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In recent years, high-level evidence of the use of MRI for 
diagnosis of prostate cancer has emerged for both biopsy-

naïve patients and those with negative results from a prior 
biopsy. This evidence is summarized in the influential Ox-
ford Cochrane review (1). The major benefits of the MRI-
directed pathway in biopsy-naïve men are reductions in the 
number of men needing biopsies, the number of biopsy 
cores used to make diagnoses, and in decreased detection 
rates of indolent cancers. In patients with negative results 
from prior biopsy, increased diagnoses of clinically signifi-
cant cancer is an additional benefit (2).

The Prostate Imaging Reporting and Data System, or PI-
RADS, standard for multiparametric MRI evaluation and 
reporting (3) has been adopted into guidelines for diagnosis 
of prostate cancer (4,5). As a result, it is anticipated that there 
will be rapid adoption of MRI and MRI-guided biopsy for 
diagnosis of prostate cancer worldwide. To deliver the ben-
efits of the MRI-diagnosis pathway, there is an important 
need to increase work efficiency while minimizing variations 
in MRI data acquisition and reader interpretations, and also 
to decrease the number of data processing steps to identify 
men who are likely to have clinically significant cancers (2).

The delivery of patient benefits is dependent on reader 
expertise. Expert readers make more accurate diagnoses 
with less uncertainty. High level of expertise also enables the 

adoption of MRI approaches that avoid contrast medium 
injections (biparametric MRI) (6,7), helping to reduce 
costs and increase patient throughput. Reader expertise also 
minimizes variations in clinically significant cancer yields 
within the PI-RADS suspicion categories, thus improving 
uniformity and reliability of MRI findings for clinical deci-
sion making. High-quality prostate gland and within-gland 
target lesion delineations are essential to direct MRI-guided 
biopsies and therapy planning.

The achievement of patient benefits is challenging to de-
liver because of increasing demands on the radiologist’s time 
and a workforce not fully trained to interpret prostate MRI. 
There is a steep learning curve for prostate MRI interpreta-
tions. Currently, there is wide variation in MRI interpreta-
tive performance. Biopsy target detection and delineations 
in preparation for biopsy is also time consuming. Artificial 
intelligence, or AI, systems that use deep learning approaches 
are potentially helpful for automating multiple steps in diag-
nosis of prostate cancer at MRI (8,9).

A helpful AI system should be able to segment the pros-
tate gland for biopsy and radiation therapy guidance, even 
when images are not ideal. In the next step, lesions suspi-
cious for prostate cancer should be detected, graded for the 
likelihood of malignancy, and given probabilities of aggres-
siveness. Delineation of lesions suspicious for cancer with 
low false-positive results and high similarity to actual tumor 
locations will assist in planning biopsy and focal therapies 
and boost radiation therapy indications. Experience shows 
that object detection and classifications need plentiful well-
annotated data, provided by experts, for training AI systems. 
These data are difficult to find because digital annotations of 
prostate MRI examinations are rarely performed in routine 
clinical practice, and histopathologic correlation with whole-
gland tissue and tumor mapping for MRI verification does 
not happen in the clinical routine when men undergo MRI 
for suspected cancers.

In this issue of Radiology, Schelb et al (10) demonstrate 
the potential of deep learning approaches to provide diag-
nostic support to radiologists for image interpretation and 
target delineation by using diagnostic biparametric MRI. 
The current work included a curated sample of 250 patients, 
representative of a mixed outpatient urologic clinic (biopsy-
naïve patients, patients with negative findings from prior bi-
opsy, and patients treated with active surveillance). Although 
this is a relatively small sample size, with training, the AI 
algorithm had similar performance to that of eight radiolo-
gists who had interpreted the multiparametric MRI scans 
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by using the PI-RADS system (3) and to one investigator who 
performed prostate gland and intraprostate lesion delineations. 
Histologic validation used a transperineal mapping biopsy scheme 
known for its high accuracy.

