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Recent discussions of human brain evolution have largely focused
on increased neuron numbers and changes in their connectivity
and expression. However, it is increasingly appreciated that oligo-
dendrocytes play important roles in cognitive function and disease.
Whether both cell types follow similar or distinctive evolutionary
trajectories is not known.We examined the transcriptomes of neurons
and oligodendrocytes in the frontal cortex of humans, chimpanzees,
and rhesus macaques. We identified human-specific trajectories of
gene expression in neurons and oligodendrocytes and show that
both cell types exhibit human-specific up-regulation. Moreover,
oligodendrocytes have undergone more pronounced accelerated
gene expression evolution in the human lineage compared to neu-
rons. We highlighted human-specific coexpression networks with
specific functions. Our data suggest that oligodendrocyte human-
specific networks are enriched for alternative splicing and tran-
scriptional regulation. Oligodendrocyte networks are also enriched
for variants associated with schizophrenia and other neuropsychi-
atric disorders. Such enrichments were not found in neuronal net-
works. These results offer a glimpse into the molecular mechanisms
of oligodendrocytes during evolution and how such mechanisms
are associated with neuropsychiatric disorders.
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Increased brain size, accompanied by increased neuron num-
bers, has been a central theme in human brain evolutionary

studies (1, 2). However, such changes alone are unlikely to en-
tirely account for the evolved cognitive capabilities of humans
(3). Changes in gene expression have been hypothesized as a key
facet of human brain evolution (4, 5), and previous bulk tran-
scriptome studies have shown that gene expression changes in
neurons have been extensive (6–8). However, nonneuronal cell
types, particularly oligodendrocytes, show altered functional and
disease-related patterns in humans compared to other primates
(9–11). For example, compared to nonhuman primates, human
brains have greater than expected connectivity requiring myelina-
tion (9), myelination in human brains has a protracted develop-
mental timing, and myelination and oligodendrocyte function has
been implicated in neuropsychiatric diseases such as schizophrenia
(SZ) (12). Moreover, ∼75% of nonneurons in the human cortex
consist of oligodendrocytes (13, 14). Along with the growing ap-
preciation of oligodendrocyte involvement in cognition (15, 16), this
suggests that oligodendrocytes may have been important targets of
change in human brain evolution.

Results
Cell-Type Evolutionary Trajectories Highlight Oligodendrocyte Acceleration
in the Human Lineage. To address the contribution of cell types to
human brain evolution, we compared the cell-type-specific tran-
scriptome profiling of sorted nuclei from humans to chimpanzees,

our closest extant relative, using rhesus macaque as an outgroup.
We analyzed genome-wide expression levels in adult human
Brodmann area 46 (BA46, NeuN+: n = 27, OLIG2+: n = 22), and
the homologous regions of chimpanzee (NeuN+: n = 11,
OLIG2+: n = 10), and rhesus macaque (NeuN+: n = 15,
OLIG2+: n = 10) (Dataset S1). Prefrontal area BA46 was
selected due to its association with human-specific cognitive
abilities and evolution as well as neuropsychiatric disorders
(11, 17, 18). Cell-type-specific whole-transcriptome data were
obtained using fluorescence-activated nuclei sorting (FANS)
(19) with antibodies to either NeuN or OLIG2 to isolate
neurons (NeuN+) or oligodendrocytes and their precursors
(OLIG2+), respectively (SI Appendix, Fig. S1 A–E). Cova-
riates such as age and sex and technical confounders such as
RNA integrity number (RIN) explained only a small portion
of the variance in both cell types (SI Appendix, Fig. S2A).
While species contributed to a large proportion of the vari-
ance, the greatest amount of variance was contributed by
unknown residual factors that could reflect many additive
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effects of small size or potentially other attributes of these
postmortem samples for which we have incomplete in-
formation. Furthermore, we compared the distribution of the
gene expression in each species for both expression of the
8372 NeuN+ genes and 7560 OLIG2+ genes, confirming that
there are no apparent technical differences in ascertainment
between NeuN+ and OLIG2+ cells (SI Appendix, Fig. S2B)
Comparisons of our data with single-cell transcriptome data

from human brain (20) demonstrate that NeuN+ gene expression
was representative of both inhibitory and excitatory neuronal ex-
pression signatures while OLIG2+ gene expression was primarily
representative of oligodendrocyte expression signatures, support-
ing our FANS approach (SI Appendix, Fig. S2C).
Using only high-confidence orthologous genes, we detected

