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Abstract

Background: Shiga toxin-producing Escherichia coli (STEC) is a leading cause of worldwide food-borne and
waterborne infections. Despite an increase in the number of STEC outbreaks, there is a lack of data on prevalence
of STEC at the farm level, distribution of serogroups, and virulence factors.

Results: In the present study, a total of 91 (6.16%) STEC strains were isolated from 1477 samples including pig
intestines, pig feces, cattle feces, milk, and water from dairy farms. The isolation rates of STEC strains from pig
intestines, pig feces, and cattle feces were 7.41% (32/432), 4.38% (21/480), and 9.57% (38/397), respectively. No STEC
was isolated from the fresh milk and water samples. By O-serotyping methods, a total of 30 types of O-antigens
were determined, and the main types were O100, O97, O91, O149, O26, O92, O102, O157, and O34. Detection of
selected virulence genes (stx1, stx2, eae, ehxA, saa) revealed that over 94.51% (86/91) of the isolates carried more
than two types of virulence associated genes, and approximately 71.43% (65/91) of the isolates carried both stx1
and stx2, simultaneously. Antimicrobial susceptibility tests showed that most of the STEC isolates were susceptible
to ofloxacin and norfloxacin, but showed resistance to tetracycline, kanamycin, trimethoprim-sulfamethoxazole,
streptomycin, amoxicillin, and ampicillin. MLST determined 13 categories of sequence types (STs), and ST297
(31.87%; 29/91) was the most dominant clone. This clone displayed a close relationship to virulent strains STEC
ST678 (O104: H4). The prevalence of ST297 clones should receive more attentions.

Conclusions: Our preliminary data revealed that a heterogeneous group of STEC is present, but the non-O157
serogroups and some ST clones such as ST297 should receive more attentions.
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Background
Shiga toxin-producing Escherichia coli (STEC) is a sig-
nificant foodborne pathogen that is capable of causing
watery or bloody diarrhea, hemorrhagic colitis, and
hemolytic uremic syndrome [1–3]. O (somatic) polysac-
charides and H (flagellar) surface antigens form the basis
for the serological determination of STEC strains [4, 5].
There are currently more than 100 types of O antigens
having been determined from STEC isolates, and several
serogroups such as O157, O26, O104, O45, O103, O111,
O121, and O145 are commonly associated with severe
illness in humans worldwide [2, 4, 6–9]. In China, the
first ever severe outbreak of E. coli O157:H7 occurred in
Xuzhou, Jiangsu Province, in 1999, which caused the
death of 177 people [10]. While limited data on STEC in
humans in China are available, both STEC O157 and
non-O157 STEC including some predominant ser-
ogroups associated with human disease, such as O26,
O45, O103, O111, and O121, have been detected and
isolated from domestic and wild animals as well as raw
meats in different regions [11–14]. A recent study has
revealed that the overall prevalence of STEC O157:H7
was 41.3% along the production and supply chain of
pork around Hubei Province in Central China, and the
prevalence found in slaughter houses, wet- and super-
markets were 86.25% (69/80), 53.3% (32/60), and 28.3%
(17/60), respectively [13]. These data suggest a big threat
to the food safety and even human health in this region.
There are many virulence factors associated with the

fitness and pathogenesis of STEC, but Shiga toxin (Stx,
also called Vero toxin) is regarded as the most important
one [1, 15]. STEC strains mainly produce two Stx types,
Stx1 and Stx2, which are further classified into three sub-
types for Stx1 (Stx1a, Stx1c, Stx1d) and seven subtypes for
Stx2 (Stx2a, Stx2b, Stx2c, Stx2d, Stx2e, Stx2f, Stx2g) [16]. In
addition to Stx, the STEC strains also possess many
other virulence determinants, including the locus of en-
terocyte effacement (LEE), hemolysin, STEC autoaggluti-
nating adhesion (Saa), lipopolysaccharide (LPS), outer
membrane proteins (OMPs), fimbrial, and peroxidase
[15, 17–22].
It is proposed that food-producing animals such as

cattle, pigs, chickens are major reservoirs for STEC [23];
and many STEC outbreaks are associated with consump-
tion of meat and other products of food-producing ani-
mals contaminated with STEC strains, and/or water
contaminated with feces of food-producing animals [24,
25]. Despite an increase in the number of STEC out-
breaks, there is a lack of data on prevalence of STEC at
the farm level, distribution of serogroups, and virulence
factors [2]. Since pork and milk are the common daily
food for the Chinese people and Central China, includ-
ing Hubei, Anhui, Hunan and Henan provinces, is one
of main pig rearing and pork producing regions in

China, in this study, we performed an isolation, identifi-
cation and characterization of STEC strains from pigs,
cattle, milk and water samples collected from pig and
cattle farms in Central China.