Of note, the success of the AI came at the cost of a high false-
positive rate of around 50%. The sensitivity of the AI system 
rapidly declined when attempting to lower the false-positive rate. 
That is, to maintain high sensitivity for the detection of clinically 
significant cancer, the AI overcalls multiple lesions that do not 
represent significant cancers (false-positive findings). A high false-
positive rate of AI systems has been noted by other investigators 
(8,9). Clinical tolerance to false-positive results differs between pa-
tient groups (2). In biopsy-naïve men, there is a need to minimize 
overdiagnoses and to detect significant cancers, therefore reduc-
ing the acceptance of false-positive results. However, management 
priority in men with persistent suspicion of clinically significant 
cancers after negative findings at previous biopsy is to not miss 
potentially life-threatening cancers, therefore increasing tolerance 
for false-positive results.

In the short term, the disadvantage of high false-positive rates 
can be addressed by using AI systems as triage tools that detect and 
present lesions suspicious for cancer, along with their delineations, 
to radiologists. In a second step, the radiologists can either accept 
or reject proposed lesions in line with clinical risk factors and pa-
tient priorities, and improve delineations of targets suspicious for 
cancer before proceeding to reporting and communication tasks. 
It is interesting to note that when radiologists and machine learn-
ing agree on likely presence of clinically significant lesions, the 
positive predictive value increases without affecting the negative 
predictive value.

A positive result of Schelb et al (10) was the high similarity 
of the AI algorithm to segment the entire gland comparable to 
manual segmentations. This opens the possibility for segmenta-
tion of the prostate gland to be used immediately for fusion biopsy 
and radiation therapy planning.

The performance of the deep learning system described by 
Schelb et al (10) is expected to improve when larger data sets are 
used for training. It is difficult to benchmark the collective per-
formance of the radiologists’ readings given the large number of 
readers, the limited number of scans evaluated per reader, and the 
mixed population of patients. The similarity scores for detected 
lesions are relatively low, and we do not get a strong sense about 
lesion similarity scores and measurements of tumor size or aggres-
siveness. However, we must acknowledge that this is a hard task 
and is subject to the variability of lesion outlining by one of the 
investigators, remembering that there is no recognized operating 
procedure on how lesion outlining should be performed. Bringing 
objectivity to the outlining process for AI training would require 
histopathologic correlations with both prostatectomy specimens 
and transperineal template mapping biopsies using high spatial 
sampling densities (because the entire population presenting for 
diagnosis must be represented in the training data set). Finally, it is 
important to note that this is a limited single-center data set, and 
we have no information on how the AI system would operate with 
other MRI protocols and scanners. Furthermore, we cannot di-
rectly extrapolate these results to men with much higher or much 
lower risks of having clinically significant cancers.

In the next phases of optimization of AI systems, larger, well-
curated, and diverse (potentially from multiple vendors, multiple 
centers) training data sets with spatially well-correlated histo-
pathologic validation must be used. Although such developments 
can be time and resource consuming, AI systems for diagnosis of 
prostate cancer at MRI will certainly perform better, although we 
do not yet know what the performance will level out at compared 
with trained human readings. Ideally, AI systems should be tested 
in prospective randomized studies to assess test performance, from 
which robust measurements of clinical impacts can be derived in 
different use case scenarios.

AI systems that can detect normal cases with high confidence 
can enable the identification of patients who will likely not need 
biopsies, thus optimizing reading workflow. A second reader role 
for indeterminate MRI cases that includes integrations with clinical 
history, biochemistry, and genomic profiles can also be envisioned. 
Clearly, AI systems will need to be tuned to population disease 
prevalence, and to have performance characteristics that enable the 
delivery of diagnostic benefits according to individual patient clini-
cal priorities. These steps are essential to developing community-
wide expertise in diagnosis of prostate cancer at MRI. Robust stan-
dard operating procedures will increase confidence of patients and 
payers, enabling the wider adoption of the MRI-directed approach. 
We recommend that radiologists engage in the clinical develop-
ment of AI systems for diagnosis of prostate cancer to meet the 
increasing demands for MRI-directed diagnosis of prostate cancer.
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