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Purpose: To evaluate the performance of deep learning for robust and fully automated quantification of epicardial adipose tissue (EAT) 
from multicenter cardiac CT data.

Materials and Methods: In this multicenter study, a convolutional neural network approach was trained to quantify EAT on non–contrast 
material–enhanced calcium-scoring CT scans from multiple cohorts, scanners, and protocols (n = 850). Deep learning performance 
was compared with the performance of three expert readers and with interobserver variability in a subset of 141 scans. The deep learn-
ing algorithm was incorporated into research software. Automated EAT progression was compared with expert measurements for 70 
patients with baseline and follow-up scans.

Results: Automated quantification was performed in a mean (6 standard deviation) time of 1.57 seconds 6 0.49, compared with 15 
minutes for experts. Deep learning provided high agreement with expert manual quantification for all scans (R = 0.974; P , .001), 
with no significant bias (0.53 cm3; P = .13). Manual EAT volumes measured by two experienced readers were highly correlated (R = 
0.984; P , .001) but with a bias of 4.35 cm3  (P , .001). Deep learning quantifications were highly correlated with the measure-
ments of both experts (R = 0.973 and R = 0.979; P , .001), with significant bias for reader 1 (5.11 cm3; P , .001) but not for reader 
2 (0.88 cm3; P = .26). EAT progression by deep learning correlated strongly with manual EAT progression (R = 0.905; P , .001) in 
70 patients, with no significant bias (0.64 cm3; P = .43), and was related to an increased noncalcified plaque burden quantified from 
coronary CT angiography (5.7% vs 1.8%; P = .026).

Conclusion: Deep learning allows rapid, robust, and fully automated quantification of EAT from calcium scoring CT. It performs as well 
as an expert reader and can be implemented for routine cardiovascular risk assessment.

© RSNA, 2019

Epicardial adipose tissue (EAT) is a visceral fat deposit 
surrounding the coronary arteries that produces proin-

flammatory cytokines (1). EAT volume helps to predict the 
development of atherosclerosis (2–4) and is related to atrial 
fibrillation when adjusted for risk factors (5). EAT density 
has also recently been related to subclinical atherosclerosis 
and major adverse cardiac events (6,7). In addition, it was 
suggested that systematic quantification of EAT in clini-
cal routine could improve risk assessment in asymptomatic 
patients with no prior coronary artery disease (8). The fea-
sibility and reproducibility of quantifying EAT from non–
contrast material–enhanced CT performed for coronary 
artery calcium (CAC) scoring have been demonstrated (9). 

However, it remains a tedious manual process and is not 
suitable for clinical practice. Semiautomated EAT quantifi-
cation has been widely investigated (10–14) but still lacks a 
robust, fast, validated solution. Deep learning methods, es-
pecially convolutional neural networks (CNNs), have been 

extensively used for automated image segmentation, such as 
segmentation of cardiac structures from both MR images 
and contrast-enhanced CT images (15). A previously pro-
posed deep learning method based on two CNNs allowed 
automated quantification in a single-center, single-protocol 
cohort of 250 non–contrast-enhanced CT scans (16); how-
ever, large-scale application has still not been described. 

Our study objective was to develop an improved CNN 
architecture and training method and to validate it in the 
largest dataset to date with multicenter CT data and multi-
ple expert reader annotations for automated quantification 
of EAT volume and density. We also aimed to test the pro-
posed approach by comparing it to interreader variability 
and to manually quantified EAT changes on serial scans. 
We further assessed the clinical relevance of automated 
EAT quantification by comparing its volumetric progres-
sion to high-risk noncalcified plaque progression measured 
at coronary CT angiography.
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tational graph of the model; a validation subset (10%) used to 
evaluate the best configuration, state of the model, and hyper-
parameter tuning; and a test subset (10%) used to assess the 
performance of the model. More details on the model training 
are provided in the section “Implementation and Training of 
the Deep Learning Method.” During this process, 10 versions 
of the model were obtained, providing results for all 614 scans. 
By using these results, model quantifications were compared 
with manual measurements. We also compared the perfor-
mance of the model to interobserver variability in a subset of 
141 scans from the EISNER cohort and to manual measure-
ment for EAT volume progression in a subset of 70 patients 
with serial scans from the LDL cohort, as described in the 
section “Quantitative EAT and Coronary Plaque Progression 
from Coronary CT Angiography.”

