaussian graphical models (GGMs; i.e., PMRFs for ordinal or 

continuous data) separately at each wave using graphical LASSO regularisation with EBIC, 

as described above. The four PTSD symptom networks in Fried et al. (2018) were also 

estimated using this method, as well as several others (see Table 1, and Fried et al., 2018, for 

more information on these methods). For internal consistency in the results as well as 

continuity with the methods in the present study and methods currently applied in the 

literature, we report Fried at al.’s (2018) original results below, but also re-estimated 

coefficients of similarity, centrality estimates, and calculated all direct metrics of consistency 

based on the individually estimated GGMs using graphical LASSO regularisation with 

EBIC (i.e., in line with the bootnet and NCT results). In GGMs based on ordinal data, the 

edges connecting symptoms represent regularized and fully partialled polychoric 

correlations.
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In line with Fried et al. (2018), we examined only strength symptom centrality (i.e., the sum 

of the edge weights connected to a node) because estimates of betweenness and closeness 
centrality are often unreliable (e.g., Epskamp et al., 2017). Cross-sectional network stability 

was investigated using the methods in the R package bootnet, as described above. 

Consistency between pairs of networks was evaluated using the tests in the NCT package3 as 

well as coefficients of similarity (i.e., Spearman rank correlations of edge lists), as described 

above.

Direct metrics of consistency: Additional metrics used to compare the detailed 

characteristics of the networks included (1) examining whether individual edges were 

consistently estimated (present or absent, and with the same sign) between networks, (2) 

measuring change in the strengths of the strongest and most stable edges in each network, 

(3) quantifying the relative similarity in the rank-order of symptom strength centrality using 

Kendall’s tau-b (based on concordant and discordant pairs) and Spearman rank correlations 

(based on deviations in rank-order), and (4) quantifying the number and proportion of 

symptoms with the same rank-order4 for strength centrality between networks.

We present the primary analyses of the depression and generalized anxiety symptom 

networks below before briefly summarizing the results in Fried et al. (2018) based on the 

current suite of methods and comparing them to the results using the direct metrics of 

consistency.

Results

Major Depression and GAD: Community Sample Characteristics and Change Over Time

Participants in the community sample varied in levels of depression and generalized anxiety 

symptom endorsement and severity, with 96.8% of the sample endorsing at least one 

symptom at wave one, and 92.6% of the sample at wave two. While symptom levels were 

lower at the second wave (see Table 2), the profile of symptom means were highly similar 

between waves (rs = .98). The polychoric correlation matrices were also similar: The 

patterns of the two correlation matrices could be constrained to equality without affecting 

model fit (CFI = 1.00, TLI = 1.00, RMSEA = .00; χ2
diff(120) = 112.84, p = .666); a model 

constraining both the correlations and thresholds to equality also had excellent fit (CFI = 

1.00, TLI = 1.00, RMSEA = .02), although there was a small but significant increase in chi-

square (χ2
diff(168) = 205.82, p = .025). The full unconstrained correlation matrices are 

included in the supplementary materials (Table S1).

ESEM

At both waves depression—including irritability from the GAD-7—and anxiety factors each 

accounted for 23.7–41.5% of the variance in the symptoms (see Table 3). Together the 

factors accounted for an average of 67.7% (SD = 11.0%, range 51–90%) of the variance in 

3Examining the underlying code for the NCT function in R confirms Fried et al.’s (2018) statement that the NetworkComparisonTest 
package conducts all GGM analyses based on networks derived from Pearson correlation matrices instead of polychoric correlations. 
We used the NCT here, guided by Fried et al. because of the high similarity between the two types of correlation matrices (all rs > .9).
4We used the less conservative approach from Borsboom et al. (2017), which allows nodes with tied ranks to have multiple 
simultaneous ranks instead of forcing a single solution that maximizes the number of rank-order matches (Forbes et al., 2017a).

Forbes et al. Page 9

Multivariate Behav Res. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each symptom. These factors were consistent over time, with factor congruence coefficients 

> .99, indicating the depression and anxiety factors were virtually identical at each wave. 

Correspondingly, the ESEM met criteria for longitudinal measurement invariance: The 

unconstrained model had adequate fit (CFI = .95, TLI = .94, RMSEA = .08), and fit indices 

tended to improve in the constrained model (CFI = .96, TLI = .95, RMSEA = .08) without a 

significant difference in chi-square (χ2
diff(58) = 65.96, p =.221).

Psychopathology Networks

The full depression and generalized anxiety symptom networks are plotted in Figure 1. Table 

4 describes the characteristics of the two networks. These networks had different most 

central nodes, but global characteristics of the networks tended to be similar: Both had the 

same connectivity, similar proportions of positive and negative edges, a substantial 

proportion of bridging edges between depression and anxiety symptoms, and similar global 

strength.

Bootstrap and NCT Results—The edges in each network had moderate bootstrapped 

CIs (see Figure S1)—for example, 22–24% of the estimated edges had CIs that did not 

include zero—and 23–26% of the bootstrapped difference tests were significant (see Figure 

S2). It is noteworthy that there are no objective criteria for interpreting these bootnet results, 

but the examples in the bootnet and GGM tutorial papers had the same proportion (22%) of 

estimated edges with CIs that did not include zero and fewer significant bootstrapped 

difference tests (12% and 15%, respectively). These bootnet results were indicated as 

interpretable “with some care” in both instances (Epskamp et al., 2017, p. 204; Epskamp & 

Fried, 2018, p. 12). Given the indication of similar stability in the present networks, we 

inferred that a reasonable conclusion from the present bootnet results would be that these 

estimated network structures are similarly interpretable “with some care”.