8,759 protein-coding genes expressed in at least one species in
NeuN+ cells and 7,362 protein-coding genes in OLIG2+ cells.
Principal component analysis revealed that gene expression in
each cell type separated by species (Fig. 1 A and B). Using a
parsimony method, we detected species-specific differentially
expressed genes (DEGs) (SI Appendix, Fig. S2D and Dataset S2
and Materials and Methods). The lineage connecting the rhesus

macaque to the ancestor of humans and chimpanzees had the
greatest number of DEGs, which is consistent with the idea that
gene expression changes accumulate with divergence times (Fig.
1C) (6–8). Furthermore, a greater number of genes exhibited up-
regulation compared to down-regulation in the human lineage
for both NeuN+ and OLIG2+ samples in comparison with the
nonhuman primates (χ2 test, P = 1 × 10−06 and P = 4 × 10−05,
respectively) (Fig. 1C). While there were some genes that were
altered in the same direction for both cell populations, the ma-
jority of species-specific cell-type genes were nonoverlapping (SI
Appendix, Fig. S2E). We next compared the human-specific
genes with single-cell transcriptome data from human brain
(20). For neurons, the NeuN+ nuclei capture signals from both
inhibitory and excitatory neurons to an equivalent extent among
all 3 species. Interestingly, there appear to be more down-
regulated genes among excitatory neuronal classes and more
up-regulated genes among inhibitory classes (SI Appendix, Fig.
S2F). On the other hand, OLIG2+ up- and down-regulated
human-specific gene expression is explained by higher propor-
tions of mature oligodendrocytes (SI Appendix, Fig. S2G). These
results further confirm that NeuN+ and OLIG2+ signals of
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Fig. 1. Cell-type-specific differential gene expression analysis of 3 primates. (A and B) Principal component analysis of NeuN+ (A) and OLIG2+ (B) nuclei. Blue,
human (H is H. sapiens); gray, chimpanzee (P is P. troglodytes); green, rhesus macaque (M is M. Mulatta). (C) Bar plots representing species-specific DEGs
divided by up- (red) and down-regulated (dark blue) for both NeuN and OLIG2. (D) LOO cross-validation based on 100 bootstraps for NeuN (cyan) and
OLIG2 (magenta). Observed numbers of DEGs (red dashed line) were falling in the distribution of the LOO DEGs based on ANOVA. (E ) Permutation analysis
based on 100 permutation comparisons based on subject randomization for NeuN (cyan) and OLIG2 (magenta). Observed numbers of DEGs (red dashed
line) were significantly different from the randomized DEGs based on ANOVA. (F ) The number of DEGs per million years for the unrooted tree of the study
species of NeuN (cyan) and OLIG2 (magenta). (G) Down-sampled DEGs per million years based on 100 permutations. Values are calculated based on the
average of species-specific DEGs for NeuN (cyan) and OLIG2 (magenta). (H) Down-sampled DEGs per million years based on 100 permutations for NeuN
(cyan) and OLIG2 (magenta). Values are calculated based on the species-specific observed DEGs supported by the downsampling P value in >90% of
downsampled sets (HomSap, H. sapiens; Pan Tro, P. troglodytes; MacMul, M. mulatta). (I) Heat map showing FDR (parentheses) and OR of gene set en-
richment for both NeuN (Top) and OLIG2 (Bottom). Enrichment is based on a Fisher’s exact test. The x axis shows the representative data included for this
analysis (7, 8, 21, 22).
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human-specific genes are not likely due to a bias in cell state or
purity. In addition, a leave-one-out (LOO) and permutation
approach were both applied to these data to ensure accurate
interpretation of the comparisons (Fig. 1 D and E and Materials
and Methods).
Interestingly, human-specific expression was more pronounced

in the OLIG2+ samples compared to NeuN+ samples. Specifi-
cally, OLIG2+ cells exhibited greater effect sizes in pairwise
comparisons [human versus chimpanzee, mean(log2(FC)): 0.26
NeuN+, 0.59 OLIG2+, P < 2 × 10−16, Kolmogorov–Smirnov
(K-S) test; human versus rhesus macaque, mean(log2(FC)): 0.25
NeuN+, 0.58 OLIG2+, P < 2 × 10−16, K-S test; SI Appendix, Fig.
S2H] as well as greater number of DEGs per million years (Fig.
1F) compared to NeuN+ cells. These differences in effect sizes
between cell types are not likely driven by the fact that neurons
express greater numbers of genes than oligodendrocytes as the
distribution of species-relevant fold changes is similar between cell
types (SI Appendix, Fig. S1I). In addition, the proportion of
OLIG2+ human-specific DEGs is significantly greater than hu-
man NeuN+-specific DEGs (odds ratio [OR] = 1.21, P = 0.002).
In contrast, OLIG2+-specific DEGs are not significantly more
abundant than NeuN+-specific DEGs in chimpanzee and rhesus
macaque lineages (PanTro [Pan troglodytes or chimpanzee]: OR =
0.65, P = 1; MacMul [Macaca mulatta or rhesus macaque]: OR =
0.71, P = 1). These results support the observation that human
oligodendrocytes have undergone human-specific acceleration
of gene expression evolution.
To ensure that these observations were not due to different

numbers of samples in each species, we used the same numbers
of samples between species, which effectively is a downsampling
of the human and rhesus macaque samples (Fig. 1 G and H and
Materials and Methods). Doing so reduced the number of DEGs
per million years due to smaller sample size and heterogeneity
within and between species; nevertheless, down-sampled DEGs
show the same pattern of acceleration in OLIG2+ samples
compared with NeuN+ samples, further supporting the result
that oligodendrocytes have undergone an evolutionary acceler-
ation on the human lineage. We next examined previous gene
expression studies of frontal cortex evolution (7, 8, 21, 22) to
assess how bulk tissue expression profiles may have been con-
founded by cell-type-specific trajectories. We found that human-
specific up-regulated genes in the bulk tissue studies were
enriched with human-specific NeuN+ up-regulated DEGs. In
comparison, human-specific DEGs in OLIG2+ samples were not
enriched in the previous studies (Fig. 1I), indicating that stud-
ies using bulk tissues may have been underpowered to detect
oligodendrocyte-specific evolutionary trajectories. Carrying out
deconvolution analysis, we found that these bulk RNA sequencing
(RNA-seq) datasets were primarily comprised of neuronally de-
rived gene-expression signatures (SI Appendix, Fig. S3 A–D).
Thus, using a cell-type-specific approach, we detected a previously
undiscovered signal of rapid acceleration of oligodendrocyte-gene
expression compared with neurons in the human lineage.

