Skip to main content
. 2019 Nov 22;10:1485. doi: 10.3389/fpls.2019.01485

Table 2.

Comparison of goodness-of-fit and predictive power of models for SWP. Models were cross-validated by retaining one plot at a time as a validation dataset.

No. Models AIC BIC r2 RMSE training RMSE cross validated
1 SWP = 1.243 · e4.011 · PLWP − 1.616 −249.42 −229.55 0.659 0.214 0.216 ± 0.038
2 SWP = 1.518 · e4.063 · PLWP · VPDmax −0.233 − 1.614 −339.94 −315.10 0.688 0.205 0.210 ± 0.038
3 SWP = 20.164 · e3.890 · PLWP · Tmax −0.819 − 1.628 −388.95 −363.76 0.702 0.201 0.204 ± 0.037
4 SWP = 1.479 · e2.304 · PLWP · VPDmax −0.318 − 0.00580 · DOY − 0.444 −792.71 −762.91 0.796 0.166 0.165 ± 0.035
5 SWP = 24.789 · e2.144 · PLWP · Tmax −0.896 − 0.00543 · DOY − 0.579 −809.20 −779.40 0.800 0.164 0.165 ± 0.040

SWP, stem water potential; PLWP, predawn leaf water potential; VPDmax, maximum vapor pressure deficit at the day of measurement; Tmax, maximum air temperature at the day of measurement; DOY, day of the year of measurement; AIC, Akaike’s Information Criterion; BIC, Bayesian Information Criterion; RMSE, root-mean-square error (MPa), ± standard deviation.