In contrast to this apparent stability, the strength centrality index was not reliable in either 

network: The plot of centrality stability showed that strength estimates varied substantially 

as increasing proportions of the sample were dropped (see Figure S3), very few of the 

bootstrapped difference tests were significant (see Figure S4), and the CS-coefficient was 

below the minimum recommended cut-off at both waves (CS(0.7) = .13), which notably 

represents the only clear guideline available for interpreting bootnet output. This implies that 

the apparent differences among symptoms in their standardized strength centrality (see 

Figure S5) are not interpretable.

The NCT omnibus test of network structure invariance was not significant (p = .657)—

failing to reject the null hypothesis that all edges in the two networks were exactly identical. 

The individual edge invariance tests found that zero of the 120 possible edges were 

significantly different between the two waves. Further, the global strength invariance test 

was not significant (p = .437), indicating that global strength (i.e., the sum of the absolute 

values of all edges in the network) did not vary significantly over time; and the coefficient of 

similarity was rs = .71, which was interpreted as indicating strong similarities between 

networks in Fried et al. (2018).
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Direct Metrics of Consistency—The existing suite of methods did not highlight the 

evident differences between the networks’ estimated edges (see Figure 2): Each network had 

78 non-zero edges, with a total of 97 different edges between the two networks; only 55 

were estimated in the same direction at both waves (70.5% of the 78 edges in each network; 

56.7% of the 97 total edges). Thirty-eight of the remaining edges were unique to only one of 

the networks (19 (24.4%) of the edges in each network; 39.2% of the total estimated edges); 

and four edges were estimated in both networks but reversed direction (e.g., from positive to 

negative) between waves (5.1% of the edges in each network; 4.1% of the total estimated 

edges). The bridging edges showed even lower consistency: There were 41 bridging edges at 

wave one, and 34 at wave two, with a total of 49 different edges between the two networks. 

Only 23 were estimated in the same direction in both networks (56.1% at wave one; 67.6% 

at wave two; 46.9% of the total). The edges that were shrunk to zero had the lowest 

consistency: There were 42 in each network, with a total of 61 between the two networks, 

and only 23 were consistent between waves (i.e., 54.8% at each wave; 37.7% of the total 

zeroed edges).

Narrowing the focus to the strongest and most stable edges in each network, we made these 

same comparisons among the edges with bootstrapped CIs that did not include zero 

(“bootnet-accurate” edges5; see Figure 3A). The large majority of these edges (94.7% from 

wave one, 100% from wave two) were estimated in the same direction in the other network. 

However, there was relatively little consistency regarding which edges were bootnet-
accurate in each network (see Figure 3B). There were 18 of these edges at wave one, and 17 

at wave two, with a total of 25 between the two networks. Only 11 of the edges were in both 

networks (57.9% at wave one; 64.7% at wave two; 44% of the total). There were six 

bridging edges in total, and only one (16.7%) was consistent. In line with these differences 

over time, there was substantial variation in the strength of the edge weights between waves: 

The consistent bootnet-accurate edges at wave one changed by 36.6% on average to wave 

two, and the consistent bootnet-accurate edges at wave two changed by 39.7% on average 

from wave one.6

In line with the poor reliability of strength centrality within waves, it also had low 

consistency between waves on all metrics; τ = .27, rs = .42, and only one symptom (6.25%) 

could have the same rank-order at both waves.

5We note again that these bootstrapped CIs are not designed to be significance tests for individual edges. Specifically, the authors of 
the bootnet package stated “It is important to stress that the bootstrapped results should not be used to test for significance of an edge 
being different from zero. While unreported simulation studies showed that observing if zero is in the bootstrapped CI does function as 
a valid null-hypothesis test (the null hypothesis is rejected less than alpha when it is true), the utility of testing for significance in 
LASSO regularized edges is questionable…[because] observing that an edge is not set to zero already indicates that the edge is 
sufficiently strong to be included in the model.” (Epskamp et al., 2017, p. 5–6). We focus on these edges here because they are the 
most robust within each network (i.e., the only edges consistently estimated with the same sign across the bootstrapped networks) and 
are increasingly used to determine which edges in a network are the most interpretable (i.e., strongest and/or most stable; e.g., Beard et 
al., 2016).
6Using the same metrics to compare the significant ESEM factor loadings over time showed more consistency (see Table 3): All 13 
(100%) of the significant loadings on the depression factor at wave one were estimated in the same direction at wave two, and 12 
(92.3%) were also significant at wave two. Similarly, all 10 (100%) of the significant loadings on the anxiety factor at wave one were 
estimated in the same direction at wave two, and 8 (80%) were also significant. Further, all corresponding factor loadings between 
waves had 95% CIs that included the point-estimate from the other model. Finally, the significant loadings at wave one changed in 
strength by 13.6% on average to wave two, and the significant loadings at wave two changed by 8.4% on average from wave one.

Forbes et al. Page 11

Multivariate Behav Res. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PTSD Symptom Networks: Fried et al. (2018)—The key results7 reported in Fried et 

al. are summarised in Table 1, the four individually estimated networks are presented in 

Figure S6, and a summary of the network characteristics is presented in Table 4. In short, the 

networks were deemed accurately estimated, stable, interpretable, and considerably similar, 

albeit not statistically identical; three edges were highlighted as differing considerably 

between networks, while other edges were “similar or identical across networks” (Fried et 

al., 2018, p. 10). As before, these results based on the current suite of methods did not 

capture important differences between the networks. We used the direct metrics of 

consistency described above to compare the networks pairwise and overall (see Table S2 for 

the full results). A median of 70.1% of the edges in each network were estimated in the same 

direction within each pair—corresponding to 56.0% of the total edges estimated between 

each pair—and a median of 1 (1.3%) of the edges reversed in sign between each pair of 

networks. Looking at the four networks all together, a total of 114 edges were estimated 

(95% of the 120 possible edges) and only 39 (34.2%) were estimated consistently in all four 

networks. Further, 5 (4.4%) edges reversed in sign and 26 (22.8%) edges were estimated in 

only a single network. Figure S7 depicts the inconsistently estimated edges.