Gene Coexpression Network Highlights Human-Specific Modules. To
place the human-specific changes within a systems-level context
and identify the relevant biological processes associated with
these changes, we next applied a permuted weighted gene coex-
pression analysis (23) to detect human-specific cell-type coex-
pression modules (Fig. 2A, Dataset S3, andMaterials and Methods).
Using the expression data that were adjusted for potential variation
explained by covariates and surrogate variables, we defined
2 modules in NeuN+ samples and 2 modules in OLIG2+ samples
that exhibited human-specific expression and showed a strong
enrichment for human-specific DEGs (Fig. 2 B and C and SI
Appendix, Fig. S4 A and B). These modules showed higher as-
sociation with species than with other covariates (SI Appendix,
Fig. S4 C and D). Human-specific DEGs in both NeuN+ and

OLIG2+ samples exhibited significantly greater connectivity
compared with other genes across all modules, indicating their
pivotal roles in human frontal cortex transcriptional networks
(Fig. 2D). NeuN+ human up-regulated module NM21 was
enriched for genes involved in synaptic function and vesicular
transport (Fig. 2E and Dataset S3). Interestingly, the OLIG2+
human up-regulated module OM15 was enriched for pathways
implicated in RNA splicing, RNA metabolism, and chromatin
remodeling (Fig. 2F and Dataset S3). Whereas down-regulated
module NM19 was not enriched for any specific function (Fig.
2G), the OLIG2+ down-regulated module OM2 functions were
related to transcriptional regulation, histone methylation, and
modification (Fig. 2H and Dataset S3). Of note, both OLIG2+
modules that are associated with human-specific expression are
significantly enriched for transcription factors and RNA bind-
ing proteins (SI Appendix, Fig. S4 E and F). These results
suggest that alternative splicing and transcriptional regulation
are biological functions linked with oligodendrocyte evolution
in the human frontal cortex. However, it is interesting that while
these modules contain genes with similar functional properties, the
overall trend in expression is in opposite directions (up-regulated in
OM15 versus down-regulated in OM2). These modules may rep-
resent convergent functions of up-regulated and down-regulated
genes in human oligodendrocyte evolution. Indeed, the genes of
these 2 modules might be subsets of 1 larger integrated module that
has evolved but has been separated into 2 modules by expression
direction due to using a “signed” coexpression network approach.

Oligodendrocyte Human-Specific Modules Are Enriched for Variants
Associated with Neuropsychiatric Disorders. It is hypothesized that
genes important for the evolution of human-specific cognitive
abilities are linked with human-specific cognitive disorders (24,
25). To investigate this hypothesis, we assessed the enrichment of
human-specific coexpression modules with genome-wide associ-
ation study (GWAS) signals (Materials and Methods). While we
did not find any enrichment for neuropsychiatric disorders GWAS
signals in the human-specific neuronal modules NM19 and NM21
(Fig. 3A), the OLIG2+ human down-regulated module OM2
showed a strong enrichment for attention deficit hyperactivity
disorder (ADHD), bipolar disorder (BD), and SZ loci as well as
loci associated with cognitive traits, education attainment, and
intelligence (Fig. 3B and Dataset S4). The up-regulated module
OM15 showed enrichment for major depressive disorder (MDD)
(Fig. 3B and Dataset S4). In comparison, neither NeuN+ nor
OLIG2+ human-specific modules showed significant enrichment
for GWAS signals associated with non-brain-related traits/disease.
While very little is known about the role of oligodendrocytes in
ADHD (26), BD, SZ, and MDD have been associated with alter-
ations in white matter and differential regulation of oligodendrocyte-
related genes (27–30). These results suggest that human-specific
coexpressed genes that are under evolutionary expression trajec-
tories in oligodendrocytes are at risk to be associated with cog-
nitive disease-related variants.

Human-Specific Modules Are Enriched for Neuropsychiatric DEGs. To
further examine the potential relationship between dysregulation
in neuropsychiatric disorders and human-specific changes using a
large-scale gene expression dataset, we used recently published
meta-analyses of cognitive disease brain gene expression from
the PsychENCODE Consortium (31) (Materials and Methods).
We found that the NeuN+ human-specific up-regulated module
NM21 is overrepresented for genes in a neuronal module dys-
regulated in SZ and autism spectrum disorder (ASD) (geneM8;
OR = 9.7, false discovery rate [FDR] = 1 × 10−08; Fig. 4A). In
contrast, the OLIG2+ human-specific down-regulated module
OM2 is enriched for genes in an oligodendrocyte module con-
taining genes dysregulated in ASD, BD, and SZ (geneM2;
OR = 9.5, FDR = 8 × 10−09; Fig. 4B). Interestingly, the
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OLIG2+ up-regulated module OM15 is enriched for genes in a
module dysregulated in SZ and linked with splicing (geneM19;
OR = 10.1, FDR = 1 × 10−09; Fig. 4B), reflecting the functional
enrichment we described (Fig. 2F). We next assessed whether
human-specific cell-type expression patterns are at risk in neuro-
psychiatric disorders using cell-type-specific disease-relevant gene
expression data (Materials and Methods). We examined cell-type-
specific whole-transcriptome data from BA46 from 23 patients with

