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In combination with improved treatments, screening 
mammography is responsible for a substantial decline 

in breast cancer mortality over the past 4 decades (1). 
However, it has been recognized that mammography is 
less effective in some populations (2). For example, mam-
mography’s reduced sensitivity of breast cancer detection 
in patients with dense breasts, even when performed with 
digital breast tomosynthesis, has led to federal and state 
breast density notification legislation. Furthermore, some 
women, regardless of breast density, are at higher lifetime 
risk to develop breast cancer and may benefit from supple-
mental screening examinations (3). As health care moves 
toward personalized patient-centered care, many imaging 
techniques have been proposed as potential supplemental 
screening tools to mammography.

One of the mostly widely explored modalities for 
supplemental screening is dynamic contrast material–en-
hanced (DCE) MRI. Owing to its high sensitivity and 
proven ability to depict additional cancers (4), DCE MRI 
is recommended by national and international screening 
policy guiding organizations as a supplemental screening 
tool for women at high risk for breast cancer (3,5). How-
ever, DCE MRI is limited by high costs, preventing wide-
spread use in women with low to moderate risk for breast 
cancer. High cost is attributable both to lengthy examina-
tion times and cost of contrast material administration, 
which includes costs for the gadolinium agent, intravenous 

supplies, point-of-care renal function screening, intrave-
nous placement and monitoring, and on-site physician 
coverage for adverse contrast material–related events. As 
a result, the 2019 national Medicare reimbursement for 
DCE MRI is 58% higher than that of a noncontrast breast 
MRI ($410.49 vs $259.84) (6).

Abbreviated breast MRI has been proposed to partially 
solve the cost problem DCE MRI poses by reducing imag-
ing time. Typical abbreviated MRI protocols include only 
pre- and immediate postcontrast sequences, omitting the 
additional delayed contrast-enhanced sequences mandated 
by American College of Radiology accreditation guidelines 
(7) and other optional sequences such as a precontrast 
non–fat-suppressed T1 series to reduce imaging times to 
less than 10 minutes. Multiple studies have shown equiva-
lent cancer detection rates, positive predictive values, and/
or negative predictive values versus complete conventional 
protocols (8–10). However, abbreviated breast MRI still 
requires administration of intravenous gadolinium-based 
contrast material. Aside from the disadvantages of cost and 
pain of venipuncture, intravenous contrast material use is 
contraindicated in pregnancy and patients with renal im-
pairment or gadolinium contrast material allergy (11–13). 
Furthermore, there are growing public concerns over the 
unknown health effects of gadolinium deposition in brain 
and other tissues from repeated gadolinium contrast agent 
injection, which must be considered in an asymptomatic 
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need for additional cost-effective supplemental screening examinations. Preliminary studies suggest unenhanced MRI with DW 
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during image acquisition, and the DW signal intensity is pro-
portional to water mobility within a voxel, as described by the 
general equation:

	
−

=
b*ADC

D 0
S S e ,

where SD is the diffusion-weighted signal intensity, S0 is the 
signal intensity without diffusion weighting, b or “b value” is 
the diffusion sensitization factor, which varies by the strength 
and timing of the applied diffusion gradients (in sec/mm2), and 
the apparent diffusion coefficient (ADC) is the rate of diffusion 
defined as the average area occupied by a water molecule per 
unit time (in mm2/sec). An ADC map can be calculated using 
image acquisitions at two or more different b values, quantita-
tively reflecting a composite of tissue factors affecting net water 
mobility in each voxel including microcirculation, cellular den-
sity, organization, and membrane integrity (28).

Differential Diagnosis of Suspicious Breast Lesions
Numerous studies have demonstrated breast malignancies to 
exhibit impeded water diffusion, reflected by lower ADC and 
higher DW MRI signal compared with normal surround-
ing breast tissue (29) (Fig 1). Although cellularity may play 
a role in diffusion impedance, the correlation has found to 
be inconsistent and/or modest (30–32), suggesting a more 
complex relationship between ADC and tissue microenviron-
ment. Initial exploration of DW MRI performance focused 
on the diagnostic value of DW MRI as a supplement to DCE 
MRI to improve DCE MRI’s relatively modest specificity 
compared with mammography (33,34). In a meta-analysis 
compiling 14 studies between 2008 and 2014 investigating 
DW MRI as a supplement to DCE MRI, quantitative ADC 
measures from DW MRI alone could differentiate benign 
versus malignant lesions with pooled sensitivity and specific-
ity of 86.0% and 75.6%, respectively, compared with 93.2% 
and 71.1% for DCE MRI alone (35). Although the study 
concluded that combined use of DW MRI and DCE MRI 
yielded the best performance (sensitivity and specificity of 
92% and 86%, respectively), it is worth noting that DW 
MRI alone had comparable diagnostic performance to that 
of DCE MRI for differentiating known suspicious lesions.