Additional validation of the deep learning model.— After the 
development of the method, a final model was trained with all 
of the scans from the first dataset. A second dataset of 236 new 
scans (EISNER, 211; Seoul, 25) was used for the validation 
and additional evaluation of the final model. None of these 
scans had been included in the previous stage of model devel-
opment. From this dataset, 85 scans from the EISNER cohort 
were used to select the best state of the model. The remaining 
151 scans were used to assess performance. Thus, EAT bio-
markers were compared between the algorithm and the expert 
readers for a total of 765 scans (the entire first dataset of 614 
scans and 151 additional scans from the second dataset); au-
tomatically quantified EAT biomarkers from these scans were 
compared with clinical risk factors.

Expert Reader Manual Measurements
To manually measure EAT, superior and inferior limits of the 
pericardium were first identified as the bifurcation of the pul-
monary trunk and the posterior descending artery, respectively. 
For each section between the limits, a contour was manually 
drawn on the pericardium to define the intrapericardial soft 
tissues. Fat tissue was identified by using the standard fat at-
tenuation range, from −190 HU to −30 HU. Median filtering 
was applied to limit noise. The total volume of EAT was then 
quantified from the number of fat voxels inside the pericar-
dial contour, and mean EAT density was obtained as the mean 
attenuation in Hounsfield units. Manual measurements were 
performed by three expert readers. To assess the interobserver 
variability, a subset of 141 scans from the EISNER trial was in-
dependently annotated by two experienced readers (M.G., 3 
years of relevant experience, A.R. 4 years of relevant experi-
ence) who were blinded to each other’s annotations. The QFAT 
(version 2.0) research software tool developed at Cedars-Sinai 
Medical Center was used for the manual measurement.

Quantitative EAT and Coronary Plaque Progression from 
Coronary CT Angiography
The LDL cohort comprised 79 patients who underwent elec-
trocardiographically triggered non–contrast-enhanced CT, 
followed by coronary CT angiography for clinical indica-

Materials and Methods

Data and Study Design

Population.—This study was based on non–contrast-enhanced 
CT data from consecutive patients undergoing routine CAC 
scoring. Scans were obtained from four different cohorts 
in three centers: (a) consecutive patients from the Early 
Identification of Subclinical Atherosclerosis by Noninvasive 
Imaging Research (EISNER) trial (17) (August 2002–January 
2005) and (b) a cohort of patients undergoing serial cholesterol 
measurements, CAC scoring, and coronary CT angiography 
measurements (the low-density lipoprotein [LDL] cohort) 
(18) (March 2007–June 2015), both at Cedars-Sinai Medical 
Center, Los Angeles, Calif; (c) consecutive patients undergoing 
CAC scoring at the Friedrich-Alexander University Erlangen-
Nürnberg, Erlangen, Germany (January 2018–February 
2018); and (d) consecutive patients undergoing CAC scor-
ing at the Yonsei University, Seoul, Korea (March 2017–July 
2018). 

Cohorts and risk factors are described in Table 1. In each 
cohort, non–contrast-enhanced CT images were acquired 
with prospective electrocardiographic triggering according to 
the standard protocol and a section collimation of 1.5, 2.5, or 
3 mm extending over the heart. The CT scanners, reconstruc-
tion protocols, and voxel sizes used in these cohorts are listed in 
Table 2. The institutional review boards of the study centers ap-
proved this multicenter study, and all patients provided written 
informed consent.