SZ, generated following identical experimental procedures (32).
Using genes differentially expressed between SZ and healthy do-
nors at the cell-type level (referred to as szDEGs; Dataset S5), we
asked whether dysregulated genes in SZ were enriched for human-
specific evolutionary changes of gene coexpression at the cell-type
level. Whereas NeuN+ modules were not found enriched for
cell-type SZ genes (Fig. 4C), we found that OLIG2+ szDEGs were
enriched for human OLIG2+ modules (Fig. 4D). Specifically, the

A B

Fig. 3. Human-specific genes are enriched for cognitive disease risk variants. (A and B) Bar plots highlighting the enrichment for genetic variants
[−log10(FDR)]. Bars correspond to (A) NeuN modules (NM19: tan, NM21: yellow) and (B) OLIG2 modules (OM2: blue, OM15: turquoise) species-specific modules
(***FDR < 0.001, **FDR < 0.01, *FDR < 0.05; MAGMA statistics). Red dashed line corresponds to the FDR threshold of 0.05. The x axis shows the acronyms for
the GWAS data utilized for this analysis. ALZ, Alzheimer’s disease; ASD, autism spectrum disorder from IPSYCH (Integrative Psychiatric Research); CognFunc,
cognitive functions; EduATT, educational attainment; BMI, body mass index; CAD, coronary artery disease; DIAB, diabetes; HGT, height; OSTEO: osteoporosis.
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Fig. 2. Coexpression analyses identify human-specific modules. (A) Representative network dendrograms for NeuN (Top) and OLIG2 (Bottom). (B and C) Dot
plots with standard errors (SEs) demonstrate the association of the modules detected by parsimony with species for NeuN (B) and OLIG2 (C). SEs are calculated
based on the eigengene across samples. Dots represent the mean eigengene for that module. (D) Box plots show the difference in connectivity between human-
specific genes in NeuN (Left) and OLIG2 (Right) across the entire coexpression network compared with the background genes (****P < 0.001; Wilcoxon’s rank sum
test). (E–H) Visualization of the top 200 connections ranked by weighted topological overlap values for NM21 (E), OM15 (F), NM19 (G), and OM2 (H). Node size
corresponds to the number of edges (degree). Human-specific up-regulated genes are highlighted in red. Human-specific down-regulated genes are highlighted
in blue. Side bar plots show the top 3 functions of the module based on −log10(FDR). Red dashed line corresponds to the FDR threshold of 0.05.
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down-regulated module OM2 is enriched for SZ OLIG2+ up-
regulated genes (OR = 2.9, FDR = 5 × 10−04) while the up-
regulated module OM15 is moderately enriched for SZ
OLIG2+ down-regulated genes (OR = 1.6, FDR = 0.05). Taken
together, these observations highlight the link between oligo-
dendrocyte evolution and neuropsychiatric disease etiologies.

Discussion
These data provide insights into cell-type, species-specific ex-
pression patterns during primate brain evolution. Much of the
recent focus on human brain evolution has highlighted changes
in neuronal number and function in the human brain; however,
the molecular characterization of the mechanisms driving such
changes in neurons as well as other cell types is critical for un-
derstanding human brain evolution. Here, we show that NeuN+
human-specific DEGs encode genes important for synaptic
function in line with previous data from bulk RNA-seq (6–8).
Surprisingly though, we find that gene expression in oligoden-
drocytes has undergone a more dramatic acceleration in the
human lineage compared with neurons. We also show that pre-
vious comparative primate gene expression studies were likely
underpowered to detect these nonneuronal expression changes.
The human-specific oligodendrocyte genes are enriched for

functional categories such as RNA metabolism and RNA pro-
cessing. While such molecular functions are underexplored with
respect to oligodendrocytes, there is increasing evidence that
these functions are altered in cognitive diseases (33–35). Moreover,
the brain GWAS and PsychENCODE enrichments for cell-type
expression modules suggest that human-specific cell-type-specific
evolutionary trajectories of gene expression are implicated in
disease pathophysiology in multiple cognitive disorders. Using the
only available disease cell-type expression dataset, we also observe
SZ cell-type-specific down-regulation among human-specific oli-
godendrocyte genes. Together, these data suggest a role for
human-specific oligodendrocyte genes in disorders including SZ,
MDD, BD, and ADHD. Previous work has specifically singled out
oligodendrocyte dysfunction in both SZ and MDD (36). In addi-
tion, human brains have undergone a volumetric expansion of
white matter (9, 11), while these white matter volumes are sig-
nificantly reduced in SZ (12, 37). While we have focused on the