Potential for Detecting Breast Malignancies without Contrast 
Enhancement
Considering the limitations of DCE MRI in length, cost, and 
contrast material–related safety, DW MRI could be a useful 
stand-alone screening tool if proven to supplement mammog-
raphy and outperform other supplemental screening modalities 
for cancer detection. In a study of 118 mammographically occult 
lesions, 89% of DCE MRI–detected malignancies were visible at 
DW MRI (36). Additionally, DW MRI may be superior to US 
at detecting mammographically occult cancer. In another study 
of 60 mammographically occult cancers, DW MRI potentially 
detected more cancers than MRI-guided focused US (78% vs 
63%, respectively, P = .049, Fig 2) (37). Another benefit of DW 
MRI is that lesion detection remains independent of background 
parenchymal enhancement, breast density, menopausal status, or 

Abbreviations
ADC = apparent diffusion coefficient, DCE = dynamic contrast en-
hanced, DCIS = ductal carcinoma in situ, DW = diffusion weighted, 
EPI = echo-planar imaging

Summary
Diffusion-weighted MRI is a fast, unenhanced modality that shows 
promise in identifying mammographically occult malignancy and 
warrants further investigation as an alternative supplemental breast 
cancer screening tool.

Essentials
nn Diffusion-weighted (DW) MRI is a fast, unenhanced technique 

that demonstrates breast malignancies based on reduced water dif-
fusivity relative to normal tissue.

nn DW MRI can help distinguish between benign and malignant 
lesions in the diagnostic setting, and there are emerging data that 
DW MRI could also serve as part of a non–contrast-enhanced 
MRI approach for screening with sensitivity lower than that of 
dynamic contrast-enhanced MRI but superior to that of mam-
mography.

nn Breast DW MRI approaches vary widely and there is need for 
technique standardization. Suggested DW MRI acquisition and 
interpretation protocols are suggested for a screening application 
based on current literature.

nn Advanced DW MRI acquisition and postprocessing techniques 
may improve imaging quality and sensitivity in cancer detection.

and relatively young population such as those receiving breast 
cancer screening (14–16).

In light of 38 states with breast density notification laws and 
federal breast density notification laws, whole-breast US has 
become widely adopted as a supplemental screening tool for 
women with dense breasts owing to its relative ubiquity and low 
cost despite no definitive recommendation by any major medical 
organization (17,18). Whole-breast US also requires no contrast 
agent administration or radiation. However, questions remain 
as to whether the low positive predictive value of US and corre-
sponding high negative biopsy rate will render the method cost-
ineffective and increase patient anxiety toward US screening in 
the long run (19–21).

Given the limitations of available supplemental screening 
modalities, there is benefit in identifying a safe and cost-effective 
alternative implementable on a broad scale. While the authors 
recognize other modalities are being explored as possible sup-
plementary screening tools (including contrast-enhanced digi-
tal mammography, PET, and 99mTc-sestamibi–based molecular 
breast imaging, each of which utilize ionizing radiation), this 
review focuses on diffusion-weighted (DW) MRI’s potential as 
a stand-alone breast cancer screening modality, reviewing results 
of blinded studies (22–27) and presenting practical applications 
using readily available techniques.

DW MRI in Breast Cancer
DW MRI is a fast, widely available, unenhanced MRI tech-
nique. Unlike DCE MRI, which relies on administration of 
an intravascular gadolinium-based contrast agent to illustrate 
tissue perfusion, DW MRI measures endogenous water move-
ment within tissue. Motion-sensitizing gradients are applied 
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Blinded DW MRI Reader Studies
To date, several studies have explored reader performance for 
cancer detection using unenhanced MRI with DW MRI, which 
overall demonstrated readers’ ability to visually identify malig-
nancy at DW MRI with promising sensitivity and specificity 
(22–27,40–48). Of those, six studies included patients with both 
positive and negative imaging findings and/or healthy controls 

timing during menstrual cycle, all factors which influence mam-
mographic and/or DCE MRI lesion detection (38,39).

It is important to note that readers were not blinded to im-
ages from DCE MRI when identifying mammographically oc-
cult cancers with DW MRI and US in these preliminary studies. 
Therefore, they do not reflect the real-world performance of DW 
MRI in the clinical setting.

Figure 1:  Images in 52-year-old woman with mammographically dense breasts and invasive ductal carcinoma in the right breast. On 
(top) images from axial noncontrast diffusion-weighted (DW) MRI examination, the lesion is not visible on (left) the T2-weighted (b = 0 sec/
mm2) image, but it is readily apparent as hyperintense to surrounding fibroglandular breast tissue on (center) b = 800 sec/mm2 DW MR im-
ages (arrow) because of impeded diffusion in the lesion. The corresponding apparent diffusion coefficient (ADC) map (right) confirms lower 
diffusivity in the lesion (arrow) (mean ADC = 0.89 3 1023 mm2/sec) compared with normal tissue (mean ADC = 2.21 3 1023 mm2/sec). 
The b value (in seconds per square millimeter) describes the degree of diffusion sensitization applied during DW MRI. As illustrated on (bot-
tom) the plot of signal intensity versus b value for the monoexponential decay model (where the DW signal intensity S is expressed in terms of 
S0, the signal intensity without diffusion weighting, b value, and ADC), at higher b values the differences in signal decay between cancer with 
reduced ADC (dotted curve) and normal fibroglandular tissues (solid curve) can be exploited to increase contrast on DW MRI of cancerous 
lesions relative to other breast tissues and to improve detectability.