Results
Isolation of STEC
A total of 1477 samples, including 432 samples of intes-
tinal contents from pigs with diarrhea, 480 fecal samples
from pigs with diarrhea, 397 fecal samples from cows
with diarrhea, 99 samples of fresh milk and 69 water
samples from dairy farms, were collected from four
provinces of Central China (Hubei, Anhui, Hunan,
Henan) for PCR detection of Shiga toxin encoding genes
(stx) and STEC isolation. Of the 1477 samples detected,
119 (8.06%) samples were positive for stx1 and/or stx2.
STEC strains were isolated from 91 (76.47%) of the 119
stx-positive samples. The isolation rates of STEC strains
from pig intestines, pig feces, and cattle feces were
7.41% (32/432), 4.38% (21/480), and 9.57% (38/397), re-
spectively (Fig. 1a, Table 1). However, there were no
STEC strains being isolated from the fresh milk and
water samples collected (Fig. 1a, Table 1). Biochemical
tests showed that all isolates were capable of fermenting
glucose, maltose, lactose, and xylose, raffinose, lysine,
and ornithine, but were unable to use gluconate, phenyl-
alanine, and citrate.

Serogroups and virulence genotypes
By O-serotyping methods, a total of 30 categories of ser-
ogroups were determined for the 93 STEC isolates, and
O100, O97, O91, O149, O26, O92, O102, O157, and
O34 were the main serogroups (Fig. 2). There were 17
categories of serogroups identified among the bovine
isolates (isolates from cow-associated samples), and 25
categories of serogroups among the porcine isolates (iso-
lates from pig-associated samples) (Fig. 2, Table 1). Main
serogroups among the porcine isolates were O100, O97,
O149, O102, and O34. For bovine isolates, prevalent ser-
ogroups were O91, O97, O100, O157, and O26 (Fig. 2).
In particularly, serogroup O157 was only detected in
STEC strains originated from cows.
The positive rate of the four virulence associated genes

(stx1, stx2, eae, ehxA, saa) among the 91 STEC isolates
ranged from 6.59% (eae, 6/91) to 89.01% (stx2, 81/91)
(Fig. 3a). The detection rates of the two Stx encoding
genes stx1 and stx2 were 82.42% (75/91) and 89.01% (81/
91), respectively. Among the stx1-positive isolates, stx1a
was the most predominant subtype (78.67%, 59/75),
followed by stx1c (17.33%, 13/75) and stx1d (4.00%, 3/75).
For the stx2-positive isolates, stx2e was the most predom-
inant subtype (56.79%, 46/81), followed by stx2b (17.28%,
14/81), stx2d (9.88%, 8/81), stx2a (7.14%, 6/81), stx2c
(6.17%, 5/81) and stx2g (2.47%, 2/81). Stx1a (100%, 33/33)
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and stx2b (46.67%, 14/30) were the most predominant
stx1 and stx2 subtypes for the bovine isolates while
stx1a (61.90%, 26/42) and stx2e (91.20%, 46/51) were
the most predominant stx1 and stx2 subtypes for the
porcine isolates. Over 94.51% (86/91) of the isolates
carried more than two types of virulence associated
genes, and approximately 71.43% (65/91) of the iso-
lates carried both stx1 and stx2, simultaneously (Fig.
3b). The percentages of the isolates carrying four
types, three types, two types, and one type of the
virulence genes detected were 18.68% (17/91), 58.24%
(53/91), 17.58% (16/91), and 5.49% (5/91), respect-
ively. Approximately 10.99% (10/91) of the isolates
only carried stx1, and 17.58% (16/91) of the isolates
only carried stx2.
In combination the serogroups with the virulence

genes, isolates with different serogroups except O157
carried at least one Stx encoding gene (Table 1). In
addition, all O100, O149, O26, O34, O91, and O97 iso-
lates (the number of isolates with these serogroups is
more than three) were negative to eae, while all O102,
O149, O157, O26, and O34 isolates were PCR-negative
for the presence of saa (Table 1).

Cytotoxicity
Cytotoxicity tests showed that all isolates positive to stx1
and/or stx2 were capable of making Vero cells rounding

and exfoliation. However, no cytopathic effect was ob-
served in the cells inoculated with the isolates negative
to both stx1 and stx2.