novelty of the human-specific oligodendrocyte genes, there are
clearly evolutionarily relevant changes in neurons that are likely
important for cognitive disorders such as SZ and ASD too. Since
neuronal activity can direct oligodendrocyte development and
myelination (38), the functional outcome of the interplay of gene
expression changes in these 2 cell types may be important for
multiple cognitive disorders. In addition to their well-studied role
in myelination, oligodendrocytes are a critical component of brain
metabolism. This function is intricately linked to maintenance of
neuronal health and function, for example via transportation of
lactate necessary for axonal activity (39). There is also strong ev-
idence for oligodendrocytes playing a vital role in axonal mito-
chondrial function (40). Thus, while genetic and functional studies
of cognitive disease have historically focused on the involvement
of neurons in the pathology of these diseases, there is a clear
disconnect in the literature from the studies demonstrating an
essential role for nonneurons such as oligodendrocytes in brain
development and function and the potential for these cell types to
either facilitate or compensate for neuronal-related disease pa-
thologies. While there is a burgeoning literature implicating
microglia in cognitive diseases (41), here we implicate oligoden-
drocytes as having a potential role in such diseases, especially from
the perspective of evolved gene expression patterns. As human
neurons have increased relative size and more complex axonal
morphologies compared to nonhuman primates or rodents (42,
43), it is perhaps not too surprising that myelinating oligoden-
drocytes might have to undergo similar genomic alterations to
facilitate matching this evolutionary adaptation. Recent work has
implicated that morphological changes in myelinated axons might
be a factor in cortical folding that has evolved in the primate brain
(44). Interestingly, several of the genes we have identified as
changing specifically in human oligodendrocytes have been stud-
ied for their functional roles in mediating neuronal health and/or
have been implicated in a number of cognitive functions or dis-
eases. For example, SMARCA4 (i.e., BRG1), an important pro-
moter of oligodendrocyte differentiation, is thought to alter
addictive behavior by modulating neuronal plasticity (45). In line
with this, imaging studies in humans have delineated a dynamic
role for oligodendrocytes and myelin in task-related plasticity (46–
49). FEZ1 is important for oligodendrocyte development and has
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Fig. 4. Cell-type-specific expression in SZ is related to human-specific genes. (A) Bubble chart illustrates −log10(FDR) (x axis) and OR (y axis) of gene set
enrichment for gene modules implicated in neuropsychiatric disorders (31) and NeuN human-specific modules. Marked the modules with functional con-
servation. Dysreg, dysregulated. (B) Bubble chart illustrates −log10(FDR) (x axis) and OR (y axis) of gene set enrichment for gene modules implicated in
neuropsychiatric disorders (31) and OLIG2 human-specific modules. The modules with functional conservation with the PsychENCODE dataset are indicated.
(C) Heat map illustrates FDR (parentheses) and OR of gene set enrichment (Fisher’s exact test). The x axis shows NeuN human-specific up-/down-regulated
genes. The y axis shows SZ DEGs up-/down-regulated in NeuN. (D) Heat map illustrates FDR (parentheses) and OR of gene set enrichment. The x axis shows
OLIG2 human-specific up-/down-regulated. The y axis shows SZ DEGs up-/down-regulated in OLIG2.
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been implicated in SZ (50). Mutations in SNX14, which is in OM2,
causes a syndromic neurodevelopmental disorder characterized by
intellectual disability with cerebellar atrophy and lysosome–auto-
phagosome dysfunction (51). The expression of LRRK2 in oligo-
dendrocytes is associated with neuronal loss in multiple system
atrophy (52). Of note, one of the first human postmortem brain
tissue microarray studies using tissue from SZ patients identified
differential expression of myelin-related genes (53). At least one
of those genes, gelsolin, GSN, is up-regulated in our study in
human OLIG2+ samples and in OM15. Interestingly, recent work
in macaques has shown that oligodendrocytes derive from the
outer subventricular zone, or oSVZ (54). The production of oli-
godendrocytes by the oSVZ might be needed for myelinating the
increased number of axons driving cortical gyrification in pri-
mates. How oligodendrocyte development from the oSVZ might
have further evolved in the chimpanzee or human brain remains
to be determined. One can imagine, though, that our results
demonstrating a link between oligodendrocyte gene expression
evolution and cognitive disorders such as SZ might also be rele-
vant to disorders that affect gyrification such as lissencephaly and
polymicrogyria. However, even though we have enriched for
specific populations of brain-cell types using a FANS approach,
we cannot rule out the potential contribution of cellular diversity
or abundance at the species level (55). For example, OLIG2+
cells could contain oligodendrocyte precursors or oligodendro-
cytes undergoing different myelination states or NeuN+ cells can
represent both excitatory and inhibitory neurons. A deconvolution
analysis indicates that cell portions are similarly represented in all
3 species even among the DEGs (SI Appendix, Fig. S2 A, F, andG);
however, this point warrants further analyses. Recent advances
using single-cell approaches in all 3 species will be able to address
this issue. In addition, future studies that connect changes in the
functional properties of oligodendrocytes, for example at the level
of RNA binding and/or processing, to either disease pathophysi-
ology, white matter volume alterations, or response to neuronal
activity will confirm the importance of the identified genes in hu-
man brain evolution. Our study highlights the importance of non-
neuronal cell types in brain evolution and cognitive disorders.