Figure 2:  A–C, Images in 75-year-old woman with invasive ductal carcinoma (grade 1) detected at bilateral 3.0-T breast MRI for high-risk 
screening. A, Axial image from dynamic contrast-enhanced MRI shows an oval mass (arrow) with irregular margins in the left breast at 9 o'clock, 
middle depth, 47 mm from the nipple measuring 7 3 6 3 11 mm. B, At axially acquired diffusion-weighted MRI (b = 800 sec/mm2), the lesion 
(arrow) was hyperintense and was deemed visible by three readers. The apparent diffusion coefficient was 0.83 3 1023 mm2/sec. C, Image from 
subsequent targeted US showed no correlate. (Reprinted, with permission, from reference 37.)
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Table 2: False-Negative and False-Positive Rates of Blinded Reader Studies Evaluating DW MRI Performance for Breast Cancer 
Screening

Study

Total  
No. of  
Women

Total  
No. of 
Cancers

False-Negative Findings False-Positive Findings

No. of  
Findings

Description of Findings  
(If Reported)

No. of  
Findings

Description of Findings  
(If Reported)

Yabuuchi 2011 (27) 63 42 21 NA 1 NA
Kazama 2012 (23) 46 25 6.5* Cancer , 10 mm; cancer  

with calcifications
5* Vessel; artifact; glandular tissue

Trimboli 2014 (26) 67 37 8.5* NME (n = 3); mass  
(n = 5.5)*

8* Normal tissue; lobular intraepithelial 
neoplasia; granulomatous mastitis

Telegrafo 2015 (25) 280 129 8 Mucinous carcinoma  
(n = 4); DCIS (n = 4)

32 Cysts (n = 12); fibrotic areas (n = 6); 
fibroadenolipoma (n = 4); fibroad-
enoma (n = 6); typical hyperplasia 
(n = 4)

McDonald 2016 
(24)

48 24 10.7* (Note: all cancers 
in this study were 
mammographically 
occult)

IDC (n = 4); ILC  
(n = 1); DCIS (n = 3)

6* Fibroadenoma; proteinaceous cyst; 
artifact; asymmetric signal intensity 
because of prior treatment of con-
tralateral breast or other factors

Kang 2017 (22) 343 10 1.3* NA 5.4%*† NA

Note.—NA = not available, NME = nonmass enhancement, DCIS = ductal carcinoma in situ, IDC = invasive ductal carcinoma, ILC = 
invasive lobular carcinoma.
* Average between multiple readers.
† Only percentage (no raw number) was reported.

in their cohorts, therefore most closely simulating a screening 
population (22–27). Although study designs varied, in general, 
readers retrospectively assessed only unenhanced MRI sequences 
and did not review the contrast-enhanced sequences. These in-
cluded a DW MRI sequence with or without nonenhanced T1- 
or T2-weighted sequence. Readers assigned a numerical scale 
according to level of suspicion for malignancy, comparable to 
the Breast Imaging Reporting and Data System categories, or 
a qualitative positive or negative assessment. In some studies, 
results were then compared with assessments on mammogram 
and/or contrast-enhanced MRI performed by either the same 
readers (after a washout period) or another set of readers.

Most notably, Kang et al included 343 consecutive asymp-
tomatic patients with previous history of breast cancer present-
ing for DCE MRI screening (22), representative of an interme-
diate-risk screening population of women with elevated risk for 
cancer recurrence but who may not meet criteria for high-risk 
(.20% lifetime risk) DCE MRI supplemental screening (49). 
With 2.5% cancer prevalence, this reader study most closely 
evaluated DW MRI performance in a true screening popula-
tion. The remaining five studies also included asymptomatic 
MRI screening patients and/or healthy controls but enriched 
their patient cohorts with a higher rate of cancers (with cancer 
prevalence ranging 25%–67%). However, to simulate a screen-
ing experience, readers in most studies were blinded to clinical 
history and other imaging modalities, and, therefore, blinded 
to cancer prevalence in the study populations. McDonald et 
al and Yabuuchi et al retrospectively evaluated consecutive 
asymptomatic cancers detected at DCE MRI combined with 
negative controls from high-risk screening populations—con-
trols were age matched in McDonald et al (24) whereas selected 

normal and benign high-risk screening patients were added to 
the cohort by Yabuuchi et al (27). The other studies did not 
restrict inclusion criteria to asymptomatic patients, also includ-
ing patients undergoing MRI for known (23,26) or suspected 
(25,26) breast cancer.

In this group of studies, DW MRI sensitivities ranged be-
tween 45% and 94%, and specificity between 79% and 95% 
with means of 72% and 90%, respectively (Table 1). Notably, 
sensitivity was lowest in McDonald et al (45%), likely due to 
inclusion of only mammographically occult malignancies (with 
smaller median lesion size) and 1.5-T examinations without ex-
clusion of examinations with poor image quality, unlike Kazama 
et al and Kang et al (22,23). The sensitivities in Kang et al (93%) 
and Telegrafo et al (94%) were higher than in other studies, 
which may be partially explained by their use of advanced read-
out-segmented echo-planar imaging (EPI) and DW MRI with 
background suppression techniques, respectively, versus con-
ventional single-shot EPI DW MRI in the other studies. These 
advanced DW MRI methods could help to improve sensitivity 
through better image quality and lesion contrast, as described in 
more detail below (Advanced Techniques section).