Antimicrobial susceptibility
Antimicrobial susceptibility testing results showed
that more than 50% of the STEC isolates were sensi-
tive to ofloxacin (71.43%; 65/91), and norfloxacin
(61.54%; 56/91). However, less than 10% of the iso-
lates were sensitive to amoxicillin (7.69%; 7/91), ampi-
cillin (4.40% 4/91), and kanamycin (4.40% 4/91). In
particularly, all isolates were resistant to erythromycin
(100%, 91/91) (Fig. 4). Most of the isolates from cattle
feces were sensitive to norfloxacin (97.37%; 37/38),
trimethoprim-sulfamethoxazole (84.21%, 32/38), and
streptomycin (76.32%; 29/38). All isolates tested
herein were sensitive to colistin; the MIC values were
determined as ≤1 μg/ml. Approximately half of the
bovine isolates were sensitive to sulfafurazole (55.26%;
21/38) and ofloxacin (47.37%; 18/38). For isolates
from pigs, 88.68% (47/53) of the isolates were sensi-
tive to ofloxacin. However, there were no isolates
from pig intestines and/or feces sensitive to
trimethoprim-sulfamethoxazole, streptomycin, sulfafur-
azole, neomycin, gentamicin, tetracycline, amoxicillin,
ampicillin, kanamycin, and cefotaxime (Fig. 4).

Fig. 1 Isolation of STEC from samples collected from Hubei, Henan, Hunan, and Anhui in China. Panel a displays the number of each type of the
samples collected for STEC isolation and the number of STEC strains isolated. Panel b shows the places of samples collected and the number of
STEC isolated from different provinces in Central China. The authors sincerely acknowledge the Ministry of Natural Resources of the People’s
Republic of China for providing the map of China free for public use
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Table 1 Serogroups, virulence factors and sequence types (STs)
of the 91 STEC isolates

ST No. of isolates Serogroup Stx1 Stx2 eae ehxA saa

ST10 5 O34 + + – + –

O92 – + – – –

O97 – + – + –

O98 + + – – +

O149 – + – + –

ST26 2 O69 + + – + +

O100 – + – + +

ST29 11 O76 + + – + +

O92 + + + – –

O97 + + – + –

O97 + + – + –

O100 + + – + +

O100 + – – + +

O100 + + – + –

O102 – + + – –

O102 – + + – –

O102 + + – + –

Nontypable + + – + –

ST101 7 O26 + + – – –

O97 + + – + –

O100 – + – – –

O100 + + – + +

O100 + + – + –

O102 + + – + –

O149 – + – + –

ST156 1 O64 + + – + –

ST297 29 O5 + + – + –

O6 + + – + –

O21 – + – + –

O22 + + – + +

O26 + + – + –

O26 + + – + –

O26 + + – + –

O26 + + – + –

O39 – + – + –

O54 + + – + –

O55 + + – + –

O75 + + – + –

O91 + + – + –

O91 + + – + +

O97 + + – + –

O97 + + – + +

O97 + + – + +

Table 1 Serogroups, virulence factors and sequence types (STs)
of the 91 STEC isolates (Continued)

ST No. of isolates Serogroup Stx1 Stx2 eae ehxA saa

O97 + + – + –

O97 + + – + –

O97 + + – + –

O97 + + – + –

O100 + + – + –

O100 + – – + +

O100 + – – + –

O100 + – – + –

O145 + + – + –

O149 – + – + –

O173 + + – + –

O173 + + – + –

ST542 2 O157 + + + + –

O157 + + + + –

ST602 13 O34 + + – + –

O34 + + – + –

O55 + + – + –

O75 + + – + –

O91 + – – + +

O91 + – – + –

O91 + – – + –

O91 + – – + –

O91 + – – + +

O97 + + – + –

O118 + + – + +

O149 + + – + –

Nontypable + + – + –

ST793 1 O3 – + + – –

ST813 4 O34 + + – – –

O92 + + – + –

O97 + + – + –

O100 + + – + –

ST1294 8 O91 + – – + +

O100 + + – + +

O110 + + – + +

O149 + + – + –

Nontypable + + – + –

Nontypable + + – + –

Autoagglutination – + – – –

Autoagglutination – + – – –

ST1623 6 O42 + + – + –

O54 + + – + –

O78 – + – + +
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MLST genotypes
A total of 13 categories of sequence types (STs) were de-
termined among the 91 STEC isolates using the MLST
method (Fig. 5). Among these STs, ST297 (31.87%; 29/
91) was the most frequent, followed by ST602 (14.29%;
13/91). The other determined STs included ST29
(12.09%; 11/91), ST1294 (8.79%; 8/91), ST101 (7.69%; 7/
91), ST1623 (6.59%; 6/91), ST10 (5.49%; 5/91), ST813
(4.39%; 4/91), ST542 (2.20%; 2/91), ST1721 (2.20%; 2/
91), ST26 (2.20%; 2/91), ST156 (1.10%; 1/91), and ST793
(1.10%; 1/91). For the 53 porcine isolates, a total of 11
types of STs were determined, and ST29 (20.75%; 11/
53), ST602 (15.09%; 8/53), ST101 (13.21%; 7/53), ST297
(11.32%; 6/53), and ST1294 (11.32%; 6/53) were the
common STs (Fig. 5). For the 38 bovine isolates, seven
types of STs were identified, and ST297 (60.53%; 23/38),
ST602 (13.16%; 5/38), ST542 (5.26%; 2/38), and ST1623
(10.53%; 4/38) were commonly present (Fig. 5).
Phylogenetic analysis showed that the MLST geno-