Materials and Methods
Experimental Model and Subject Details.
Postmortem brain samples. Human postmortem brain samples from BA46 were
obtained from the National Institutes of Health NeuroBioBank (the Harvard
Brain Tissue Resource Center, the Human Brain and Spinal Fluid Resource
Center, VA West Los Angeles Healthcare Center, and the University of Miami
Brain Endowment Bank) and the University of Texas Neuropsychiatry Re-
search Program (Dallas Brain Collection) (Dataset S1). Nonhuman primate
tissue samples were obtained from Yerkes National Primate Research Center
(Dataset S1).
Nuclei extraction, FANS, and RNA isolation. Nuclei Isolation, FANS, and RNA
isolation were performed as done previously (32).
RNA-seq. RNA-seq was performed as described previously (32, 56) with some
modifications. In order to determine the quality of the RNA from the nuclear
samples, the RNA from the matched cytoplasmic fractions was extracted
with the miRNeasy Mini kit (217004; Qiagen) according to the manufacturer’s
instructions. Samples with a total cytoplasmic RNA average RIN value of 7.5 ±
0.16 were used for RNA-seq library preparation of the nuclear samples.

Computational Methods.
RNA-seq mapping, quality control, and expression quantification. Reads from the
3 different primates were aligned to either the human hg19, chimpanzee
PanTro4, or rhesus macaque RheMac8 reference genome using STAR 2.5.2b (57)
with the following parameters: “–outFilterMultimapNmax 10–alignSJoverhangMin
10–alignSJDBoverhangMin 1–outFilterMismatchNmax 3–twopassMode Basic.”
For each sample, a BAM file including mapped and unmapped reads that
spanned splice junctions was produced. Secondary alignment and multi-
mapped reads were further removed using in-house scripts. Only uniquely
mapped reads were retained for further analyses. Quality control (QC) metrics
were performed using RseqQC using the hg19 gene model provided. These
steps include number of reads after multiple-step filtering, ribosomal RNA
reads depletion, and defining reads mapped to exons, untranslated regions,

and intronic regions. The Picard tool was implemented to refine the QC
metrics (http://broadinstitute.github.io/picard/). CrossMap and liftOver were
used to translate the nonhuman primate unique read coordinates into human
coordinates based on hg19 (58, 59). Ensemble annotation for hg19 (version
GRCh37.87) was used as reference alignment annotation and downstream
quantification. Gene-level expression was calculated using HTseq version
0.9.1 using intersection-strict mode by Exons (60). Counts were calculated
based on protein-coding genes from the Ensemble GRCh37.87 annotation file.
Orthologous genes were downloaded from Ensemble Biomart portal (61).
Orthologous genes were categorized using a high confidence score provided
by ensemble and presence in known chromosomes in all 3 species analyzed.
We removed sex chromosomes. A total of 14,212 genes were considered for
downstream analysis.
Covariate adjustment and differential expression. Counts were normalized using
counts per million reads (cpm) with the edgeR package in R (62). Normalized
data were log2-scaled with an offset of 1. Genes with no reads in human,
chimpanzee, or rhesus macaque samples were removed. Normalized data
were assessed for effects from known biological covariates (gender and
age), technical variables related to sample processing (RIN), and technical
variables related to surrogate variation (SVs). Other biological and technical
covariates (e.g., hemisphere and postmortem interval [PMI]) were not con-
sidered for the analysis because these were confounded with species.
Nonhuman primates’ ages were converted to human age referring to species
life traits as maximal age reached, male sexual maturity, female sexual
maturity, gestation, weaning, first reproduction, number of litters, teething
deciduous first and last, and teething permanent first and last as proposed in
ref. 22. Traits are stored in Dataset S1. A linear model was applied between
species life traits. Human age was converted into nonhuman primates in R as

hc<−lmðChimpanzee�Traits∼Human�TraitsÞ

hr <−lmðRhesusMacaque�Traits∼Human�TraitsÞ

Human�Age<−seqð0.0, 122.5, 0.1Þ#min  age,max   age,month.

Human�Chimpanzee= ðHuman�Age–hc$coef½1�Þ=hc$coef ½2�

Human�RhesusMacaque= ðHuman�Age–hr$coef½1�Þ=hr$coef ½2�.

This method provided us with an accurate estimation of human age trans-
lated into nonhuman standard (e.g., a 25-y-old human corresponded to a
13.2-y-old chimpanzee and an 8.0-y-old rhesus macaque). Age was converted
to categorical variables. Three groups were defined: less than 40 y old, be-
tween 40 and 60 y old, andmore than 60 y old. SVs were calculated using SVA
in R based on a “2-step” method with 100 iterations (63). The data were
adjusted for technical covariates using a linear model:

lmðgene  expression∼ Sex +Age+RIN+nSVsÞ.

Adjusted cpm values were used for coexpression analysis and visualization.
Differential expression analysis was performed in R using linear modeling. To
fit our parsimony approach, we performed pairwise analysis between the
3 species analyzed (e.g., human–chimpanzee, human–rhesus macaque, and
chimpanzee–rhesus macaque). Additionally, we performed an ANOVA based
on the 3 species (e.g., human–chimpanzee–rhesus macaque) as follows:

lmðgene  expression∼ Species+ Sex +Age+RIN+nSVsÞ.