False-Negative and False-Positive Findings at DW MRI
The number of false-negative and false-positive findings in the 
above-described studies, along with any available additional char-
acteristics, are given in Table 2. Of note, the majority of false-pos-
itive and false-negative results were reported in the studies on a 
lesion rather than an examination level. Therefore, the number of 
true-positive and true-negative examinations are not available for 
accurate calculation of false-positive and false-negative rates, such 
as in mammographic auditing.
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higher than that of DCIS (4.0/5 versus 2.8/5) (24). In gen-
eral, DCIS exhibits less diffusion impedance as reflected by 
higher ADC measurements, compared with invasive carci-
nomas (50), which may explain their relatively low conspi-
cuity at DW MRI. Examples of DCIS that is not detectable 
(false-negative findings) versus readily visible at DW MRI 
are shown in Figure 3 and Figure 4, respectively. However, 
there are mixed reports regarding correlation between ADC 
and DCIS grade (50–52). Moreover, high-grade DCIS may 
actually exhibit lower qualitative DWI intensity and quan-

False-Negative Findings
Literature suggests that ductal carcinoma in situ (DCIS) 
may be more difficult to detect at DW MRI than invasive 
disease. Among blinded reader studies evaluating DW MRI 
detection of malignancies that included DCIS (24–26,40–
45,48), DCIS was more likely missed by DW MRI than in-
vasive ductal carcinoma (average, 42; range, 14–100% versus 
10, range, 0%–40%). Furthermore, readers in McDonald et 
al rated the conspicuity of invasive cancer as significantly 

Figure 3:  A–D, Axial images in 60-year-old woman with heterogeneously 
dense breasts and ductal carcinoma in situ in the right breast that was not detect-
able at diffusion-weighted (DW) MRI (and that represented a DW MRI false-
negative finding). A, Image from 3.0-T dynamic contrast-enhanced MRI shows 
the lesion (arrow) as a 36-mm area of nonmass enhancement. On, B, a DW 
MRI maximum intensity projection obtained with a b value of 800 sec/mm2 and, 
C, a representative single section from DW MRI obtained with a b value of 800 
sec/mm2

, the lesion (arrow) is relatively isointense to nearby fibroglandular tissue 
and is not readily detectable, particularly because of the presence of a bright 
susceptibility artifact at the nipple (arrowhead). On, D, the apparent diffusion 
coefficient (ADC) map, the lesion (arrow) shows low mean ADC (1.27 3 1023 
mm2/sec), but the ADC map does not aid in visual detection of the lesion.

Figure 4:  A–D, Axial images in 49-year-old woman with ductal carcinoma 
in situ in the left breast identified at 3.0-T dynamic contrast-enhanced and 
diffusion-weighted (DW) MRI (true-positive DW MRI examination). Shown are, 
A, a dynamic contrast-enhanced MRI postcontrast subtraction maximum intensity 
projection (MIP) depicting a 5.2-cm area of nonmass enhancement (arrow), B, 
a DW MRI MIP obtained with a b value of 1000 sec/mm2, C, a representative 
single section through the lesion (arrow) obtained at DW MRI with a b value of 
1000 sec/mm2, and, D, the corresponding apparent diffusion coefficient (ADC) 
map, where the area of nonmass enhancement (arrow) exhibited a low mean 
ADC of 1.18 3 1023 mm2/sec.
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MRI than on conventional T1- or T2-weighted sequences (60). 
Advanced acquisition techniques described later in this article 
may in the future improve DW MRI detection of smaller can-
cers. Additional examples of DW MRI false-negative findings 
are shown in Figures E2 and E3 (both online).

False-Positive Findings
Less information is available about the nature of DW MRI false-
positive findings for a few reasons. First, because these reader 
studies were performed retrospectively in a setting where DCE 
MRI is the clinical standard, lesions identified as suspicious at 
DW MRI alone (DW MRI false-positive findings) were not 
sampled for biopsy. Therefore, pathology information of DW 
MRI false-positive findings is known only if they were also 
found to be suspicious at DCE MRI (DCE MRI false-positive 
findings) or their appearance could definitively be categorized by 
DCE MRI (eg, proteinaceous cyst or hematoma).

Among the few DW MRI reader studies that provide 
pathologic detail of false-positive lesions, the most commonly 
reported false-positive lesions are complicated/proteinaceous 
cysts, fibroadenomas, and artifactual “lesions” (23–26,42). In 
Telegrafo et al, DW MRI falsely depicted seven additional le-
sions compared with DCE MRI, all of which were found to 
represent complicated cysts (25). Figure 5 demonstrates a com-
plicated/proteinaceous cyst that may be perceived by a reader 
as a false-positive finding. Three studies cited fibroadenomas as 
false-positive findings at DW MRI (24,25,41). An example of 
fibroadenoma detected at DW MRI is shown in the left breast 

titative contrast-to-noise ratio than lower-grade DCIS (51). 
Therefore, one cannot assume that DW MRI would miss 
only low-grade DCIS and thus partially remedy the grow-
ing concern for overtreatment of DCIS. Nonetheless, DCIS 
comprised a small proportion of malignancies evaluated by 
DW MRI reader studies, if not indirectly excluded by ex-
clusion of nonmass enhancement and calcifications (41,53), 
usual manifestations of DCIS at DCI MRI and mammog-
raphy, respectively (54–57). Therefore, studies including a 
greater number of DCIS are needed to adequately evaluate 
the efficacy of DW MRI in their detection.