types ST297, ST602, ST101, and ST26 displayed a rela-
tionship, and they also showed a close relatedness to the
epidemic MLST genotypes ST678 (O104: H4) and ST17
(O45: H2) (Fig. 6). In addition, genotype ST29 was
closely related to ST16 (O111: H8), ST21 (O26: H11;
O145: H+), and ST723 (O103: H11) (Fig. 6).

Discussion
STEC is a leading cause of foodborne and waterborne
infections worldwide, food-producing animals such as
cattle, and pigs are major reservoirs for STEC [23].
Among different kinds of food producing animals, cattle
and other ruminants are considered to be the major res-
ervoirs for STEC [23, 27, 28]. STEC strains are more fre-
quently isolated from cattle and other ruminants than
from other animals such as pigs, cats, and dogs [23, 29].
In agreement with these suggestions, the rate of STEC
isolation from cattle (9.57%) was higher than that from
pigs (5.81%). However, the isolate rate of STEC from
cattle feces (9.57%) in present study is different from the
reports from the other countries [2, 29]. These differ-
ences might be explained by differences in feed, seasonal
peak, age, or detecting methods [2].
A total of 30 types of O-antigen were determined for

the 91 STEC isolates by O-serotyping methods, with the
exception of 4 isolates which were not typable (Fig. 2).
This might be because there are only 50 types of O anti-
sera are available, and these four strains do not react
with the available antisera. Among these 30 categories of
O-serogroups, the most frequently occurring serogroups
were O100, O97, O91, O149, O26, O92, O102, O157,
and O34 (Fig. 2). These serogroups have been isolated
from pigs, cattle, sheep, and water in both China and the
other countries [30–37]. It has been known that O157 is
the most common serogroup that causes human illness
in most parts of the world [4]. It has been also reported
that cattle are the most common reservoir of E. coli
O157 [38]. Corresponding to this suggestion, the O157
serogroup was only determined within the isolates from
cattle in the present study (Fig. 2). Although there was
no STEC O157 being isolated from pigs in Central
China in the present study, a recent study has revealed
that the overall prevalence of E. coli O157:H7 in pig

Table 1 Serogroups, virulence factors and sequence types (STs)
of the 91 STEC isolates (Continued)

ST No. of isolates Serogroup Stx1 Stx2 eae ehxA saa

O92 + + – + +

O92 + + – + +

O149 – + – – –

ST1721 2 O9 + + – + +

O167 + + – + +

“+”: Positive; “-”: Negative

Fig. 2 Distribution of the O-antigens among the STEC isolates. Columns in pink displays the percentage of STECs isolated from the feces and
intestinal contents of pigs; Columns in sky blue displays the percentage of STECs isolated from the feces of cows; Columns in gray displays the
percentage of the total STECs isolated herein (STECs from pigs plus STECs from cows)
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farms around Hubei, a province located in Central
China, is approximately 12.8% (16/125) [13]. These find-
ings suggest that the prevalence of E. coli O157 in this
region is still a problem. In addition to O157, O26 also
displayed a high proportion of identification (Fig. 2). It is
worthy of note that this type of O-antigen has been de-
clared by the U.S. Department of Agriculture (USDA) as
one of the “Big 6” (O26, O45, O103, O111, O121, and
O145) non-O157 serogroups that are most commonly
associated with severe illness in humans [4]. STEC O26
has been detected and isolated from diarrheal patient in
China [11]. It should be noted that another member of
the “Big 6”, the O145, was also identified in the present

study (Fig. 2). In addition, STEC O149 has been also de-
tected and isolated from diarrheal patient in China [11].
The determination of these non-O157 serogroups repre-
sents a great risk on public health and should also re-
ceive more attentions.
Virulence genotyping based on the detection of six

virulence genes (stx1, stx2, ehxA, eae, and saa) showed
that the detection rates of stx1 (82.42%), stx2 (89.01%),
and ehxA (86.81%) were higher than those of the other
virulence genes (Fig. 3a); most of the STEC isolates pos-
sess stx1, stx2, and ehxA simultaneously (Fig. 3b). It is
known that both stx1 and stx2 are responsible for encod-
ing the Shiga toxin, which is the most important and