Fitting this model, we estimated log2 fold changes and P values. P values
were adjusted for multiple comparisons using a Benjamini–Hochberg cor-
rection (FDR). This method was used to detect human-specific changes,
chimpanzee-specific changes, and rhesus macaque-specific changes using a
standard cutoff of jlog2(fold-change)j > 0.3 and FDR < 0.05. For example, in
human, we considered specific up-regulation where human showed log2(FC) >
0.3 and FDR < 0.05 in comparison with chimpanzee and rhesus macaque and
where chimpanzee and rhesus macaque were not differentially expressed
for FDR > 0.1. In addition, we considered in this paradigm the Bonferroni
adjusted P value from ANOVA of <0.05. In contrast, for down-regulated
genes we consider log2(FC) < −0.3 and FDR < 0.05 in comparison with
chimpanzee and rhesus macaque and where chimpanzee and rhesus ma-
caque were not differentially expressed for FDR > 0.1. For the up-regulated
genes, we considered additional Bonferroni-adjusted P values from
ANOVA of <0.05.
LOO and downsampling analysis. To validate the robustness of our differential
expression analysis, we applied a LOO cross-validation by subsampling our
data with n = number of subjects per species − 1 with number of permu-
tations = 100. −log10(observed ANOVA) strongly correlated with −log10(LOO
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ANOVA), underscoring that individual subjects are not driving differential
expression detection. We additionally applied a permutation method by
randomizing the subjects per species 200 times and recalculating the species-
specific DEGs across subjects. The number of observed DEGs were signifi-
cantly different for the randomized one for both cell types. A downsampling
analysis was applied to confirm the more pronounced acceleration in
OLIG2 compared with NeuN given the greater sample size for humans. Using
the chimpanzee as the minimal number of subjects (NeuN = 11, OLIG2 = 10),
we recalculated the species-specific DEGs with the number of permuta-
tions = 100. Due to the reduced sample size and high heterogeneity be-
tween and within species, the total number of species-specific DEGs was
reduced. Nevertheless, this approach recapitulated the more pronounced
acceleration in OLIG2, confirming the observed results based on the total
number of samples.
Coexpression network analysis. To identify modules of coexpressed genes in the
RNA-seq data, we carried out weighted gene coexpression network analysis
(WGCNA) (23). The same number of genes used for differential expression
analysis were included for WGCNA (8,372 for NeuN+ cells and 7,560 for
OLIG2+ cells; Dataset S4). Signed networks were used for both NeuN+ and
OLIG2+ data. A soft-threshold power was automatically calculated for both
NeuN+ and OLIG2+ samples to achieve approximate scale-free topology
(R2 > 0.85). Networks were constructed with the blockwiseModules function
with biweight midcorrelation (bicor). For NeuN data, we used corType = bicor,
maxBlockSize = 10000, mergingThresh = 0.10, minCoreKME = 0.5, minKMEtoStay =
0.4, reassignThreshold = 1e-10, deepSplit = 4, detectCutHeight = 0.999,
minModuleSize = 25, networkType = signed. For OLIG2 data, we used cor-
Type = bicor, maxBlockSize = 10000, mergingThresh = 0.10, minCoreKME = 0.5,
minKMEtoStay = 0.4, reassignThreshold = 1e-10, deepSplit = 4, detectCutHeight =
0.999, minModuleSize = 35, networkType = signed.

The modules were then determined using the dynamic tree-cutting al-
gorithm. To ensure robustness of the observed network, we used a per-
mutation approach recalculating the networks 200 times with permuted
gene expression. Observed connectivity per gene was compared with the
randomized one. None of the randomized networks showed similar con-
nectivity, providing robustness to the network inference. We refer to this
approach as permWGCNA. Additional analysis using a bootstrapping ap-
proach was performed. Briefly, we recalculated networks resampling the
initial set of samples 200 times and compared the observed connectivity per
gene with the randomized one. As for the permutation, none of the ran-
domized networks showed similar connectivity. This additional test was
applied to further provide robustness of the network inference.

Module sizes (25/35 respectively) were chosen to detect small modules
driven by potential noise on the adjusted data. Deep split of 4 was used to
split more aggressively the data and create more specific modules. Spear-
man’s rank correlation was used to compute module eigengene–covariates
associations. A parsimony approach was used to select the modules: Human-
specific modules were significantly correlated with the 3 species but op-
positely correlated between human and the nonhuman primates. Given
the adjusted expression, covariates did not have effect on the variance
explained by the gene of the detected modules. Modules were visualized
based on the rank of the weight (weighted topological overlap value,
WTO). The top 200 connections were selected for the visualizations. Node
size was adjusted based on the degree (e.g., number of links). Visualization
was rendered using Cytoscape (64). For measurements of differential
connectivity, we used the number of expressed genes for each cell type as
background (8,372 for NeuN+ cells and 7,560 for OLIG2+ cells).
Functional enrichment. The functional annotation of differentially expressed
and coexpressed genes was performed using ToppGene (65) as we have
previously done (32). Analysis was replicated using GOstats in R (66). We
used Gene Ontology and Kyoto Encyclopedia of Genes and Genomes data-
bases. Pathways containing between 5 and 2,000 genes were retained.
Orthologous genes (14,212) were used as custom background. A Benjamini–
Hochberg FDR (P < 0.05) was applied as a multiple comparisons adjustment.
Evolutionary tree calculation and normalization. Trees were calculated and vi-
sualized using ape in R (67). Branches length of the unrooted trees was
calculated based on number of DEGs divided by divergence time (HomSap/
PanTro = ∼6 My, MacMul = ∼45 My) (HomSap = Homo sapiens). For rhesus
macaque, divergence time was calculated based on divergence of apes and
Old World monkeys (26 My) (68) and divergence between common ancestor
of apes and Old World monkeys and common ancestor of humans and
chimpanzees (∼19/20 My) (69). Thus, we used the sum of 26 plus 19 My to
estimate DEGs per million years on the branch leading to M. mulatta. This
refined approach was used due to the faster evolutionary rates in Old World
monkey lineages compared to apes (70, 71).

