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Abstract

Purpose: To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal 

damage on fundus photographs using the minimum rim width relative to Bruch’s membrane 

opening (BMO-MRW) from spectral domain-optical coherence tomography (SDOCT).

Design: Cross-sectional study

Methods: 9,282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 

eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets 

(20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global 

and sector values when evaluating optic disc photographs. The predictions of the DL network were 

compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) 

was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from 

normal eyes.

Results: The DL predictions of global BMO-MRW from all optic disc photos in the test set 

(mean ± standard deviation [SD]: 228.8±63.1μm) were highly correlated with the observed values 

from SDOCT (mean ± SD: 226.0±73.8μm) (Pearson’s r=0.88; R2=77%; P<0.001), with mean 

absolute error of the predictions of 27.8μm. The AUCs for discriminating glaucomatous from 

healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 

0.945 (95% CI:0.874–0.980) and 0.933 (95% CI:0.856–0.975), respectively (P=0.587).

Conclusions: A DL network can be trained to quantify the amount of neuroretinal damage on 

optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high 

accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of 

disc photos.

INTRODUCTION

Glaucoma is the leading cause of irreversible blindness worldwide, and will affect 

approximately 80 million people by 2020.1 Nevertheless, several population-based surveys 

have suggested that the majority of patients with glaucoma are unaware that they have the 

disease.2, 3 The reasons for this are likely multifactorial, including poor public knowledge 
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about glaucoma,3,4 and the fact that glaucoma symptoms may be minimal until the later 

stages.5 Public health interventions that can effectively and inexpensively screen populations 

for glaucoma are thus needed so that patients can be diagnosed and treated earlier in the 

disease course, before they suffer irreversible visual dysfunction.

Over the past two decades, nonmydriatic fundus photographs have been widely and 

effectively employed to screen for diabetic retinopathy via teleophthalmology.6, 7 However, 

the use of optic disc photos for glaucoma screening has been limited by the dependence on 

human graders. Manual review of disc photographs is not only time-consuming, but also 

highly subjective. When used in a screening setting, monoscopic fundus photo gradings have 

also shown poor sensitivity for glaucoma.8–13 Numerous studies have documented that 

gradings of optic disc photographs have only modest reproducibility14, 15 and fair interrater 

reliability8, 15, 16, even among expert graders with fellowship training in glaucoma.16

Nevertheless, interest in the potential use of fundus photographs for glaucoma 

screening17, 18 has been renewed in light of recent publications demonstrating the ability of 

deep learning algorithms to provide accurate classification of retinal diseases on fundus 

photographs.18–21 Most recently, Li and colleagues17 showed that a deep learning neural 

network algorithm could be trained to detect optic nerves suspicious, or “referable”, for 

glaucoma on fundus photographs. While their work is enlightening, the true accuracy of 

their algorithm is limited by their reliance on the use of subjectively graded fundus 

photographs for the reference standard. If a neural network is trained using subjectively 

graded photographs, then the neural network will be trained to mimic the original errors in 

discrimination made by the human graders. For example, optic nerves with physiologically 

enlarged cups may be misdiagnosed with glaucoma whereas true glaucomatous damage on 

small optic discs may be underappreciated.17

When ophthalmologists in clinical practice have difficulty determining whether an optic 

nerve’s appearance is glaucomatous, they turn to objective metrics such as spectral domain 

optical coherence tomography (SDOCT) to provide quantitative structural information 

regarding the optic disc and surrounding tissue. We propose that such quantitative data 

derived from structural measurements of the optic nerve head may provide a better reference 

standard for development of neural networks than qualitative gradings of the optic disc on 

fundus photographs. The minimum rim width relative to Bruch’s membrane opening (BMO-

MRW) is a fairly new parameter that has been introduced for the evaluation of the 

neuroretinal rim on SDOCT. The BMO-MRW is defined by the minimum distance from the 

internal limiting membrane (ILM) to the inner opening of the BMO within the SDOCT 

scans averaged around the disc (Supplemental Figure 1, Supplemental Material at 

AJO.com).22, 23 Several studies have suggested that BMO-MRW is at least as accurate24–26 

and may be more sensitive than peripapillary RNFL and other rim-based parameters22, 24, 27 

for diagnosing glaucoma. BMO-MRW has shown a very strong correlation with visual field 

loss in glaucoma.24, 25, 27, 28 Moreover, BMOMRW may be particularly sensitive for the 

identification of early glaucoma22, 29 and glaucoma suspects,24 making it a potentially 

useful metric for screening.
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In the current study, we develop and validate a novel deep learning algorithm that has been 

trained using the BMO-MRW from SDOCT to detect glaucomatous optic neuropathy on 

fundus photographs and to predict the quantitative amount of neuroretinal damage.