Fig. 3 Distribution of main virulence genes (a) and their groups (b) among the STEC isolates. Panel a shows the distribution of main virulence
genes while panel b shows the distribution of different groups of virulence genes. Columns in pink displays the percentage of STECs isolated
from the feces and intestinal contents of pigs; Columns in sky blue displays the percentage of STECs isolated from the feces of cows; Columns in
gray displays the percentage of the total STECs isolated herein (STECs from pigs plus STECs from cows)

Fig. 4 Antimicrobial susceptibility of the 91 STEC isolates. AMX: amoxicillin; AMP: ampicillin; SIX: sulfafurazole; STM: streptomycin; NRF: norfloxacin;
GEN: gentamicin; TET: tetracycline; NEO: neomycin; DOX: doxycycline; SXT: trimethoprim-sulfamethoxazole; KAN: kanamycin; CFX: cefotaxime; ERY:
erythromycin; OFX: ofloxacin. Columns in pink displays the percentage of STECs isolated from the feces and intestinal contents of pigs; Columns
in sky blue displays the percentage of STECs isolated from the feces of cows; Columns in gray displays the percentage of the total STECs isolated
herein (STECs from pigs plus STECs from cows)
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common virulence factors of STEC [15]. In particular,
the detection rate of stx2 (89.01%) was higher than stx1
(82.42%), and a small proportion of isolates (5.49%, 5/
91) only carried stx2 (Fig. 3a and b). It has been reported
that stx2 is more often associated with severe disease
[39]. Therefore, those strains might be more harmful.
Both Stx1 and Stx2 have several subtypes, and some sub-
types are more frequently associated with human disease
[4]. It has been widely documented that STEC isolates
from pigs normally harbor Stx2e subtype [40–42], and in
agreement with these studies [40–42], approximately
91.20% of the porcine isolates positive to stx2 deter-
mined in the present study harbored this subtype (Stx2e).

STEC producing Stx2e is known to be closely associated
with edema disease in pigs [43], the high proportion of
stx2e detection in STEC isolates from pig intestines and/
or feces in this study suggest a big threat to the pig
health. Although Stx2e-producing STEC strains are still
not proposed as pathogens for humans [43], active ac-
tions are still required to control and decrease the preva-
lence of such strains in pigs in a One Health perspective.
In the present study, we also identified several other Stx-
subtypes such as Stx1a, Stx1c, Stx1d, Stx2b, Stx2d, Stx2a,
Stx2c, and Stx2g. Among these subtypes, stx2a and stx2c
are proposed to be associated with high virulence and
the ability to cause hemolytic-uremic syndrome (HUS),

Fig. 5 Distribution of the sequence types (STs) among the STEC isolates. Columns in pink displays the percentage of STECs isolated from the
feces and intestinal contents of pigs; Columns in sky blue displays the percentage of STECs isolated from the feces of cows; Columns in gray
displays the percentage of the total STECs isolated herein (STECs from pigs plus STECs from cows)

Fig. 6 Phylogenetic analysis on different STEC sequence types clones. The tree was constructed based on the MLST data by MEGAX [26], using
neighbor-joining algorithm with 1000 bootstrapping
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while stx2d, stx2e, stx1a, and stx1c occurred in milder or
asymptomatic infections [43, 44]. The detection of those
subtypes in STEC strains from food producing animals
such as pigs and cows we detected in this study repre-
sents a high risk on public health. It is worthy of note
that stx1d, stx2b, stx2g have been also detected in STEC
strains from patients in Demark, however, HUS does not
develop in these patients [45–47].
In addition to stx1 and stx2, the prevalence of ehxA

(86.81%) was also very high, showing a good agreement
with previously studies [48–51]. It is worthy of note that
ehxA is generally used as a diagnostic indicator because
the presence of ehxA is frequently correlated with the
Shiga toxin [49, 51]. In agreement with this conclusion,
ehxA displayed a high detection rate from the stx-posi-
tive STEC strains in the present study (Fig. 3b). In con-
trast to these genes which have high rates of detection,
the detection rates of eae, and saa were relatively low.
These results are similar to previously studies [50, 51],
suggesting that these virulence genes are not common.
However, their presence in particularly the detection
of eae should be given a concern. It has been re-
ported that the combination of eae and stx2 has an
especial association with the development of HUS
and bloody diarrhea [46, 47, 52]. In the present study,
all eae-positive STEC strains isolated in Central China
were detected to be positive for stx2 (Table 1). The
determination of such strains represents a high risk
on public health in this region.
The antimicrobial resistance (AMR) of STEC is also a