Narrowing the focus to the bootnet-accurate edges in each network (see Figure S8), there 

was even lower consistency in the edges between these networks (see Figure S9 and Table 

S2 for the full results): There was a median of 26.5 of these edges in each network (and 36.5 

between each pair of networks). A median of 58.8% of these edges in each network were 

consistently estimated within each pair—corresponding to a median of 39.9% of the total 

bootnet-accurate edges estimated in each pair. The median of the average change in the 

strength of the consistent edges in each pair was 45.0%. As above, looking at all four 

networks together indicated marked inconsistency, with a total of 49 bootnet-accurate edges 

estimated, but only 6 (12.2%) of the edges were bootnet-accurate in all four networks, and 

21 (42.9%) were in only a single network. Further, 23.5–38.2% of the bootnet-accurate 
edges in each network were absent altogether (i.e., unreplicated) in at least one of the other 

three full individually estimated networks in Figure S6.

Finally, the median consistency in strength centrality between each pair of networks was 

low, as above: τ = .33, rs = .44, and only two symptoms (12.5%) could have the same rank-

order in each pair. Comparing the four networks, no symptoms had the same rank-order in 

all networks.

Discussion

We used the existing suite of methods for maximizing and quantifying the accuracy, 

stability, and consistency of the “state-of-the-art” psychopathology networks (i.e., LASSO 

regularization, bootnet, and NCT in PMRF networks; Borsboom et al., 2017, p. 990). We 

7Re-calculating the coefficients of similarity in the individual networks (in line with the bootnet and NCT results) led to estimates in 
the “moderate” range of Spearman rank correlations (rs = .42 to rs = .54, median rs = .50), as opposed to estimates in the “strong” 
range from the jointly estimated networks reported in Fried et al. (rs = .62 to rs = .74, median rs = .71). Similarly, re-calculating the 
Pearson correlations of strength centrality order led to lower estimates (r = .54 to r = .73, median r = .59; versus r = .63 to r = .75, 
median r = .69 reported in Fried et al.). Notably, these estimates mirrored the similarity between the McNally et al. (2015) PTSD 
symptom network and the Fried et al. cross-sample network (rs = .51, r = .55), which was also classified as considerable similarity (p. 
12).
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compared these findings to the results of direct metrics of consistency in the detailed 

network characteristics that are interpreted in the literature (i.e., the presence, absence, sign, 

and strength of each individual edge; and correspondingly which symptoms are most/least 

central). We used data from two waves of an observational longitudinal study collected one 

week apart—so there was no reason to expect substantive differences between the waves a 
priori—and also reanalyzed four PTSD symptom networks from a recent study of network 

replicability (Fried et al., 2018). As hypothesized, depression and anxiety symptoms had 

substantial shared variance that was consistent over time. The existing suite of methods 

tended to suggest that the networks were accurately estimated, stable, interpretable, and 

considerably similar, per the standards of interpretation in Fried et al. (2018). In contrast, the 

methods focused on the network properties that are interpreted in the literature highlighted 

key differences that indicated limited reliability and replicability in the networks that was 

not elucidated by the current popular suite of methods. We discuss the key results in more 

detail below, as well as implications for the psychopathology network literature.

The Importance of Shared Variance

A two-factor ESEM of the pattern of shared variance among the depression and generalized 

anxiety symptoms displayed longitudinal measurement invariance, showing that the core 

features of the data were consistent over time. Together the factors accounted for the 

majority of the variance in all symptoms at each wave, and this pattern of shared variance is 

key to understanding why we expect the detailed characteristics of networks to be unreliable. 

Both the factor models and the networks are estimated from the same polychoric correlation 

matrix at each wave, and this has led to a recent hypothesis that “generalizability problems 

for one type of model imply generalizability problems for the other” (Borsboom et al., 2017; 

Fried et al., 2018, p. 13). However, factor models are estimated and interpreted based on the 

reliable shared variance among the symptoms (see Figure 4C). In contrast, networks are 

based on the inversion of the correlation matrix (i.e., the partial correlation matrix), which 

excludes most of the reliable shared variance because each edge is based on the variance 

shared by each pair of symptoms after removing the variance they share with all other 
symptoms in the network (see Figures 4D and 4E).

As mentioned in the introduction, the pitfalls of interpreting these conditionally dependent 

relationships that comprise psychopathology networks have long been known in the contexts 

of interpreting partial correlations and multiple regression coefficients (e.g., Cohen & 

Cohen, 1983; Gordon, 1968). Two are particularly pertinent here. (1) By removing much of 

the variance in each symptom, the essence of the construct is altered (Miller & Chapman, 

2001). For example, compare the variance in the observed variable A (Figure 4A) to the 

variance used from A to estimate the edge A—B (Figure 4F). This makes it difficult to 

interpret what network edges mean, as they no longer refer to the original “real-world” 

construct that was measured. The ambiguity of edge interpretation is most clear when there 

is evidence of suppression: For example, all depression and anxiety symptoms were 

positively correlated with one another before removing their overlapping shared variance, 

but 15–18% of the edges in each network were negative. These negative relationships do not 

exist at the zero-order level, so it is clear they cannot be attributed to the original constructs 

(Lynam, Hoyle & Newman, 2006). (2) The variance that is shared by multiple overlapping 
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symptoms is the most reliable variance in the measurement of each symptom construct. 

Removing it means that the remaining construct is less reliable, and that random and 

systematic error make up a larger proportion of the relationship estimated in the network. 

Together, these two features of conditionally dependent relationships would suggest that 

network edges lack validity (i.e., do not measure what they are purported to measure per 

network theory), and that network edge and symptom centrality estimates are likely to have 

limited reliability that we would expect to manifest as both instability within networks and 

inconsistency between networks. In line with this expectation, the depression and 

generalized anxiety symptom networks were largely unstable and inconsistent over time, but 

a factor model of the same data demonstrated longitudinal measurement invariance with 

nearly identical factors at each wave and substantially less variability in unconstrained 

parameter estimates over time.