In addition, malignant lesions with high water content may 
also be missed because of their high ADCs. Such lesions include 
mucinous cancer and triple-negative cancer with extensive ne-
crosis (58,59). For example, among DW MRI blinded reader 
studies that considered the mucinous subtype of invasive ductal 
carcinoma separately, mucinous carcinoma was not detected by 
DW MRI on average 67% of the time (25,41,44,45), with two 
studies reporting a 100% false-negative rate (25,45).

Last, smaller cancers, specifically  10–12 mm, were re-
ported to be less detectable in blinded readers studies (23,45). 
An example of a small invasive ductal carcinoma not detected 
at DW MRI is shown in Figure E1 (online). This is to be ex-
pected given that the typical DW MRI axial in-plane spatial 
resolution (2 3 2 mm2) and section thickness (3–5 mm) can 
result in significant partial volume effect for small lesions, as 
well as potential obscuration by susceptibility artifact of ad-
jacent biopsy marker clip, which is more pronounced at DW 

Figure 5:  A–E, Images in 53-year-old female BRCA1 mutation carrier with a complicated cyst in the right breast detected at high-risk screening 
MRI. Axially acquired 3.0-T dynamic contrast-enhanced MRI revealed a 10-mm round mass (arrow) with smooth margins, which is isointense on, 
A, a postcontrast T1-weighted image and hyperintense on, B, a T2-weighted image. C, Postcontrast T1-weighted subtraction image shows mild 
rim enhancement and lack of internal enhancement, confirming the diagnosis of complicated cyst (Breast Imaging Reporting and Data System cat-
egory 2). The mass shows restricted diffusion on, D, axially acquired image from diffusion-weighted MRI (b = 800 sec/mm2) and a low apparent 
diffusion coefficient (ADC) of 0.48 3 1023 mm2/sec on, E, the corresponding ADC map. If diffusion images were used alone without correlation 
with dynamic contrast-enhanced MRI and T1-weighted and/or T2-weighted images, this mass would be suspicious. (Reprinted and adapted, with 
permission, from reference 75.)
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Comparison of DW MRI Reader Performance  
versus Other Modalities
Several of the prior studies explored the comparative and added 
performance of DW MRI versus other imaging modalities for 
cancer detection (22–27).

DW MRI versus Mammography
Two studies directly evaluated the benefit of adding DW MRI 
to mammography as a screening tool. Yabuuchi et al (27) found 
DW MRI to be more accurate than mammography for detect-
ing breast cancer (area under the receiver operating characteristic 
curve = 0.73 and 0.64, respectively) and to detect a higher num-
ber of cancers compared with mammography alone (sensitivity 

lesion in Figure 6. Indeed, fibroadenoma has been found to 
exhibit a wide range of ADC—up to 37% of fibroadenomas 
exhibited low ADCs in the same range as malignancies (below 
an ADC cutoff of 1.81 31023 mm2/sec) in a prior study of 175 
benign breast lesions (61). Fibroadenomas with lower ADCs 
are found to have higher cellularity and denser stroma than 
those with higher ADC and more myxoid stroma (62). Last, 
two reader studies cited examples of artifactual signal at the 
nipple, an area prone to susceptibility-based distortion at DW 
MRI (eg, Fig 3), as a cause of false-positive findings (23,24). 
Regardless, larger prospective studies with tissue sampling for 
all suspicious lesions found at DW MRI are needed to further 
understand DW MRI false-positive findings.

Figure 6:  Images in 51-year-old woman with an invasive ductal carcinoma in the right breast (arrow) and a fibroadenoma (arrowhead) in the left breast identified at 
3.0-T breast MRI. A, Diffusion-weighted (DW) MRI maximum intensity projections generated for axially acquired multiple b values (0, 100, 800, and 1500 sec/mm2 left-
to-right and top-to-bottom) show moderate visibility of both masses at b = 0 sec/mm2. However, relative higher signal intensity of the right breast carcinoma occurred with 
higher b values, while relative lower signal intensity of the left breast fibroadenoma occurred with lower b values. At b  800 sec/mm2, the left-sided fibroadenoma may 
be perceived as a suspicious lesion. Apparent diffusion coefficient (ADC) measures (calculated for b values of 0 and 1000 sec/mm2) confirm lower diffusivity in the right 
carcinoma (ADC = 0.90 3 1023 mm2/sec) versus the left fibroadenoma (ADC = 1.54 3 1023 mm2/sec). B, Axially acquired dynamic contrast-enhanced (DCE) MRI 
maximum intensity projection with kinetics color map overlay shows an irregular heterogeneously enhancing mass in the right breast with predominantly washout delayed-
phase kinetics (red, left curve) corresponding to the carcinoma and an oval mass in the left breast with predominantly persistent delayed-phase kinetics (blue, right curve) 
corresponding to the fibroadenoma.
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sults of these studies suggest that the sensitivity of DW MRI 
for cancer detection in an asymptomatic population is likely 
lower than that of DCE MRI.

DW MRI versus Abbreviated MRI
Kang et al was the only study of the six that compared  
DW MRI performance to that of abbreviated MRI. DW MRI 
performance was reported to be equivalent to the abbreviated 
MRI, with the added benefit of approximately 10 minutes re-
duction in image acquisition time and 10 seconds reduction in 
interpretation time per case (22). Two additional prior stud-
ies using DW MRI to detect malignancy in diagnostic clini-
cal scenario reported similar performance between DW MRI 
and abbreviated MRI (43,46), with one reporting reduction 
of reading time of negative cases for DW MRI compared with 
abbreviated MRI (43).