serious problem that the world is now facing. It has been
reported that STEC isolates from both humans and food-
producing animals displayed resistance most often to
tetracycline, kanamycin, trimethoprim-sulfamethoxazole,
streptomycin, amoxicillin, and ampicillin [36, 53–56]. In
agreement with these studies, a low proportion of STEC
isolates from the present study was susceptible to those
types of antimicrobials (Fig. 4). These findings suggest a
serious profile of AMR in STEC in food-producing ani-
mals. While there is a number of articles reporting the co-
listin resistance prevalence in E. coli [57–59], it is worthy
of note that all STEC isolates were sensitive to colistin in
the present study.
MLST is also a strategy commonly used for STEC sur-

veillance [36, 60]. In this study, 13 types of STs were de-
termined for the 91 STEC isolates. In particularly, many
isolates belonging to different STs possessed the same
serogroups (Table 1). These findings are consistent with
the findings of other publications [61, 62], suggesting
that STEC isolates with the same serogroups might have
genotypical diversity. Among the determined STs,
ST297 possesses the highest rate of isolation (31.87%)
compared to the remaining identified STs (Fig. 5). Inter-
estingly, ST297 is rarely reported in STEC. A previous

study determined five ST297 from 75 STEC food strains,
with a detection rate of 6.67% [63]. In another study, the
detection rate of ST297 among STEC isolates from cattle
in Korea was only 4.69% (3/64) [64]. Our results are
quite different from these studies, suggesting that the
prevalence of the ST in different regions of the world
might be different. The ST297 isolates harbored many
types of O-antigens, including O26 and O145, the im-
portant members of the “Big 6” declared by the USDA
[4]. In particular, all O26 isolates recovered in the
present study are ST297 clone (Table 1). It has been re-
ported that the STs of STEC O26 associated with a
broad spectrum of diseases in Europe are ST29 and/or
ST21 [65–70]. In addition, the ST297 clones isolated in
this study displayed a close relationship to STEC ST678
(O104: H4) (Fig. 6). It should be noted that the STEC
ST678 (O104: H4) isolates have caused the outbreak of
human gastroenteritis and human hemolytic-uremic
syndrome in Europe [8, 71]. In the next step, we intend
to do follow up study to determine the genetic and
phenotypical characteristics of these ST297 clones. In
addition, the sequence types of the two STEC O157
were determined as ST542 (Table 1). Although the se-
quence type of STEC O157 is normally determined as
ST11 [61, 72], O157 isolates determined as non-ST11
have been also documented elsewhere. For instance, four
O157 isolates from the US and/or UK are determined as
ST1804 [62]. These findings suggest there might be
other STs for STEC O157. In the next step, we will do
follow up study to determine the genetic and phenotyp-
ical characteristics of these two isolates.

Conclusions
In conclusion, the present study performed an isolation
and a characteristic analysis of STEC from pigs and cat-
tle. Our preliminary data revealed that a heterogeneous
group of STEC is present, but the non-O157 serogroups
and some ST clones such as ST297 should receive more
attentions. In the next step, we intend to do a follow up
study to correlate the pathogenicity of these STEC with
the stx-subtypes as well as the ST clones.

Methods
Sample collection and bacterial isolation
A total of 1477 samples were tested in this study. These
samples included intestinal contents from pigs with diar-
rhea (432 samples), fecal samples from pigs (480 sam-
ples) and cows (397 samples) with diarrhea, fresh milk
(99 samples), and water samples from dairy farms (69
samples) (Fig. 1a). The 912 pig-associated samples (feces
and intestinal contents) were collected from 323 pig
farms in Central China (Hubei, Anhui, Hunan, Henan)
between 2016 and 2017, while the 565 cow-associated
samples (feces, milk, and water samples from dairy
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farms) were from three dairy farms in different regions
Hubei Province in 2017 (Fig. 1a and b). Bacterial isola-
tion was performed following a previously described
protocol with some modifications [2]. In brief, each of
the samples were mixed in sterilized 0.9% normal saline
by vortexing. After a centrifugation at 500×g for 1 min,
500 μL of the supernatant of the mixture was inoculated
into 5mL modified E. coli broth (Nissui, Tokyo, Japan)
and incubated at 37 °C for 18~24 h.
After that, genomic DNA was extracted from the cul-