Contradictions in Quantifying Network Stability and Consistency Over Time

The results from the existing suite of LASSO regularization, bootnet, and NCT for assessing 

the stability and consistency of networks were at odds with the unreliability of the edges as 

reflected in direct metrics of replicability. For example, the current methods led to three 

broadly consistent conclusions across the six networks examined: (1) The edge weights were 

interpretable with some care in the two depression and anxiety networks, and “accurately 

estimated” in the four PTSD networks (Fried et al., 2018, p. 8). (2) None of the edges in the 

depression and anxiety networks differed significantly over time, and a median of 3 (2.5%) 

of the edges differed significantly between each pair of PTSD networks. (3) The presence 

and sign (i.e., positive or negative) of all estimated edges was interpretable, due to the use of 

LASSO regularization with EBIC (Epskamp et al., 2017). In contrast, the results reported 

here indicated that: (1) The edge weights of the strongest and most stable edges (i.e., with 

bootstrapped 95% confidence intervals that did not include zero) changed on average by 21–

82% within each pair of networks. (2) A quarter to a third of the estimated edges within each 

network were unreplicated in the pairwise comparisons. (3) There was marked inconsistency 

in the presence and sign of the estimated edge weights: A substantial proportion (43.4%) of 

the edges estimated in the depression and generalized anxiety networks were unreplicated 

(i.e., either present in one network and absent in the other, or reversed in sign), and nearly 

two-thirds (63.8%) of the estimated edges among the four PTSD networks were 

inconsistently estimated. These levels of inconsistency were even higher for the theoretically 

important bridging edges in the depression and anxiety symptom networks, and among the 

strongest and most stable edges identified by bootnet in all of the networks.

Looking more closely at the three key methods in the existing suite can help us understand 

these contradictory conclusions regarding consistency in the symptom networks. First, the 

limited reliability of edge estimates discussed above inherently limits the specificity of 

LASSO regularisation for identifying “true” or consistent edges. The intercorrelated nature 

of psychopathology symptom data not only means that much of the reliable shared variance 

is removed from the network, but also that psychopathology symptom network structures are 

likely to be dense (i.e., most of the symptoms are interrelated)—reflecting the factor analytic 

methods used to generate most self-report measures (cf. Epskamp, Kruis, & Marsman, 

2017b). While the specificity of LASSO regularisation is emphasized as a strength in the 
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literature, it will also result in many false negatives when the true model is dense (Epskamp 

et al., 2017b), which may account for some of the inconsistencies in the networks compared 

here (e.g., the absent edges in the networks had particularly low replicability). Further, the 

likelihood that many symptom networks are dense is in marked contrast to the sparsity of the 

network generating structures that have been used in the key simulation studies to date, as 

discussed below. Taken together, the intercorrelated nature of psychopathology data along 

with the low reliability of partial correlations and high rates of false negatives related to 

LASSO regularisation in such data suggest that the current “state-of-the-art” methods in the 

psychopathology network literature (Borsboom et al., 2017, p. 990) are not well-suited to 

analyzing the structure of the relationships between individual symptoms of mental illness.

Second, the guidelines for interpreting bootnet results encourage a false sense of confidence 

in the stability and interpretability of network characteristics. For example, even with large 

bootstrapped edge CIs the estimated network structure is described as interpretable “with 

some care” (e.g., Epskamp et al., 2017, p. 204; Epskamp & Fried, 2018, p. 12) when in fact 

they should be a red flag of unreliability: Edge CIs that spanned zero indicated that the 

corresponding edge was variably estimated as positive, absent, and negative between the 

bootstrapped networks based on subsamples of the data. In the six networks examined here, 

14–60% (median 23%) of the 120 possible edges in each network performed in this way 

(19–59% [45%] were variably estimated as positive or absent; 4–12% [6%] were variably 

negative or absent; and 0% were consistently absent across bootstraps), indicating marked 

differences in the interpretations of the networks even within subsamples of each data set. 

The bootstrapped difference tests for edges—used to determine whether some edges are 

stronger than others—are also described as “slightly conservative” for smaller sample sizes 

(Epskamp et al., 2017, p. 7) despite the fact that they are uncorrected for multiple 

comparisons; our difference tests made comparisons between 3003 pairs of edges in each 

network, but the significance level remained uncorrected at .05 making false positives a near 

certainty. Further, researchers are encouraged to interpret significant centrality difference 

tests—used to determine whether some symptoms are more central than others—but to 

ignore non-significant results (Epskamp et al., 2017a). In each case, these guidelines err 

towards emphasizing stability and interpretability in the network characteristics.

Third, the NCT methods focus on the difference scores between networks, which amplifies 

unreliability in the edge estimates and may result in poorly defined distributions that are 

underpowered to identify meaningful differences. For example, all NCT results indicated 

that the depression and anxiety symptom networks had no significant differences when in 

fact they had a multitude of differences that fundamentally affected the interpretation of the 

networks: Edges varied substantially in weight over time, were often absent altogether in 

one of the networks, and even occasionally reversed in sign between waves. The NCT 

omnibus test of network structure is purported to be sensitive enough to pick up the 

difference of a single edge between two networks (Fried et al., 2018; van Borkulo et al., 

under review), but it did not identify any of these differences in the depression and anxiety 

symptom networks. The simulations in van Borkulo et al. (under review) indicated that the 

NCT omnibus test should be adequately powered to compare these networks, so the failure 

to reject the null hypothesis likely correctly indicates that there are no reliable differences 

between the networks, but rather that the substantial observable differences between the 
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networks reflect the noise in the parameter estimates due to their limited reliability. 