METHODS

The data used in this study were drawn from the Duke Glaucoma Repository, a database of 

electronic research and medical records developed by the Duke University Vision, Imaging 

and Performance (VIP) Laboratory. The Duke Institutional Review Board approved this 

study with a waiver of informed consent due to the retrospective nature of this research. The 

study protocol adhered to the tenets of the Declaration of Helsinki and was conducted in 

accordance with the Health Insurance Portability and Accountability Act.

All included subjects were adults at least 18 years of age. Records were reviewed for 

diagnosis, medical history, and results from comprehensive ophthalmic examination 

including visual acuity, intraocular pressure, slit-lamp biomicroscopy, gonioscopy, and 

dilated fundus examination. In addition, stereoscopic optic disc photographs (Nidek 3DX, 

Nidek, Japan) and Spectralis SDOCT (Software version 5.4.7.0, Heidelberg Engineering, 

GmbH, Dossenheim, Germany) images and associated data were collected. Standard 

automated perimetry (SAP) acquired with a size III stimulus using the 24–2 test pattern and 

Swedish interactive threshold algorithm (Carl Zeiss Meditec, Inc., Dublin, CA) was included 

if the test met reliability parameters such as fewer than 33% fixation losses and less than 

15% false-positive errors. Patients with other ocular or systemic diseases that could affect 

the optic nerve or visual field were excluded.

Eyes were categorized with glaucoma if they had evidence of glaucomatous optic 

neuropathy documented on dilated fundus examination (i.e. cupping, diffuse or focal rim 

thinning, optic disc hemorrhage, or retinal nerve fiber layer defects), and a reproducible 

visual field defect on two consecutive SAP with pattern standard deviation <5% or glaucoma 

hemifield test outside normal limits. Glaucoma suspects had ocular hypertension, positive 

family history, or a suspicious appearing optic nerve on clinical examination. Normal 

subjects had to have a normal dilated examination with no evidence of ocular hypertension 

or abnormality on SAP.

Spectral Domain Optical Coherence Tomography

Images of the optic nerve head (ONH) were acquired using Spectralis SDOCT (Software 

version 5.4.7.0, Heidelberg Engineering, GmbH, Heidelberg, Germany). The device has a 

dualbeam SDOCT as well as a confocal laser-scanning ophthalmoscope that uses a super 

luminescent diode light with a center wavelength of 870 nm as well as an infrared scan to 

provide simultaneous images of ocular microstructures. In order to decrease geometrical 

errors, scans were acquired with reference to the fovea-BMO axes of the patient’s eye,27 and 

data was sectored based on these axes. A live B-scan was used to detect the fovea and the 

center of the BMO. A radial scan pattern with 24 equidistant radial B-scans that each 

subtended 15 degrees was centered on the BMO and used to compute the neuroretinal rim 

parameters. Each B-scan was averaged from 1536 A-scans per B-scan acquired at a scanning 

speed of 40,000 A-scans per second. Automated software (Glaucoma Module Premium 
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Edition, version 6.0, Heidelberg Engineering) was used to identify the ILM and BMO. The 

BMO-MRW was calculated as the minimum distance from the ILM to the BMO averaged 

over the 24 radial B-scans.28 This was computed automatically for both the global value and 

the sectors by reference to Garway-Heath structure-function maps.30

During image acquisition, the device’s image registration and eye-tracking software was 

used to reduce the effect of eye movements and to ensure that the same location was scanned 

over time. Images were manually reviewed to ensure scan centration, signal strength of at 

least 15 dB, and high image quality without image inversion or clipping. SDOCT images 

with coexistent retinal pathology were excluded. In order to improve the heterogeneity of the 

dataset for deep learning, we used all available optic disc photographs acquired over time 

and matched them to the closest SDOCT ONH scan within 6 months of the photo date.