tures by boiling 100 μL aliquot of each incubated broth
directly, as described previously [2]. The extracted DNA
was evaluated by electrophoresis on a 1% agarose gel
and/or using a Nanodrop2000 (Thermo Scientific, Wal-
tham, USA). Presence of the Stx encoding gene stx1 and/
or stx2 was determined by PCR assays using the genomic
DNA extracted herein as the template and the primers
listed in Table 2. PCR reaction was performed in a 25 μL
mixture containing 2 μL of the template DNA, 2.5 μL of
10× PCR Buffer (TAKARA, Japan), 2 μL of dNTP
(TAKARA, Japan), 0.5 μL of rTaq (TAKARA, Japan),
each of the forward and reverse primers 0.5 μL, and
17.0 μL of nucleotide-free water (TAKARA, Japan).
Thermocycler conditions used for PCR were 95 °C for 5
min, followed by 30 cycles of denaturation at 94 °C for
30 s, annealing at different temperatures listed in Table
2 for 40 s, and extension at 72 °C for 1 min, with a final
extension at 72 °C for 10 min before storage at 4 °C.
DNA from STEC O157:H7 strain EDL933 and
nucleotide-free water were included as positive and
blank controls, respectively. The PCR product was visu-
alized using 1% agarose gel electrophoresis under ultra-
violet light.
In the next step, bacterial cultures positive to at least

one of stx1 and stx2 were streak-plated onto sorbitol
MacConkey agar (Hangzhou Microbial Reagent CO.,
LTD, Hangzhou, China), and incubated at 37 °C for
18~24 h. After this stage, the isolates were purified and
cultured following the standard methods used for bac-
terial identification [73]. Presumptive isolates of E. coli
were finally confirmed via Galanz staining, biochemical
testing, and 16S rRNA amplification and sequencing.

Serotyping and virulence genotyping
O-polysaccharide antigens serogroups of STEC isolates
were determined by Slide agglutination test based on the
reaction of the bacterial strains against the 50 kinds of O
antisera purchased from China Institute of Veterinary
Drug Control (Beijing, China). STEC O157:H7 strain
EDL933 was used as positive control.
Virulence genotyping was performed by PCR assays

amplifying another three virulence associated genes eae,
ehxA, and saa of with primers listed in Table 2. The
PCR volume and procedure were the same as that used

for determining the Stx encoding genes. Positive and
blank control samples were included in each set of
reactions. The PCR product was visualized using 1%
agarose gel electrophoresis under ultraviolet light. The
stx subtypes (stx1a, stx1c, stx1d, stx2a, stx2b, stx2c, stx2d,
stx2e, stx2f, stx2g) were also determined by PCR assays
with primers and reaction procedures described previ-
ously [16].

Cytotoxicity
Vero cells (purchased from ATCC) were used to test the
cytotoxicity of the STEC strains isolated herein. In brief,
isolates were inoculated in Luria-Bertani (LB) broth
(Sigma-Aldrich, MO) and shaken at 37 °C for 18~24 h.
Bacterial culture were then centrifuged at 20000×g for
40 min, followed by a filtration through a 0.22 μm mem-
brane. Filtrate was inoculated into Vero cells and the
cells were incubated at 37 °C for 18~24 h to observe the
morphology. Filtrates collected from STEC O157:H7
strain EDL933, E. coli DH5α, cell medium were included
as controls.

Antimicrobial susceptibility tests
Antimicrobial susceptibility of the STEC isolates was de-
termined by using the disc diffusion method, following
the protocols recommended by Clinical and Laboratory
Standards Institute [74]. A total of 14 types of antibiotics
including amoxicillin (AMX), ampicillin (AMP), sulfafur-
azole (SIX), streptomycin (STM), norfloxacin (NRF),
gentamicin (GEN), tetracycline (TET), neomycin (NEO),
doxycycline (DOX), trimethoprim-sulfamethoxazole
(SXT), kanamycin (KAN), cefotaxime (CFX), erythro-
mycin (ERY), and ofloxacin (OFX) were tested. Results
were interpreted using the CLSI breakpoints, when avail-
able. Resistance to colistin was also tested using broth
microdilution method, as recommended by CLSI [74].
Colistin with final concentrations of 1 μg/mL, 2 μg/mL,
and 4 μg/mL was made in a 96-well plate in pre-reduced
supplemented Mueller-Hinton (MH) broth (Hopebio,
Qingdao, China). Interpretation of testing results was
based on EUCAST breakpoint (> 2 μg/mL), as the CLSI
document (VET01S) does not provide a breakpoint for
interpretation of colistin. Each antibiotic was tested with
three duplicates. E. coli ATCCR 25922 was used as qual-
ity control.