DW MRI versus US
As previously mentioned, nonblinded DW MRI has been 
suggested to be superior to MRI-guided focused US in can-

= 69% vs 40%). Similarly, Kazama et al (23) found that combin-
ing both modalities improved sensitivity to 93% versus mam-
mography and DW MRI alone (64% and 74% respectively, P 
, .01). Furthermore, although McDonald and colleagues (24) 
did not evaluate the sensitivity of DW MRI and mammogram 
in a head-to-head comparison, all malignancies included and 
detected by DW MRI were mammographically occult. This fur-
ther highlights the potential improvement in cancer detection by 
adding DW MRI to routine mammographic screening.

DW MRI versus DCE MRI
In three studies that directly compared the reader perfor-
mance of DW MRI versus DCE MRI for screening, the av-
erage sensitivity of DW MRI was 78.9% (50%–94%) and 
the average sensitivity of conventional DCE MRI was 93.4% 
(86%–98%) (22,25,27), with sensitivity significantly differ-
ent in one (27) but not in the two others (22,25). In the other 
three studies that used DCE MRI as the reference standard, 
DW MRI sensitivity was 75.7% (46%–77%) versus DCE 
MRI sensitivity assumed as 100% (23,24,26). Overall, the re-

Figure 7:  A–D, Graphs show diffusion-weighted MRI signal measures of breast tissues across b values at 3.0 T. Shown are variations with b value in, A, mean signal-
to-noise ratio (SNR) for normal breasts (n = 14), B, mean SNR for benign (n = 72) and malignant lesions (n = 40), C, mean signal intensity ratio (SIR) (ie, signal intensity of 
lesion divided by signal intensity of normal tissue) for benign and malignant lesions, and, D, mean contrast-to-noise ratio (CNR) for benign and malignant lesions. All breast 
lesions in the study were 1.5 cm or larger. The mean CNR values of malignant lesions increased with increasing b values up to 1200 sec/mm2, while SNR continually de-
creased with increasing b values. (Reprinted and adapted, with permission, from reference 63.)
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and interpretation approach. In this following section, authors  
present best practice for commonly available DW MRI acqui-
sition technique and interpretation as currently supported by 
literature, tailored here for the specific application of unen-
hanced screening.

Protocol
Although a wide range of protocols have been reported in 
the literature, several acquisition parameters are suggested to 
ensure adequate breast DW MRI quality. Imaging should be 
performed in a closed bore magnet at field strength of 1.5 T or 
higher with maximum gradient strength of at least 30mT/m, 
using a dedicated breast coil with at least four channels. An 
EPI-based axial acquisition of bilateral breast should be used, 
with minimum in-plane resolution of at least 2 3 2 mm2 and 
section thickness of 4 mm or less. The echo time should be 
optimized to be as low as possible and the repetition time 
should be greater than or equal to 3000 msec. High-quality 
shimming is essential to minimize field inhomogeneities and 
resulting susceptibility-based distortions in the EPI images. 
Parallel imaging must be used to minimize readout echo train 
lengths (and reduce associated blurring and distortions), with 
recommended acceleration factor of 2–4. Generation of an 
ADC map is required.

b Values
Selection of b values is crucial, as b values are known to di-
rectly affect image signal-to-noise ratio, lesion contrast-to-
noise ratio, and ADCs (63–65). While both the visibility, as 
reflected quantitatively by contrast-to-noise ratio, and speci-
ficity for lesion detection can increase with b value (Figs 6, 
7), signal-to-noise ratio decreases (Fig 7), which could limit 
cancer detection (63,64). Furthermore, acquiring images at 
higher b values leads to a greater amount of distortion due to 
susceptibility effects and eddy currents and lengthens imag-
ing times (66). Based on theoretical and observed data, we 
suggest a maximum b value of 800 sec/mm2 for accurate es-
timation of breast ADCs (67,68). Using more than two b 
values may reduce error in ADC mapping but has not dem-
onstrated any definite diagnostic benefit for differentiation of 
breast lesions (67,69). However, for screening applications, 
where both lesion detection and accurate ADC quantitation 
are priorities, acquiring an additional very high b value of 
1200–1500 sec/mm2 is also recommended to maximize le-
sion contrast (63,65). Therefore, an acquisition including 
three b values may be optimal for screening, with a minimum 
b of 0–50 sec/mm2, a moderate b of 800 sec/mm2 for ADC 
quantitation, and a maximum of approximately 1500 sec/
mm2 for qualitative lesion detection.

The literature identifies several approaches on how to 
troubleshoot commonly encountered DW MRI challenges 
and artifacts. Standard DW MRI using single-shot EPI-
based sequences is prone to gradient nonlinearity, poor 
signal-to-noise ratio, and poor fat suppression, which may 
contribute to DW MRI’s lower sensitivity compared with 
DCE MRI. Gradient nonlinearity, which results in variable 
ADCs depending on spatial location of the measured region 

cer detection (37). However, to date, no studies have directly 
compared blinded DW MRI performance with that of screen-
ing whole-breast US, which would be of particular interest 
due to the growing use of US for supplemental screening in 
women with dense breasts.