Teaching the deep learning model to quantify EAT.— A strati-
fied 10-fold cross-validation was used to teach the deep learn-
ing model with the first dataset of 614 scans (EISNER, 431; 
LDL, 149; Erlangen, 23; Seoul, 11) from 540 patients (320 of 
540 [59.3%] were men; mean age 6 standard deviation, 60.1 
years 6 7.8). For each fold, the dataset was separated into three 
subsets: a training subset (80%) used to optimize the compu-

Abbreviations
CAC = coronary artery calcium, CNN = convolutional neural 
network, EAT = epicardial adipose tissue, EISNER = Early Iden-
tification of Subclinical Atherosclerosis by Noninvasive Imaging 
Research, IQR = interquartile range, LDL = low-density lipoprotein

Summary
Deep learning allows for fast, robust, and fully automated quantifi-
cation of epicardial adipose tissue from non–contrast material–en-
hanced calcium-scoring CT.

Key Points
 n Deep learning can be used for robust and fast epicardial adipose 

tissue quantification, with performance similar to that of a human 
expert.

 n Progression of epicardial adipose tissue volume as detected by the 
deep learning system showed strong agreement with the expert 
reader and was related to increase in noncalcified coronary plaque 
volume.

http://radiology-ai.rsna.org
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sections. The EAT in a whole scan is quantified by repeating 
this procedure for each section and applying the postprocessing 
steps, including median filtering and Hounsfield unit thresh-
olding for fat tissue. Residual learning was used to optimize 
deeper networks (19). The graph architecture is presented in 
Figure 1. 

For each fold of the 10-fold cross-validation, data aug-
mentation was used by applying random affine transforms 
and Gaussian noise to the training data during model train-
ing. Optimization was performed by using the Adam method 
(20) to minimize the binary cross-entropy for classification 
and to maximize the Dice score coefficient (21) for seg-
mentation, which is used to measure the overlap between 
two structures, with values ranging from 0 (no overlap) to 1 
(same structures). Xavier initialization (22) was used, along 
with a starting learning rate set to 1e-3; the learning rate de-
creased to 1e-4 after the loss plateaued. A mini-batch strat-
egy was used with a batch size of 20. Input images were all 
mean centered initially; batch normalization layers were then 
used in residual blocks (Fig 1). Validation was performed af-
ter every epoch by computing the Dice score coefficient on 
each scan from the training and validation subsets. Training 
and validation loss curves were monitored to ensure optimal 
convergence and reduce overfitting. The state of the model 
providing the best result on the validation data in terms of the 

tions. The acquisition protocol for coronary CT angiography 
has been previously described (18). After a median follow-
up time of 3.67 years (interquartile range [IQR], 2.04–4.61 
years), a subset of 70 patients underwent follow-up scanning 
with the use of the same imaging protocol. EAT progression 
was defined by subtracting the baseline EAT volume from the 
EAT measured at follow-up. Coronary plaque was quantified 
during each coronary CT angiographic examination at base-
line and follow-up by using semiautomated software (Au-
toplaque, version 2.0; Cedars-Sinai Medical Center) as de-
scribed previously (18), and noncalcified and calcified plaque 
were characterized. Patients were separated into two groups 
(n = 33 and 37) on the basis of their increase in noncalcified 
plaque volume.

Implementation and Training of the Deep Learning Method
We implemented our deep learning model by using a CNN 
with the TensorFlow framework, version 1.10.1 (http://www.
tensorflow.org), and the Keras library, version 2.2.2 (https://
keras.io). Our network consists of a multitask computational 
graph that, similarly to the expert performing manual measure-
ment, (a) identifies the inferior and superior limits of the heart 
and (b) segments the interior region of the pericardium. The 
graph is provided with three consecutive axial sections: the one 
to be classified and segmented, as well as the previous and next 

Table 2: Scanning and Reconstruction Characteristics of the Study Cohorts

Cohort CT Scanner
Axial Grid Size 

(pixels)
Median Axial Field 

of View (mm2)
Median Axial Spacing 

(mm)
Median Section 
Thickness (mm)

Readers Mea-
suring EAT 

EISNER Four-section multidetec-
tor CT

512 3 512 350 3 350 0.6836 3 0.6836 3 Readers 1 
and 2

LDL Dual-source Siemens 
Definition

512 3 512 202 3 202 0.3945 3 0.3945 3 Reader 1

Erlangen Dual-source Siemens Defi-
nition Force

512 3 512 154 3 154 0.3007 3 0.3007 1.5 Reader 2

Seoul Toshiba AquilionONE 512 3 512 299 3 299 0.5839 3 0.5893 2.5 Reader 3

Note.—EISNER = Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research, LDL = low-density lipoprotein. 