Development of the Deep Learning Algorithm

We trained a deep learning algorithm to predict the SDOCT BMO-MRW from assessment of 

optic disc photographs. The target value, or variable we wanted to predict from analysis of 

optic disc photographs, was the SDOCT BMO-MRW measurement. Separate models were 

used for the MRW global value and for each of the following sector values: superior 

temporal, superior nasal, temporal, nasal, inferior temporal, and inferior nasal. A pair of 

train-target for training the neural network consisted of the optic disc photograph and the 

SDOCT BMO-MRW values. The sample of pairs of photo-OCT was split into a training 

plus validation (80%) and test sample (20%). Random sampling was performed at the 

patient level so that no data of any patient was present in both the training and test samples. 

This helped to prevent leakage and biased estimates of test performance.

All optic disc stereophotographs were first preprocessed to derive data for the deep learning 

algorithm. Each stereoscopic photograph was split to create a pair of photos from the stereo 

views. The images were subsequently downsampled to 256 × 256 pixels and pixel values 

were scaled to range from 0 to 1. The heterogeneity of the photographs was improved with 

data augmentation which helped to mitigate the risk of overfitting as well as allow the 

algorithm to learn the most relevant features of the image. Data augmentation included 

random lighting, consisting of subtle changes in image balance and contrast, random 

rotation, consisting of rotations of up to 10 degrees in the image, and random horizontal 

image flips. Vertical flips were not performed to preserve the orientation of superior and 

inferior sectors.

We used the Residual deep neural Network (ResNet34) architecture that had been previously 

trained on the ImageNet dataset.31 The ResNet is a deep residual network that allows 

relatively rapid training of very deep convolutional neural networks.32 These networks use 

identity shortcut connections that skip one or more layers and decrease the vanishing 

gradient problem when training deep networks. Since the recognition task for the current 

investigation differs from that of ImageNet, we performed additional training by unfreezing 

the last 2 layers. Next, all layers were unfrozen and training was performed using differential 

learning rates. The network was trained with minibatch gradient descent of size 64. The best 

learning rate was determined using the cyclical learning method with stochastic gradient 

descents with restarts.
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In order to assess the areas of the optic disc photographs that were most important in 

explaining the deep learning algorithm predictions, we built heatmaps corresponding to the 

Gradient-weighted class activation maps over the input images.33, 34 For this analysis, we 

categorized SDOCT MRW into normal and abnormal categories based on the 95% cutoff 

from healthy eyes. These heatmaps indicate how important each location of the image is 

with respect to the class under consideration. This technique allows one to visualize the parts 

of the image that are most important in the deep neural network classification.

Statistical Analyses

We evaluated the performance of the deep learning algorithm for quantifying glaucomatous 

damage in optic disc photographs in the test sample by comparing the predictions of the 

algorithm with the actual SDOCT BMO-MRW global and sector values. Generalized 

estimating equations (GEE) were used to account for multiple measures within each patient. 

We calculated the mean absolute error of the predictions as well as Pearson’s correlation 

coefficient.

We also evaluated the relationship between the predicted and observed values of sectoral 

BMO-MRW and the corresponding sectoral visual field sensitivities according to the 

Garway-Heath structure-function map.30 Receiver operating characteristic curves were also 

used to compare the ability of the deep learning algorithm on optic disc photographs versus 

actual SDOCT BMO-MRW values to discriminate eyes with glaucomatous visual field loss 

from healthy eyes. Receiver operating characteristic (ROC) curves were plotted to 

demonstrate the tradeoff between the sensitivity and 1 – specificity. The area under the ROC 

curve (AUC) was used to assess the diagnostic accuracy of each parameter, with 1.0 

representing perfect discrimination and 0.5 representing chance discrimination. Sensitivity at 

fixed specificity of 95% were calculated. A bootstrap resampling procedure was used to 

derive 95% confidence intervals and P-values, where the cluster of data for the participant 

was considered as the unit of resampling. This procedure is commonly employed to adjust 

for the presence of multiple correlated measurements within the same subject,35 and was 

used to adjust standard errors in this study since multiple images of both eyes in the same 

subject had been used.

RESULTS

The study included 9,282 pairs of optic disc photos and SDOCT optic nerve head scans from 

927 eyes of 490 subjects, divided into training and validation (80%) and test sample (20%). 

The test sample consisted of 1,742 pairs of disc photos and SDOCTs from 184 eyes of 98 

subjects. Table 1 shows demographic and clinical characteristics of the subjects and eyes in 

the training and test samples.