Suggested Image Acquisition and Interpretation 
Strategies
More studies designed to evaluate DW MRI in screening 
populations are critical before clinical use of DW MRI as a 
screening tool can be advocated. What is clear, however, is that 
determining the true value of DW MRI as a stand-alone screen-
ing tool will rely on use of a standardized acquisition protocol 

Figure 8:  A–D, Axial images in 55-year-old woman with left invasive ductal 
carcinoma of high nuclear and histologic grade identified at 3.0-T breast MRI. A, 
Dynamic contrast-enhanced MRI postcontrast subtraction maximum intensity pro-
jection (MIP) shows a mass (arrow), while, B, diffusion-weighted (DW) MRI MIP 
(b = 1000 sec/mm2), C, representative single section from DW MRI (b = 1000 
sec/mm2) through the mass (arrow), and, D, apparent diffusion coefficient (ADC) 
map show corresponding findings. The mass (arrow) exhibited a low mean ADC 
of 1.04 3 1023 mm2/sec.
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sequences are fundamentally T2 weighted, lesions 
with high water content may retain high signal on 
high b value regardless of true diffusion imped-
ance. To avoid this pitfall, cross-correlation with 
the quantitative ADC map is crucial: lesions with 
true impeded diffusion should exhibit low ADC. In 
addition, qualitative evaluation of shape (oval) and 
margin (circumscribed) may be helpful in avoiding 
misclassification of common false-positive benign 
lesions such as complicated cysts and fibroadenoma 
as malignancies (73).

Measuring lesion ADC necessitates drawing a 
region of interest on the ADC map. The region of 
interest should ideally be drawn freehand within 
the solid portion of the lesion, coinciding with the 
area of suspicious hyperintensity on high-b-value 
DW MRI images, while avoiding normal tissue and 
areas of necrosis, hemorrhage, or artifact by cross-
referencing with unenhanced T1- and T2-weighted 
images, if available (74,75). While the most com-
mon approach is to measure the average ADC across 
a lesion, some studies suggest that measurement of 
a small region with the lowest ADC or darkest part 
within the lesion, representing the most suspicious 
area, may further improve diagnostic performance 
(52,74,76,77) and may also be easier to perform 
with software tools available in clinical settings.

Although different optimal ADC cutoffs have 
been proposed in literature, a recent multicenter trial has sug-
gested a standardized cutoff above which a lesion is less suspi-
cious, which remains to be further validated. The American 
College of Radiology Imaging Network 6702 trial explored 
ADCs of benign and malignant breast lesions across 107 
women at 10 academic institutions with varying MR platforms 
(vendors and field strengths) using a standardized DW MRI 
protocol. The study confirmed significantly lower mean ADC 
for malignant versus benign lesions, and that 21% of unnec-
essary breast biopsies recommended by DCE MRI could be 
avoided without affecting sensitivity by implementing an ADC 
cutoff (ADC . 1.68 31023 mm2/sec for maximum b value of 
800 sec/mm2 was suggested).

Advanced Techniques and Postprocessing

Advanced Acquisition Techniques
Future use of DW MRI as a supplemental screening method 
may be further enhanced by advanced techniques, recently 
reviewed in depth in the context of breast imaging (29). 
High-resolution DW MRI could improve sensitivity and al-
low more accurate characterization of breast lesions, includ-
ing subcentimeter lesions as previously mentioned. Such 
techniques include, DW readout-segmented EPI, a multishot 
EPI approach which reduces the required matrix size acquired 
per shot (excitation), hence reducing susceptibility artifacts 
and/or allowing for higher spatial resolution and total im-
age matrix size (22,41,46,78). In breast imaging, readout-
segmented EPI was found to reduce geometric distortions 

of interest, can be corrected by gradient nonlinearity correc-
tion software (70,71). Optimization of signal-to-noise ratio, 
especially in the setting of the recommended high b value, is 
also recommended by performing preimplementation assess-
ment of image quality and routine calibration with dedicated 
phantoms with known ADCs. Last, spectral attenuated inver-
sion recovery is recommended to reduce inhomogeneous fat 
suppression, but, if unsuccessful, short inversion time inver-
sion recovery can also be considered (72).

Interpretation
The general strategy for interpreting breast DW MRI requires 
both qualitative and quantitative interpretation: first a qualita-
tive (ie, visual) assessment to detect any unique areas of high 
signal intensity on high-b-value DW MRI (indicating impeded 
diffusion), followed by quantitative assessment of suspicious 
findings to determine ADCs. This lesion detection and char-
acterization approach is comparable to DCE MRI assessment, 
where qualitative assessment identifies any suspicious en-
hancement, and quantitative kinetics metrics provide further 
information on the likelihood of malignancy. As with either 
technique, lesion morphology should also be considered and 
additional information may be obtained from high-resolution 
unenhanced T2-weighted and T1-weighted anatomic images, 
if available. Examples of mass and nonmass lesions detected at 
DW MRI are given in Figures 8 and 4, respectively.