Table 1: Population and Risk Factors

Variable EISNER Cohort LDL Cohort Erlangen Cohort Seoul Cohort Total

No. of patients 638 79 23 36 776
No. of scans 642 149 23 36 850
Age (y)* 59.5 6 7.3 60.7 6 9.4 59.8 6 9.7 69.2 6 6.9 59.9 6 7.8
No. of men 374/638 (58.6) 59/79 (74.7) 10/23 (43.5) 16/36 (44.4) 461/776 (59.4)
Hypertension 380/638 (59.6) 46/79 (58.2) 6/23 (26.1) 7/36 (19.4) 442/776 (57.0)
Cholesterol 437/638 (68.5) 54/79 (68.4) 6/23 (26.1) 9/36 (25.0) 508/776 (65.5)
Diabetes 49/638 (7.7) 10/79 (12.7) 1/23 (4.3) 20/36 (55.6) 75/776 (9.7)
Smoking 39/638 (6.1) 4/79 (5.1) 2/23 (8.7) 7/36 (19.4) 51/776 (6.6)
Family history 190/638 (29.8) 36/79 (45.7) 4/23 (17.4) 4/36 (11.1) 236/776 (30.4)

Note.—Unless otherwise noted, values are expressed as the proportion of patients in each cohort, with percentages in parentheses. EISNER 
= Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research, LDL = low-density lipoprotein.
*Data are means 6 standard deviation.

http://www.tensorflow.org
http://www.tensorflow.org
https://keras.io
https://keras.io
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graphics processing unit and 6.37 seconds 6 1.47 with the 
use of a central processing unit only. The mean duration for 
manual measurement was 15 minutes.

Results from 10-Fold Cross-Validation

Multicenter and multiprotocol.— Figure 2 summarizes our re-
sults from the entire first dataset of 614 scans. The automated ap-
proach achieved a median Dice score coefficient of 0.873 (IQR, 
0.842–0.895) for EAT segmentation. The median Dice score 
coefficient in the tuning dataset was 0.871 (IQR, 0.837–0893). 
Median EAT volumes were 86.75 cm3 (IQR, 64.23–119.61 cm3) 
and 85.57 cm3 (IQR, 62.49–119.23 cm3) for automated and 
manual measurements, respectively. After mixed-effect model-
ing, a high correlation was observed between the readers and the 
algorithm (R = 0.974; P , .001; Fig 2). Fixed-effect regression 
between automated and manual EAT volume resulted in a coef-
ficient and intercept of 0.920 and 8.009, respectively; a similar 
regression was observed for a standard linear model, providing 
a coefficient and intercept of 0.935 and 6.673, respectively. No 
significant bias was observed in the automated quantification 
(0.53 cm3; P = .13). The 95% limits of agreement ranged from 
−19.59 cm3 to 21.42 cm3. Densities obtained from automated 
quantifications and manual measurements were highly correlat-
ed (R = 0.954; P , .001), with no significant bias (0.06 HU; P = 
.177). An example of EAT segmentation is presented in Figure 3. 
Section thickness invariance was also assessed by comparing ex-

median Dice score coefficient was used for the evaluation on 
the test subset.

Statistical Analysis and Evaluation
EAT volumes automatically quantified by the model were 
compared with EAT volumes manually measured by the read-
ers on the test data. Agreement was assessed by using cor-
relation and Bland-Altman analysis. For intraobserver com-
parison, we also report the repeatability coefficient, defined 
as 1.96 times the standard deviation between the two readers. 
Because several patients had two scans or expert measure-
ments, mixed-effect modeling was used in the global compar-
ison. The adjusted correlation coefficient was obtained from 
the marginal R2, computed as proposed by Nakagawa et al 
(23). Wilcoxon signed-rank or Wilcoxon rank-sum tests were 
used to assess significant differences between automated and 
manual quantifications. EAT volumes for patients with and 
without an increased noncalcified plaque volume were com-
pared by using the Wilcoxon rank-sum test. A P value of less 
than .05 was considered to indicate a statistically significant 
difference. The statistical analysis was performed in the Py-
thon programming language (www.python.org) by using the 
SciPy package (www.scipy.org) (24).