Table 2 shows mean MRW predictions in the test set from the deep learning algorithm for 

global and sectoral areas, as well as corresponding actual SDOCT MRW measurements. For 

global MRW, the mean prediction from the deep learning algorithm was 228.8 ± 63.1 μm, 

whereas the mean actual SDOCT MRW was 226.0 ± 73.8 μm (P=0.415; GEE). A strong 

correlation was seen between predictions and observed values, with r=0.88 (R2 = 77%; 

P<0.001; GEE). Figure 1 shows a scatterplot and corresponding histograms illustrating the 
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relationship between deep learning predictions and actual SDOCT measurements. The mean 

absolute deviation was 27.8 μm, or approximately 12%. Pearson’s correlation coefficients 

ranged from 0.68 to 0.82 for the different sectors around the optic disc (all correlations with 

P<0.001; GEE).

Deep learning global MRW predictions were significantly associated with SAP MD (r = 

0.46; P<0.001; GEE). SDOCT Global MRW also showed a similar association with SAP 

MD (r = 0.49; P<0.001; GEE). Table 3 shows the associations between sectoral deep 

learning MRW predictions and the visual field sensitivities of the corresponding sectors 

according to the structure-function map. The associations had similar strength to those 

observed for the actual SDOCT MRW measurements. ROC curve areas to discriminate 

glaucomatous from healthy eyes are shown in Table 4 and they were also similar for deep 

learning predictions and actual SDOCT measurements. For global MRW, deep learning 

predictions had an ROC curve area of 0.945 (95% CI: 0.874 – 0.980) versus 0.933 (95% CI: 

0.856 – 0.975) for SDOCT measurements.

Figure 2 illustrates examples of optic disc photographs and corresponding activation maps 

(heatmaps) of the deep learning network for a normal (top) and a glaucoma (bottom) eye. 

The heatmaps show that the activations were most strongly found in the area of the optic 

nerve, indicating that these areas were the most important for the network predictions. 

Figure 3 shows some random examples of optic disc photos from the test sample along with 

the corresponding global MRW deep learning predictions and SDOCT measurements. For 

illustrative purposes, the random examples were drawn from a sample where predictions 

closely agreed to observations (within 20μm) and also from a sample where the predictions 

disagreed with the observations (greater than 50μm difference).

DISCUSSION

In this study, we developed and validated a novel deep learning neural network capable of 

quantifying the amount of neuroretinal damage on an optic disc photograph. We 

accomplished this by training the algorithm to predict the SDOCT BMO-MRW when 

assessing photos of glaucomatous optic nerves, glaucoma suspects and normal nerves. We 

also demonstrated that these predicted structural values were significantly correlated with 

visual field loss on standard automated perimetry. To the best of our knowledge, this is the 

first investigation to demonstrate that a deep learning network can accurately predict the 

BMO-MRW when assessing an optic disc photograph.

The task of grading disc photographs is notoriously laborious and time-intensive for human 

graders. Deep learning algorithms may offer an alternative mechanism for interpreting disc 

photos that is both expedient and accurate. Such algorithms may eventually preclude the 

reliance on human graders. However, currently published machine learning algorithms that 

have been developed for the detection of glaucoma on optic disc photographs were trained 

using photos that had been graded by human graders.17, 18 The reliance on subjective 

gradings for a reference standard presents several dilemmas. Human gradings on optic disc 

photos have been shown to have poor reproducibility14, 15and interrater reliability.8, 15, 16 

Moreover, misclassification can occur. Clinicians tend to underappreciate glaucomatous 
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damage in eyes with small optic discs and myopic nerves but overdiagnose glaucoma in eyes 

with large physiologic cups.17 Thus, if subjective human gradings are used as the reference 

standard to train a neural network, the resulting deep learning algorithm will yield similar 

diagnostic errors.

Using an SDOCT parameter such as BMO-MRW as a reference standard for training the 

classifier offers several unique advantages. First, the data is objective rather than subjective, 

and bypasses the need for human gradings. Second the parameter BMO-MRW is known to 

have high reproducibility,36 unlike human gradings of photos.14, 15 Third, the BMO-MRW 

parameter is highly accurate for glaucoma on SDOCT.25 Previous groups have also 

suggested that certain sectors of the BMO-MRW, such as the superotemporal, superonasal 

and nasal sectors, may perform better than regional RNFL thickness for the diagnosis of 

glaucoma.37 We found that the superotemporal, superonasal, inferotemporal and inferonasal 

sector values had high ROC curve areas for discriminating eyes with glaucomatous field loss 

from healthy eyes. Future studies should investigate whether neural network trained with 

SDOCT BMO-MRW perform better than those trained with other parameters such as RNFL.