GWAS data and enrichment. GWAS studies (72–83) were analyzed as we have
previously done (32). In brief, summary statistics from the genetic data were
downloaded from the Psychiatric Genomics Consortium (http://www.med.unc.
edu/pgc/results-and-downloads) and GIANT (https://portals.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_data_files), and gene-level
analyses were performed using MAGMA v1.04 (84). MAGMA statistics and
–log10(FDR) values are reported in Dataset S4.
Primate data and enrichment. Data were downloaded from respective National
Center for Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) sources. Berto and Nowick (21) and Konopka et al. (8) provide species-
specific DEGs within supplementary information. For the Somel et al.
microarray dataset (22), raw data were downloaded and analyzed with Affy
in R (85). Degradation and quality checks were performed to the data,
detecting no significant differences between the 3 species analyzed. We next
performed a computational mask procedure using the maskBAD in R (86). This
method developed for microarray data removed probes with binding affinity
differences between species. We considered only the probesets significantly
detected in at least one individual (P < 0.05). A linear model used for our data
was applied to the data detecting species-specific DEGs. For Sousa et al. (7)
RNA-seq data, RPKM (reads per kilobase per million) data were provided by
the first and corresponding authors of the study. To render the data com-
parable with the BA46 data in our study, we used human, chimpanzee, and
rhesus macaque samples from dorsolateral prefrontal cortex. RPKM data were
log2-scaled. Genes with RPKM = 0 in human, chimpanzee, or rhesus macaque
samples were removed. A linear model was applied as used for our data to
detect species-specific DEGs. Up-/down-regulated genes from these data were
used for enrichment with our NeuN-/OLIG2- DEGs gene set.
Transcription factors and RNA-binding proteins enrichment. The transcription
factors list was downloaded from http://humantfs.ccbr.utoronto.ca/download.
php (87). The RNA-binding proteins list was downloaded from http://rbpdb.
ccbr.utoronto.ca/(88).
SZ cell-specific data. Differential expression analysis of cell-type expression
between nuclei obtained from brain tissue derived from SZ cases and
controls (CTL) was generated from GSE107638 (32). Briefly, counts were
normalized using cpm with the edgeR package in R (62). Genes with no
reads in either SZ or CTL samples were further removed. Normalized data
were assessed for effects from known biological covariates (diagnosis,
age, gender, and hemisphere), technical variables related to sample
processing (RIN, Brain Bank, PMI), and technical covariates related to
surrogate variation (SV). Age and PMI were converted to categorical
variables (named “AgeClass” and “PmiClass”). SVs were calculates using
SVA based on “be” method with 100 iterations (63). For the differential
expression analysis, we used the lmTest with “robust” parameter and
ebayes functions in limma package in R (89) fitting all of the covariates
reported. Significant DEGs were categorized with jlog2(FC)j > 0.3 and
FDR < 0.01 for both NeuN and OLIG2 cell-type SZ vs. CTL analyses (Dataset
S5). Detailed information, methods, and analysis are available at https://
github.com/konopkalab/Schizophrenia_CellType.
Gene set enrichment. Gene set enrichment applied for primate DEGs as shown
in Fig. 1I, PsychENCODE and SZ cell-type DEGs as shown in Fig. 4 A–D, and
transcription factors/RNA-binding proteins as shown in SI Appendix, Fig. S3
was performed using a Fisher’s exact test in R with the following parameters:
alternative = “greater,” conf.level = 0.99, simulate.p.value = TRUE, B = 1000.
We reported ORs and Benjamini–Hochberg adjusted P values (FDR). Enrich-
ment was further confirmed with a hypergeometric test in R.
Deconvolution. The human middle temporal gyrus single nuclei RNA-seq
data were downloaded from Allen Brain Institute web portal (http://
celltypes.brain-map.org/rnaseq/human) (20) and analyzed as we have
previously done (32).
Availability of data and material. The NCBI GEO accession number for the human
data reported in this manuscript is GSE107638. Nonhuman primate raw data
are deposited with accession number GSE123936.
Code availability. Codes to support the DGE analysis, WGCNA, and shiny ap-
plications for data visualizations are available at https://github.com/konopkalab/
Primates_CellType.
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