Results
The mean EAT duration of volume quantification was 1.57 
seconds 6 0.49 per scan with the use of computation by a 

Figure 1: Illustration shows the deep learning model used for quantification of epicardial adipose tissue. A deep convolutional neural network was 
trained to perform intrapericardial segmentation. Each section (or slice) of a scan is given as input with the immediate previous and next sections. The 
model performs a first task of classification to determine whether the input section is located between heart limits (see text) and performs segmentation 
of the pericardium as a second task. ReLU = rectified linear unit.

http://radiology-ai.rsna.org
http://www.python.org
http://www.scipy.org
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bias of 4.23 cm3 (P , .001). The 95% limits of agreement by 
Bland-Altman analysis ranged from −8.54 cm3 to 25.17 cm3, 
with an absolute range of 33.71 cm3 and a repeatability coeffi-
cient of 17.0 cm3 (Fig 4). EAT densities from both readers were 
highly correlated (R = 0.969; P , .001), but also significantly 
different (2.54 HU; P , .001), with a repeatability coefficient 
of 2.6 HU.

We assessed the performance of the automated model in 
these 141 scans with manual measurements from both read-
ers and compared the performance to interreader variability. 
The median volume quantified by the automated method was 

pert and automated quantifications for scans with section thick-
ness of 1.5 mm, 2.5 mm, and 3 mm separately. No significant 
differences were found among the three groups (P = .49, P = .40, 
and P = .45, respectively).

Performance versus interreader variability.— In 141 scans 
from the EISNER trial with manual measurements from two 
readers, median EAT volumes were 69.18 cm3 (IQR, 55.74–
102.95 cm3) and 75.88 cm3 (IQR, 56.34–112.91 cm3) for 
readers 1 and 2, respectively. Measured volumes were highly 
correlated (R = 0.984; P , .001) but presented a significant 

Figure 2: Automated volume quantifications versus human measurements. Scatterplot (left) and Bland-Altman plot (right) show epicardial adipose tissue (EAT) volume 
measurements and agreement between the automated quantifications and the expert manual measurements. EISNER = Early Identification of Subclinical Atherosclerosis by 
Noninvasive Imaging Research, LDL = low-density lipoprotein.

Figure 3: Comparison of manual annotation by an expert reader and automatic segmentation of epicardial adipose tissue by an algorithm. A, D, Axial 
non–contrast-enhanced CT images show the heart without the EAT identified; B, E, EAT as identified by the expert (red areas); and C, F, EAT as identified 
automatically by the algorithm (red areas).
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79.20 cm3 (IQR, 57.42–110.52 cm3). The algorithm presented 
excellent correlations for EAT volumes with both experts (R = 
0.973, P , .001; R = 0.979, P , .001). A significant differ-
ence was observed with reader 1 (5.11 cm3; P , .001) but not 
with reader 2 (0.88 cm3; P = .26). Automated EAT density was 
different with both readers (1.83 HU, P , .001; −0.72 HU, 
P , .001) but was highly correlated (R = 0.964, P , .001; R 
= 0.963, P , .001). The 95% limits of agreement for volume 
quantification with both experts ranged from −8.65 cm3 to 
22.82 cm3 and from −17.17 cm3 to 17.76 cm3, with absolute 
ranges of 31.47 cm3 and 34.93 cm3, respectively. These high 
correlations, similar or even nonsignificant bias, and identical 
absolute ranges between the 95% limits of agreement suggest 
that the proposed approach can perform as well as an indepen-
dent reader.