Similarly, the NCT individual edge invariance tests indicated that 93–100% of the edges 

were invariant in the pairwise comparisons among all six networks despite the fact that 39–

49% of the estimated edges and 59–70% of the absent edges were unreplicated within each 

pair. The sensitivity of the individual edge invariance tests to identify these differences is 

limited by the focus on difference scores, as above, but is further reduced by the use of a 

Holm-Bonferroni correction for multiple testing. In much the same way the interpretation 

guidelines for bootnet results err towards indicating stability and interpretability in networks, 

the NCT package errs towards indicating consistency between networks, likely in part 

because the simulations do not reflect the complexities of real-world data analyzed here.

In short, the existing suite of methods for assessing “state-of-the-art” psychopathology 

networks are largely based on global summary statistics (e.g., CS coefficients, coefficients of 

similarity for edge lists, and the global strength invariance test) and distributions of 

unreliable parameter estimates (e.g., the NCT omnibus test of network structure invariance, 

and individual edge invariance tests). These methods do not examine and compare the key 

structural features that undergird network theory and its purported clinical utility (i.e., the 

presence, absence, sign, and weight of individual edges, as well as on which symptoms are 

most/least central). The consequence in the present study was that these popular methods 

tended to paint a picture of generalizability that failed to translate to the level at which 

networks are interpreted.

Limitations and Future Directions for Methodological Development

In interpreting these results, we should keep the limitations of the present study in mind. 

First, the results found here do not speak to the performance of network methods (e.g., 

PMRFs) beyond their application in psychopathology symptom data. For example, the Ising 

model was derived as a mathematical model of ferromagnetism and can be used to 

accurately model the behavior of systems in which individual elements (e.g., atoms) modify 

their behaviour to conform to other elements in their vicinity (e.g., Cipra, 1987). More 

broadly, PMRFs are more likely to be reliable and valid when analyzing variables that are 

not strongly related to one another and instead show varying relations across constructs. The 

intercorrelated nature of psychopathology data together with the limited reliability of single 

self-report items used to assess psychopathology symptoms means that PMRFs are 

inherently limited in their ability to model the structure of such data. Research aiming to 

model the dynamic causal symptom-level structure of psychopathology might better be 

conducted based on intensive longitudinal assessment methods of fewer symptoms that are 

not drawn from a single inventory designed to measure a single construct, ideally in an 

experimental framework, using reliable measurement (e.g., deriving latent variables of the 

reliable variance shared by multiple items or methods used to assess each symptom).

Second, while the analyses in the present study included a variety of sample sizes, clinical 

and community samples, and different mental disorder constructs, these findings may or 

may not generalize to other types of network analysis, disorder constructs, or other 

individual differences data. Future research should examine this possibility by testing the 

performance of a wider range of network analysis methods, types of psychopathology, and 
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types of data (e.g., binary data). However, it is noteworthy that the data and methods we 

analyzed here are representative of those being used in the psychopathology network 

literature—for example, each symptom is assessed with a single item and all symptoms are 

moderately to strongly intercorrelated, which inherently increases the likelihood of 

instability in conditionally dependent relationships.

Third, it is likely that the limited reliability of edges in psychopathology symptom networks 

will necessitate the use of substantially larger sample sizes to achieve stability and 

replicability in network characteristics. The sample sizes in the present study (n = 365 to n = 

965) are representative of the current psychopathology network literature (Epskamp & Fried, 

2018; Epskamp et al., 2017), and similar analyses using other network analysis methods in 

much larger samples (n = 8841 and n = 9282) also yielded contradictory results based on 

comparing the existing suite of methods for maximizing and quantifying the stability and 

consistency of PMRF networks versus metrics for directly comparing the detailed network 

characteristics interpreted in the literature (Borsboom et al., 2017; Forbes et al., 2017). 

Regardless, similar tests in larger samples may find different results.

Finally, the direct metrics of consistency examined here are not necessarily the correct way 

to compare networks, but were selected for the purposes of examining the focal details of the 

networks. It would be valuable for future research to continue to develop methods for 

comparing a wider variety of the properties that characterize networks and their structural 

differences, which is an ongoing challenge for the quantification of differences between 

networks (Schieber et al., 2017). Another promising direction for comparing estimated 

network structures is in the emergence of methods for Bayesian hypothesis testing in GGMs 

(Williams & Mulder, 2019). Estimating networks in this framework would facilitate 

confirmatory testing of models consistent with network theory, as well as the comparison of 

competing theoretical models in real data, representing an important step forward for the 

field.

Overall, while our findings highlight limitations in the existing suite of methods that are 

widely implemented and interpreted in the network literature, we hope that the work towards 

understanding the appropriate applications of these methods continues. Such work might 

include adopting different approaches in simulation studies that test network analysis 

methods. To date, key simulation papers in the symptom network literature have often 

simulated data from models that bear little resemblance to models estimated on real-world 

psychopathology data. For example, the simulation studies examining the performance of 

bootnet used data-generating network structures with all edge weights set to be equal 

(usually with 50% negative edges) among eight or ten nodes with only eight or ten edges 

(22–29% density), respectively, to generate multivariate normal data (Epskamp et al., 

2017a). Artificial data-generating structures were also used in simulation studies examining 

the performance of LASSO regularisation and NCT (e.g., all edges with equal weights, 

positive in sign, and/or with pronounced differences between data-generating networks on 

the features to be compared or detected; Epskamp et al., 2017b; van Borkulo et al., under 

review). The differences between these simulation networks and the network structures 

estimated in the present study (e.g., where there was 61–65% density and evident variability 

in the strength and sign of edges within and between networks) mirror the incongruity in the 
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performance of the methods in simulations versus in the complex real-wold data examined 

here. For example, the NCT omnibus test was found to be sensitive enough to identify the 

difference of a single edge between two networks in simulations, but did not detect the large 

proportion (30%) of unreplicated edges in each of the depression and anxiety networks here. 

This incongruity suggests that a valuable avenue for future research would be to examine the 

performance of these methods in data simulated from real-world psychopathology network 

structures, mirroring the properties of observed data as closely as possible.