An example that illustrates the need for both a quantitative 
and a qualitative approach involves “T2-shinethrough.” As DW 

Figure 9:  A–D, Axial images in 24-year-old woman with fibroadenoma at 3.0-T breast MRI. 
A, Image from T1-weighted dynamic contrast-enhanced MRI, B, image from T2-weighted short 
inversion time inversion recovery MRI, C, image from diffusion-weighted (DW) MRI (b = 850 sec/
mm2) performed with single-shot echo-planar imaging, and, D, readout-segmented echo-planar 
image. Geometric distortion artifact is seen more prominently on C (arrow) than on D. (Reprinted, 
with permission, from reference 79.)
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Figure 10:  A–C, Images in 43-year-old woman with invasive ductal carcinoma in the right breast. A, Image from dynamic contrast-enhanced 
MRI in axial plane shows the biopsy-proven malignant enhancing mass. B, C (top), Both readout-segmented echo-planar imaging (EPI) and reduced 
field of view (rFOV) DW MRI show a mass (arrow) with high signal intensity. In terms of morphologic detail, tumor heterogeneity, and overall image 
quality, readers preferred rFOV to readout-segmented EPI, while readers found lesion conspicuity comparable for the two techniques. B, C (bottom), 
Apparent diffusion coefficient (ADC) maps from readout-segmented and rFOV MRI show a low-signal-intensity mass (outline), with mean ADCs of 
1.29 3 1023 mm2/sec for readout-segmented EPI and 0.99 3 1023 mm2/sec for rFOV MRI. (Reprinted and adapted, with permission, from refer-
ence 83).

Figure 11:  A–D, Images in 41-year-old woman with biopsy-proven invasive ductal carcinoma. Fusion of, A, axial image from unenhanced T1-weighted MRI performed 
at 3.0 T and, B, axial image from readout-segmented echo-planar imaging diffusion-weighted (DW) MRI (b = 1500 sec/mm2) obtained by using commercially available 
Syngo.via software (Siemens Healthcare, Erlangen, Germany) results in, C, image from fused DW MRI. In the image from fused DW MRI, the color overlay depicts suspi-
cious regions with high signal intensity at DW MRI (suggesting reduced diffusivity) with detailed anatomic context provided by the underlying T1-weighted MRI, which could 
help the reader to more accurately assess lesion morphology and location. Both, C, image from fused DW MRI and, D, DW MRI maximum intensity projection clearly show 
a suspicious mass with high rim signal intensity and another small nearby suspicious mass in the posterior right breast (arrow).
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provide sharper images for assessing tumor shape and margin 
(82) compared with full FOV EPI. Furthermore, rFOV may 
be superior to readout-segmented EPI in lesion conspicuity 
and image quality (Fig 10) (83). However, absolute ADCs 
in rFOV DW MRI were lower than when using readout-seg-
mented and standard single-shot EPI techniques (P , .001), 

and T2*-induced blurring versus standard single-shot EPI 
(79) (Fig 9) and provided higher lesion conspicuity at DW 
MRI by both qualitative (79) and quantitative assessment 
(80). Another advanced technique that aims to reduce the re-
quired matrix size is reduced field-of-view DW MRI (rFOV), 
which was judged to improve lesion conspicuity (81) and to 

Figure 12:  Images in 49-year-old woman with dense breasts and grade 2 invasive ductal carcinoma from 3.0-T breast MRI. Shown left-to-right 
are (top row) images from (top left image) T1-weighted dynamic contrast-enhanced (DCE) MRI, images from diffusion-weighted (DW) MRI ac-
quired at (top middle image) b = 0 sec/mm2 and (top right image) b = 800 sec/mm2, (middle row) representative computed DW MRI at b = 1000, 
1200, and 1400 sec/mm2, and (bottom row) computed DW MRI at b = 1600, 1800 sec/mm2, and 2000 sec/mm2. Dynamic contrast-enhanced 
MRI shows two enhancing areas of malignancy. Computed DW MRI at higher b values improves the contrast of the two malignant lesions (arrows) 
while reducing the relative appearance of a cyst and other high-T2-signal benign tissues, with good overall image quality and signal-to-noise ratio 
and without longer imaging times.
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ity and improve breast lesion characterization over stan-
dard ADC values (97). Diffusion-tensor imaging is another 
advanced technique, which probes water motion in six or 
more directions to characterize diffusion directionality and 
may reflect alterations in glandular microstructural organi-
zation. Preliminary studies suggest diffusion-tensor imaging 
could incrementally improve sensitivity for identifying can-
cer in the breast over standard DW MRI (98,99). The afore-
mentioned advanced techniques, while not routinely used 
in clinical breast imaging, are areas of active exploration 
with promise to provide valuable new imaging biomarkers 
in the near future.

Conclusion
In summary, diffusion-weighted (DW) MRI is a fast, unen-
hanced modality that shows promise in identifying mam-
mographically occult malignancy and warrants further 
investigation as an alternative supplemental breast cancer 
screening tool. Results of multiple studies suggest that DW 
MRI may have sensitivity lower than that of DCE MRI 
but perhaps superior to that of mammography and US. 
Moreover, the ability of DW MRI to detect cancer may 
further be enhanced using the optimal acquisition and in-
terpretation protocols suggested in this review. Additional 
DW MRI investigations using standardized approaches in 
larger patient cohorts are essential prior to widespread im-
plementation. However, given the potential improvement 
in convenience and safety, an unenhanced MRI screening 
technique like DW MRI represents a promising alternative 
for improving breast cancer detection.
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