Automated quantification of EAT progression and relation 
to coronary plaque features.— EAT progression was quan-
tified by the proposed method in the 70 patients from the 
LDL cohort with serial scans. A high correlation for EAT pro-
gression was observed between the automated method and 

the observer (R = 0.905; P , .001), with no significant bias 
of 0.64 cm3 (P = .43) (Fig 5). The 95% limits of agreement 
ranged from −13.88 cm3 to 15.16 cm3. Progression of auto-
matically quantified EAT was associated with an increase in 
noncalcified plaque burden (5.7% vs 1.8%; P = .026). No 
significant difference in density change was found between 
the two groups (0.12 HU; P = .2).

Additional Validation
After the 10-fold cross-validation, a subset of 85 scans from 
the second population (all from EISNER) was used to select 
the best state of the model, which was then used to quantify 
EAT on the remaining 151 additional scans (126 from EIS-
NER and 25 from Seoul), for added validation. EAT volumes 
automatically quantified were highly correlated to EAT vol-
umes measured by readers 2 and 3 (R = 0.975; P , .001). A 
bias was observed when we considered both cohorts (−1.86 
cm3; P = .027) and the 95% limits of agreement ranged from 
−22.37 cm3 to 15.80 cm3. When we looked at cohorts inde-
pendently, the differences were significant for scans from the 
Seoul cohorts (−5.67 cm3; P = .028) but not for scans from 

Figure 4: Interreader variability in epicardial adipose tissue (EAT) volume measurements. Scatterplot (left) and Bland-Altman plot (right) show variability in measurements 
between reader 1 and reader 2. EISNER = Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research.

Figure 5: Algorithm versus human reader for epicardial adipose tissue (EAT) progression on serial scans. Scatterplot (left) and Bland-Altman plot (right) show comparison 
of automated quantifications and expert measurements for EAT progression. LDL = low-density lipoprotein.

http://radiology-ai.rsna.org
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the EISNER trial (−1.11 cm3; P = .224). Correlations were 
still high (R = 0.966, P , .001; R = 0.976, P , .001), and the 
95% limits of agreement ranged from −23.30 cm3 to 19.71 
cm3 and −19.26 cm3 to 15.63 cm3 for Seoul and EISNER, re-
spectively. The proposed method was integrated in the QFAT 
research software, allowing the clinician to obtain fast EAT 
quantification with two clicks (Fig 6).

EAT and Risk Factors
An increase in EAT volumes, as quantified by the automated 
algorithm, was associated with hypertension (increase of 18.02 
cm3; P , .001). Similar results were observed for cholesterol 
(increase of 7.33 cm3; P = .039) and diabetes (increase of 18.33 
cm3; P , .001). No significant increase was found in patients 
with smoking or family history of cardiovascular disease.

Discussion
In this large multicenter and multireader study with different 
acquisition protocols, we showed that deep learning allows 
for fast, automated, and accurate quantification of EAT. We 
demonstrated that our approach performs as well as expe-

rienced readers. Our approach could be incorporated into 
software and potentially reduce the burden imposed on phy-
sicians, because it allows EAT to be quantified in seconds. 
Moreover, we show that the automatically quantified EAT 
progression is equivalent to EAT progression measured by 
the expert reader and is related to an increase in high-risk 
noncalcified plaque burden.

EAT has been associated with major adverse cardiovascu-
lar events, and risk assessment in clinical practice could ben-
efit from its routine quantification (2–4,6,8). Because EAT is 
related to coronary atherosclerosis through early plaque for-
mation and the development of noncalcified and high-risk 
atherosclerotic plaques (6,25), automated EAT measures in 
combination with CAC scoring may provide a more accurate 
method of risk stratification than would otherwise be possible. 
The main limitation for implementing EAT quantification 
in practice is the lack of robust and fast automated methods, 
because manual methods require excessively long processing 
times.

Automated approaches have been proposed for this pur-
pose, combining atlas-based methods and standard techniques 

Figure 6: Algorithm embedded in research software QFAT. Three-dimensional representations of epicardial adipose tissue (EAT) (EAT in pink overlaid on heart rendered 
in red), A, as manually identified by the expert and, B, as automatically identified by the algorithm. C, Screenshot of QFAT software with the integrated deep learning ap-
proach. The pericardium is automatically identified (yellow arrow) by selecting a new operator (1, red) and by using the “extract contours” option (2, green).
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of image processing, such as filtering and classic machine learn-
ing, to first perform rough localization of the heart and then 
refine the pericardium detection (11–13). However, all of these 
studies were validated in small datasets. In a similar approach 
of initialization and segmentation refinement, two sequential 
CNNs were used for the quantification of EAT in a dataset 
of 250 consecutive scans from the EISNER trial with a single 
expert reader (16).