Conclusion

The networks estimated here have been described as “hypothesis-generating structures, 

indicative of potential causal effects” (Epskamp & Fried, in press, p. 4). Unfortunately, the 

relevant hypotheses for the network theory of mental disorders are based on the presence, 

absence, sign, and weight of individual edges, as well as on which symptoms are most/least 

central. These characteristics of networks were observed to vary substantially between 

networks in the present study—often at a level that current popular methods failed to capture

—and consequently would be expected to have poor generalizability. These findings 

underpin our concern surrounding the increasing popularity of psychopathology network 

methods, given they are not well-suited to the intercorrelated nature of psychopathology 

symptom data, and generalizable conclusions are fundamental to the utility of their results. It 

is essential to not only develop sensitive and accurate methods for quantifying network 

reliability and replication, but also to develop a more methodologically rigorous basis for 

network theory. The utility of current psychopathology network methods remains severely 

impaired by their mismatch with network theory; ultimately, highly-partialled conditionally 

dependent relationships estimated in cross-sectional data no longer represent associations 

among the real-world symptoms of interest, and certainly do not represent the dynamic 

causal relationships among them.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regularized GGM networks (ns = 403) at wave one (left) and wave two (right) plotted using 

the average of the two Fruchterman-Reingold (or “spring”) algorithm layouts in qgraph 
(Epskamp, Cramer, Waldorp, Schmittmann & Borsboom, 2012). Green edges are positive 

and red edges are negative. Node abbreviations are shown in Table 2.

Note. We use the averaged layout of the full networks to plot all figures in this study because 

it is becoming common to plot multiple networks in this way to facilitate comparison (e.g., 

Fried et al., 2018; Rhemtulla et al., 2016). It is noteworthy that this practice overrides the 

differences between networks and suggests that the original layouts did not convey 

important information.
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Figure 2. 
The edges at wave one (left) and wave two (right) that did not replicate. Each network has 

nineteen orange edges that were estimated as zero in the other network, and four red edges 

that were estimated with the opposite sign (e.g., positive at wave one, negative at wave two). 

Dashed lines are negative edges. Node abbreviations are shown in Table 2.
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Figure 3. 
Top: Subsets of the full networks in Figure 1 showing edges with 95% bootstrapped 

confidence intervals that did not include zero at wave one (A) and wave two (B); green 

edges are positive and the red edge is negative. Bottom: The inconsistent edges between the 

networks at wave one (C) and wave two (D); the dashed line is a negative edge. Node 

abbreviations are shown in Table 2.
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Figure 4. 
(A) The green circle represents all of the variance in observed variable A. (B) Four 

correlated variables A, B, C, and D. (C) The shared variance or correlations among the four 

variables. (D) The conditionally dependent relationships among the four variables (i.e., the 

variance shared by each pair of variables after removing the variance they share with other 

variables). (E) The variance used to estimate the edge A—B in a psychological network. (F) 

The variance used from A in the edge A—B. Adapted from Forbes et al. (2017a) with 

permission from the American Psychological Association.

Forbes et al. Page 25

Multivariate Behav Res. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Forbes et al. Page 26

Ta
b

le
 1

.

Su
m

m
ar

y 
of

 th
e 

re
su

lts
 r

ep
or

te
d 

in
 F

ri
ed

 e
t a

l. 
(2

01
8)

N
et

w
or

k 
ch

ar
ac

te
ri

st
ic

P
ar

am
et

er
 e

st
im

at
e

In
te

rp
re

ta
ti

on
 in

 F
ri

ed
 e

t 
al

. (
20

18
)

t-
te

st
s 

be
tw

ee
n 

sa
m

pl
es

 f
or

 a
ve

ra
ge

 s
ym

pt
om

 
en

do
rs

em
en

t
E

xc
ep

t f
or

 S
am

pl
e 

1 
co

m
pa

re
d 

to
 S

am
pl

e 
2,

 a
ll 

sa
m

pl
es

 
di

ff
er

ed
 s

ig
ni

fi
ca

nt
ly

 in
 m

ea
n 

sy
m

pt
om

 s
ev

er
ity

 (
ps

 <
 

2.
2.

×
10

−
16

)

“S
am

pl
es

 d
if

fe
re

d 
in

 a
ve

ra
ge

 s
ym

pt
om

 e
nd

or
se

m
en

t”
 (

p.
 6

)

Sp
ea

rm
an

 r
an

k 
co

rr
el

at
io

ns
 a

m
on

g 
m

ea
n 

sy
m

pt
om

 p
ro

fi
le

s
R

an
ge

 f
ro

m
 r s

 =
 [

.3
4]

 to
 r s

 =
 .8

2 
(m

ed
ia

n 
r s

 =
 .6

3)
.

“T
he

re
 w

er
e 

co
ns

id
er

ab
le

 s
im

ila
ri

tie
s 

ac
ro

ss
 d

at
a 

se
ts

 in
 th

ei
r 

m
ea

n 
sy

m
pt

om
 p

ro
fi

le
s”

 
(p

. 6
)

V
is

ua
l c

om
pa

ri
so

n 
of

 th
e 

ne
tw

or
ks

1
N

/A
“T

he
 f

ou
r 

ne
tw

or
ks

 f
ea

tu
re

d 
m

an
y 

co
ns

is
te

nt
 e

dg
es

…
T

he
re

 w
er

e 
al

so
 s

pe
ci

fi
c 

ed
ge

s 
th

at
 d

if
fe

re
d 

co
ns

id
er

ab
ly

…
” 

(p
. 8

).