Multilocus sequence typing
Multilocus sequence typing (MLST) was performed
using the previously described protocols [60]. Nucleotide
sequences of seven housekeeping genes (adk, fumC,
gyrB, icd, mdh, purA, and recA) were amplified and se-
quenced using the primers listed in Table 2. PCR reac-
tion was performed in a 50-μl reaction mixture
containing 2 μl of the template DNA, 2 μL of dNTP
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Table 2 Primers used in this study

Primers Sequences (5′-3′) Annealing Temp. (°C) Product size
(bp)

Function References

Bacterial identification and virulence genotyping

stx1-F ACACTGGATGATCTCAGTGG 60 614 Amplifying stx1 Botteldoorn et al., 2003b

stx1-R CTGAATCCCCCTCCATTATG

stx2-F GGCACTGTCTGAAACTGCTCC 64 255 Amplifying stx2 Leung et al., 2001d

stx2-R TCGCCAGTTATCTGACATTCTG

16S-F ATGGCTCAGATTGAACGC 50 1505 Amplifying 16 SrRNA REN et al., 2012g

16S-R CAGGTTCCCCTACGGTTA

eae-F GTGGCGAATACTGGCGAGACT 64 890 Amplifying eae Nielsen et al., 2003e

eae-R CCCCATTCTTTTTCACCGTCG

ehxA-F GCATCATCAAGCGTACGTTCC 60 534 Amplifying ehxA Bandyopadhyay et al., 2011a

ehxA-R AATGAGCCAAGCTGGTTAAGCT

saa-F CCTCACATCTTCTGCAAATACC 60 1688 Amplifying saa Paton et al., 2001f

saa-R GTTGTCGTTCATATTTTACCATCCAATGGACATG

MLST genotyping

Adk-F1 TCATCATCTGCACTTTCCGC 54 583 Amplifying adk Ding et al., 2012c

Adk-R1 CCAGATCAGCGCGAACTTCA

FumC-F1 TCACAGGTCGCCAGCGCTTC 54 806 Amplifying fumC

FumC-R1 GTACGCAGCGAAAAAGATTC

GyrB-F1 TCGGCGACACGGATGACGGC 60 911 Amplifying gyrB

GyrB-R1 ATCAGGCCTTCACGCGCATC

Icd-F1 ATGGAAAGTAAAGTAGTTGTT CCGGCACA 54 878 Amplifying icd

Icd-R1 GGACGCAGCAGGATCTGTT

Mdh-F1 ATGAAAGTCGCAGTCCTCGGC GCTGCTGGCGG 60 932 Amplifying mdh

Mdh-R1 TTAACGAACTCCTGCCCCAGAGCGATATCTTTCTT

PurA-F1 TCGGTAACGGTGTTGTGCTG 54 816 Amplifying purA

PurA-R1 CATACGGTAAGCCACGCA GA

RecA-F1 CGCATTCGCTTTACCCTGACC 58 780 Amplifying recA

RecA-R1 TCGTCGAAATCTACGGACCGGA

Adk-F2 TCATCATCTGCACTTTCCGC – – adk Sequencing

Adk-R2 CCAGATCAGCGCGAACTTCA

FumC-F2 TCACAGGTCGCCAGCGCTTC – – fumC Sequencing

FumC-R2 TCCCGGCAGATAAGCTGTGG

GyrB-F2 TCGGCGACACGGATGACGGC – – gyrB Sequencing

GyrB-R2 GTCCATGTAGGCGTTCAGGG

Icd-F2 ATGGAAAGTAAAGTAGTTGTTCCGGCACA – – icd Sequencing

Icd-R2 GGACGCAGCAGGATCTGTT

Mdh-F2 AGCGCGTTCTGTTCAAATGC – – mdh Sequencing

Mdh-R2 CAGGTTCAGAACTCTCTCTGT

PurA-F2 CGCGCTGATGAAAGAGATGA – – purA Sequencing

PurA-R2 CATACGGTAAGCCACGCAGA
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mixture (TAKARA, Japan), 5 μL of 10 × PCR buffer
(TAKARA, Japan), 0.5 μL of rTaq polymerase
(TAKARA, Japan), each of the forward and reverse pri-
mer 1 μL, and 38.5 μL of nuclease-free water. The reac-
tion was performed under the following standard cycling
procedure: an initial denaturation at 95 °C for 5 min,
followed by 30 cycles of denaturation at 94 °C for 30 s,
annealing at 54–60 °C for 45 s (see Table 2), extension at
72 °C for 1 min, and a final extension at 72 °C for 10
min. The PCR products were initially analyzed by elec-
trophoresis on a 1% agarose gel. Products with the correct
size were sequenced at Sangon (Shanghai, China). Nucleo-
tide sequences of the housekeeping genes were submitted
to the Escherichia coli MLST Database (http://mlst.war-
wick.ac.uk/mlst/dbs/Ecoli) to determine the sequence
types automatically. Phylogenetic tree was generated based
on the MLST data by MEGAX [26], using neighbor-
joining algorithm with 1000 bootstrapping.
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