In this study, we proposed an improved deep learning–based 
approach by using only one network for fully automated and fast 
EAT volume and density quantification, providing high agree-
ment with reader manual measurement in a larger multicenter 
and multiprotocol dataset of 850 scans. A new training strategy 
was used to ensure that the capacity of the network performs 
well on new data with high variations.

We also validated our approach by using ground truth mea-
surements from multiple readers to account for interobserver 
variability. On 141 scans, the measures from two readers pre-
sented a high correlation, but a bias was observed. The variability 
between both experts was mostly due to the difference in the 
identification of the inferior and superior limits of the peri-
cardium, especially for the identification of the lowest section 
showing the posterior descending artery. On these same scans, 
the model also presented a high correlation with both readers. 
A significant difference was observed only with volume for the 
first reader and with density for both readers. This observation 
suggests the influence of having more annotations from reader 
2 than reader 1; reader 1 annotated 303 of the scans used for 
the development of the method whereas reader 2 annotated 441 
scans. Variability in automated volume quantification compared 
with expert measurements was equivalent to interobserver vari-
ability, as shown by the 95% limits of agreement in the Bland-
Altman analyses.

In 70 patients, the method showed strong agreement with 
the reader for the estimation of EAT progression in serial scans, 
with no significant differences. The automated quantification 
demonstrated an association between EAT progression and 
high-risk plaque progression (increase in noncalcified plaque 
burden), as previously found in the literature (2). This result 
supports the hypothesis that the proposed approach provides 
quantifications with a potential prognostic value for risk as-
sessment. Change in EAT density automatically quantified by 
the method was not different from the corresponding values 
measured by the reader.

Finally, the model was retrained on the 614 training scans 
after the 10-fold cross-validation and applied to additional data; 
results were similar to those from 10-fold cross-validation. The 
model did not present a significant bias with reader 2 but did 
with reader 3, whose number of annotations in the training step 
was small (n = 11), and the 95% limits of agreement were equiv-
alent to those obtained in the interobserver variability analysis. 
Despite the low number of scans from Seoul that were used to 
develop the method, the model still provided robust results in the 
additional 25 scans, as shown by the correlation and agreement.

This study presented some limitations. Although the pro-
posed approach provided robust results in the overall data and 
performed well in a cohort with a small influence in the training, 

suggesting the genericity of the method, the interobserver vari-
ability evaluation was performed in only one cohort (scans from 
the EISNER trial). More annotations from different readers in 
different cohorts are necessary to validate the generalizability of 
the method. Moreover, the different cohorts presented in this 
study were unbalanced, and the training and test datasets were 
heavily from the EISNER trial, which may have led to improved 
performance in the EISNER datasets. Further, the training 
model had 614 scans in 540 patients (ie, more than one scan per 
patient in 74 patients), also leading to improved performance in 
these similar serial scans. Although we used cross-validation, a 
leave-one-cohort-out validation method could not be considered 
with our current data.

As a future perspective for this work, it could be interesting to 
focus on localized quantification of adipose tissue surrounding 
the coronary arteries. The combination of the proposed method 
in this article with cardiac structure segmentation, as proposed 
previously (15) could provide localized characterization of adi-
pose tissue and potentially increase the predictive power com-
pared with global EAT volume or density, as suggested by recent 
work with pericoronary adipose tissue (26).

In conclusion, deep learning allows rapid, robust, and fully 
automated quantification of EAT from non–contrast-enhanced 
calcium-scoring CT; it performs as well as an expert reader and 
can be implemented in clinical routine for cardiovascular risk as-
sessment. Fully automated EAT quantification can improve the 
risk assessment and treatment of asymptomatic patients.
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