Sy
m

pt
om

 s
tr

en
gt

h 
ce

nt
ra

lit
y 

or
de

r 
(P

ea
rs

on
 

co
rr

el
at

io
ns

 b
et

w
ee

n 
ea

ch
 p

ai
r 

of
 n

et
w

or
ks

)1
R

an
ge

 f
ro

m
 r 

=
 .6

3 
to

 r 
=

 .7
5 

(m
ed

ia
n 

r =
 .6

9)
“c

en
tr

al
ity

 o
rd

er
 w

as
 s

ub
st

an
tia

lly
 r

el
at

ed
 a

cr
os

s 
th

e 
fo

ur
 n

et
w

or
ks

” 
(p

. 8
)

bo
ot

ne
t r

es
ul

ts
2

 
C

or
re

la
tio

n-
st

ab
ili

ty
 c

oe
ff

ic
ie

nt
s

R
an

ge
 f

ro
m

 C
S(

0.
7)

 =
 .5

2 
to

 C
S(

0.
7)

 =
 .7

5 
(m

ed
ia

n 
C

S(
0.

7)
 =

 .6
0)

“T
he

 c
or

re
la

tio
n-

st
ab

ili
ty

 c
oe

ff
ic

ie
nt

[s
] 

fo
r 

st
re

ng
th

 c
en

tr
al

ity
…

ex
ce

ed
ed

 th
e 

re
co

m
m

en
de

d 
th

re
sh

ol
d 

fo
r 

st
ab

le
 e

st
im

at
io

n 
of

 0
.5

0”
 (

p.
 8

)

 
E

dg
e 

w
ei

gh
t 9

5%
 c

on
fi

de
nc

e 
in

te
rv

al
s

Pl
ot

 o
f 

C
Is

 (
se

e 
Fi

g 
S3

 in
 F

ri
ed

 e
t a

l.)
“S

ta
bi

lit
y 

an
al

ys
es

 in
di

ca
te

d 
th

at
 a

ll 
fo

ur
 n

et
w

or
ks

 w
er

e 
ac

cu
ra

te
ly

 e
st

im
at

ed
, w

ith
 

sm
al

l t
o 

m
od

er
at

e 
co

nf
id

en
ce

 in
te

rv
al

s 
ar

ou
nd

 th
e 

ed
ge

 w
ei

gh
ts

” 
(p

. 8
).

C
oe

ff
ic

ie
nt

 o
f 

si
m

ila
ri

ty
 (

Sp
ea

rm
an

 r
an

k 

co
rr

el
at

io
ns

 o
f 

ed
ge

 li
st

s)
1

R
an

ge
 f

ro
m

 r s
 =

 .6
2 

to
 r s

 =
 .7

4 
(m

ed
ia

n 
r s

 =
 .7

1)
“i

nd
ic

at
in

g 
st

ro
ng

 s
im

ila
ri

tie
s”

 (
p.

 8
).

N
et

w
or

kC
om

pa
ri

so
nT

es
t r

es
ul

ts
3

 
O

m
ni

bu
s 

te
st

 o
f 

ne
tw

or
k 

st
ru

ct
ur

e 
in

va
ri

an
ce

al
l p

s 
<

 .0
05

“i
m

pl
yi

ng
 th

at
 n

o 
pa

ir
 o

f 
ne

tw
or

ks
 f

ea
tu

re
d 

ex
ac

tly
 th

e 
sa

m
e 

12
0 

ed
ge

 w
ei

gh
ts

” 
(p

. 8
)

 
In

di
vi

du
al

 e
dg

e 
in

va
ri

an
ce

 te
st

R
an

ge
 o

f 
2 

(1
.7

%
) 

to
 8

 (
6.

7%
) 

ed
ge

s 
di

ff
er

ed
 

si
gn

if
ic

an
tly

 a
cr

os
s 

th
e 

si
x 

co
m

pa
ri

so
ns

 (
m

ed
ia

n 
of

 3
 

[2
.5

%
])

“O
ve

ra
ll,

 n
et

w
or

ks
 w

er
e 

m
od

er
at

el
y 

to
 s

tr
on

gl
y 

co
rr

el
at

ed
 a

nd
 o

nl
y 

a 
fe

w
 s

ig
ni

fi
ca

nt
ly

 
di

ff
er

en
t e

dg
es

 e
m

er
ge

d,
 w

hi
ch

 im
pl

ie
s 

co
ns

id
er

ab
le

 s
im

ila
ri

tie
s.

” 
(p

. 9
)

 
G

lo
ba

l s
tr

en
gt

h 
in

va
ri

an
ce

 te
st

Fo
ur

 o
f 

th
e 

si
x 

pa
ir

w
is

e 
co

m
pa

ri
so

ns
 w

er
e 

si
gn

if
ic

an
tly

 
di

ff
er

en
t (

p 
<

 .0
5)

“G
lo

ba
l s

tr
en

gt
h 

va
lu

es
 w

er
e 

fa
ir

ly
 s

im
ila

r”
 (

p.
 9

)

C
ro

ss
-s

am
pl

e 
va

ri
ab

ili
ty

 n
et

w
or

k4
T

hr
ee

 e
dg

es
 w

er
e 

de
sc

ri
be

d 
as

 “
th

e 
m

os
t v

ar
ia

bl
e”

, w
ith

 
st

an
da

rd
 d

ev
ia

tio
ns

 o
f.

15
, .

15
, a

nd
 .1

4
“F

or
 th

e 
re

m
ai

ni
ng

 e
dg

es
, s

ta
nd

ar
d 

de
vi

at
io

ns
 w

er
e 

sm
al

l t
o 

ne
gl

ig
ib

le
” 

(p
. 1

0)

Su
m

m
ar

y 
of

 th
e 

re
su

lts
N

/A
“F

ir
st

, w
he

re
as

 d
at

a 
se

ts
 d

if
fe

re
d 

in
 o

ve
ra

ll 
PT

SD
 s

ev
er

ity
, t

he
 p

at
te

rn
s 

of
 s

ym
pt

om
 

en
do

rs
em

en
t w

er
e 

co
rr

el
at

ed
 a

cr
os

s 
th

e 
fo

ur
 s

am
pl

es
…

 S
ec

on
d,

 w
he

re
as

 th
e 

st
ru

ct
ur

es
 

of
 th

e 
fo

ur
 n

et
w

or
ks

 w
er

e 
no

t s
ta

tis
tic

al
ly

 id
en

tic
al

 (
i.e

., 
no

t a
ll 

ed
ge

s 
w

er
e 

ex
ac

tly
 th

e 
sa

m
e)

, t
he

 n
et

w
or

ks
 s

ho
w

ed
 m

od
er

at
e 

to
 h

ig
h 

in
te

rc
or

re
la

tio
ns

, a
s 

di
d 

st
re

ng
th

 
ce

nt
ra

lit
y 

co
ef

fi
ci

en
ts

. T
hi

rd
, w

e 
hi

gh
lig

ht
ed

 th
e 

m
os

t p
ro

no
un

ce
d 

di
ff

er
en

ce
s 

am
on

g 
ne

tw
or

ks
 b

y 
es

tim
at

in
g 

a 
va

ri
ab

ili
ty

 n
et

w
or

k:
 [

T
hr

ee
 e

dg
es

] 
di

ff
er

ed
 c

on
si

de
ra

bl
y 

ac
ro

ss
 th

e 
fo

ur
 s

am
pl

es
, w

he
re

as
 o

th
er

 e
dg

es
 w

er
e 

si
m

ila
r 

or
 id

en
tic

al
 a

cr
os

s 
ne

tw
or

ks
.”

 
(p

. 1
0)

N
ot

e.

1 B
as

ed
 o

n 
jo

in
tly

 e
st

im
at

ed
 G

au
ss

ia
n 

gr
ap

hi
ca

l m
od

el
s 

(G
G

M
s)

 d
er

iv
ed

 f
ro

m
 p

ol
yc

ho
ri

c 
co

rr
el

at
io

ns
 u

si
ng

 f
us

ed
 g

ra
ph

ic
al

 la
ss

o 
se

le
ct

in
g 

tu
ni

ng
 p

ar
am

et
er

s 
us

in
g 

k-
fo

ld
 c

ro
ss

-v
al

id
at

io
n.

Multivariate Behav Res. Author manuscript; available in PMC 2022 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Forbes et al. Page 27
2 B

as
ed

 o
n 

in
di

vi
du

al
ly

 e
st

im
at

ed
 G

G
M

s 
de

ri
ve

d 
fr

om
 p

ol
yc

ho
ri

c 
co

rr
el

at
io

ns
.

3 B
as

ed
 o

n 
in

di
vi

du
al

ly
 e

st
im

at
ed

 G
G

M
s 

de
ri

ve
d 

fr
om

 P
ea

rs
on

 c
or

re
la

tio
ns

, e
xc

lu
di

ng
 th

e 
0.

3–
3.

8%
 o

f 
ca

se
s 

w
ith

 m
is

si
ng

 d
at

a.

4 B
as

ed
 o

n 
jo

in
tly

 e
st

im
at

ed
 G

au
ss

ia
n 

gr
ap

hi
ca

l m
od

el
s 

(G
G

M
s)

 d
er

iv
ed

 f
ro

m
 p

ol
yc

ho
ri

c 
co

rr
el

at
io

ns
 u

si
ng

 f
us

ed
 g

ra
ph

ic
al

 la
ss

o 
se

le
ct

in
g 

tu
ni

ng
 p

ar
am

et
er

s 
us

in
g 

in
fo

rm
at

io
n 

cr
ite

ri
a.

Multivariate Behav Res. Author manuscript; available in PMC 2022 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Forbes et al. Page 28

Table 2.

Symptom means (standard deviations) and strength centrality at each wave of data in the community sample (n 
= 403).

Node Label Symptom
Wave 1 Wave 2

Mean (SD) Strength Mean (SD) Strength

PHQ1 Little interest or pleasure in doing things 0.9 (.90) 1.04 0.7 (.80) 1.40

PHQ2 Feeling down, depressed, or hopeless 0.9 (.88) 1.31 0.7 (.84) 1.11

PHQ3 Trouble falling or staying asleep, or sleeping too much 1.2 (.98) 1.00 1.0 (.96) 0.92

PHQ4 Feeling tired or having little energy 1.3 (.95) 1.60 1.2 (.98) 1.28

PHQ5 Poor appetite or overeating 1.0 (1.00) 1.16 0.9 (.98) 1.19

PHQ6 Feeling bad about yourself — or that you are a failure or have let yourself 
or your family down

0.9 (.99) 1.02 0.7 (.83) 1.50

PHQ7 Trouble concentrating on things, such as reading the newspaper or 
watching television

0.7 (.90) 0.95 0.7 (.89) 0.97

PHQ8 Moving or speaking so slowly that other people could have noticed? Or 
the opposite — being so fidgety or restless that you have been moving 
around a lot more than usual

0.3 (.67) 1.06 0.3 (.67) 1.11

PHQ9 Thoughts that you would be better off dead or of hurting yourself in some 
way

0.3 (.68) 1.31 0.2 (.61) 1.13

GAD1 Feeling nervous, anxious, or on edge 1.1 (.88) 0.93 0.9 (.87) 1.27

GAD2 Not being able to stop or control worrying 0.9 (.95) 1.36 0.7 (.90) 1.37

GAD3 Worrying too much about different things 1.0 (.96) 1.19 0.9 (.92) 1.15

GAD4 Trouble relaxing 1.0 (.92) 1.22 0.9 (.88) 1.03

GAD5 Being so restless that it’s hard to sit still 0.5 (.77) 1.45 0.5 (.73) 1.34

GAD6 Becoming easily annoyed or irritable 1.1 (.91) 0.96 0.9 (.87) 0.77

GAD7 Feeling afraid as if something awful might happen 0.6 (.88) 0.95 0.5 (.74) 0.84

Note. Bolded values indicate significant (α = .05) differences between waves based on paired t-tests and Wicoxon signed rank tests.
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