BMO-MRW may also be advantageous in situations where the optic nerve is difficult to 

grade. For example, a previous study has shown that the use of BMO-MRW may improve 

the structure-function correlation in eyes with high myopia.25 This is important since Li et 

al.’s deep learning algorithm, which was trained with subjectively graded photographs 

tended to underdiagnose glaucoma in high myopia, generating false negatives.17 Similarly 

eyes with physiologically enlarged cups or pathologic myopia were frequently misclassified 

with glaucoma, leading to a false positive result in their study.17 Since our deep learning 

algorithm was trained using SDOCT BMO-MRW, we suspect that it may have better 

discriminatory ability in such challenging cases when compared to other algorithms trained 

by human gradings of photos. However, additional work is needed to test this hypothesis. 

Finally, several groups have suggested that BMO-MRW may be better able to detect mild 

glaucoma22, 29 and glaucoma suspects24 than other SDOCT parameters. Thus, neural 

networks trained using SDOCT BMOMRW may be of particular value as a screening 

measure to detect preperimetric glaucoma before the onset of visual field is loss.

Although SDOCT has become the nonpareil method for quantifying structural damage from 

glaucoma, the technology is currently too expensive and impractical to transport for it to be 

used for screening in a low-resource setting. On the other hand, fundus photographs can be 

acquired through a variety of affordable and portable mechanisms, from relatively 

inexpensive nonmydriatic fundus cameras38 to cell phones.39 However, numerous studies 

have found that human interpretations of monoscopic disc photos have poor sensitivity as 

low as 50% for glaucoma.8–13 Such reports have called into question the practical utility of 

relying on photos for glaucoma screening. Although screening with SDOCT is not currently 

feasible, we have shown that a deep learning algorithm trained to predict the BMO-MRW 

from fundus photographs shows very high correlation with the actual SDOCT values. 

Moreover, the correlation of the algorithm’s predictions with visual field loss was similar to 

that found for the actual SDOCT measurements. This provides additional validation of the 

algorithm by demonstrating its ability to discriminate between glaucomatous field loss and 

normal fields. This is particularly important since other recently published work that 
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developed deep learning algorithms trained by subjectively graded optic disc photographs 

did not correlate their classifications with visual dysfunction or any other clinically relevant 

outcomes.11, 12, 17, 18

Finally, since the algorithm we developed provides continuous predicted values similar to 

the BMO-MRW, it is possible that these values may be useful for detecting longitudinal 

change over time. This is a unique advantage over any classification algorithm that only 

provides a binary assessment of the optic disc as glaucomatous or not. Algorithms trained to 

produce quantitative data may make it possible to detect progression in patients followed 

over time with fundus photographs in low resource settings where SDOCT is not available. 

Future longitudinal investigations will evaluate the plausibility of this approach.

Our study has several limitations. We did not remove low quality fundus photographs, which 

likely introduced some of the unexplained variability in the algorithm. On the other hand, 

photos obtained through screening programs and in a clinical setting are likely to exhibit a 

range of quality. Algorithms trained only on optimal photos may not be generalizable to 

real-world settings. We expect that our algorithm will perform well at quantifying 

neuroretinal damage on optic disc photographs acquired in a similar clinical setting. 

However, performance in a screening setting may differ especially in racial and ethnic 

groups not represented in this study. External validation in different screening populations 

will be the subject of future studies. Variability of BMO-MRW on SDOCT may also 

contribute to some of the unexplained variability of the algorithm. Future studies will 

compare algorithms trained by different SDOCT parameters to algorithms trained by 

subjectively graded fundus photos. Combining two or more parameters may also further 

improve the discriminatory ability of the algorithm.40

In summary, we used the BMO-MRW from SDOCT to train a deep learning algorithm to 

predict quantitative data about the degree of neuroretinal damage when assessing an optic 

disc photograph. The predicted quantitative data was correlated with the BMO-MRW value 

from SDOCT and showed high diagnostic discrimination for glaucomatous visual field loss. 

This approach overcomes substantial limitations of algorithms trained by human graders. 

These findings may have important implications for the diagnostic value of fundus 

photographs for glaucoma screening, especially in low-resource settings.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scatterplot illustrating the relationship between predictions obtained by the deep learning 

algorithm evaluating optic disc photographs and actual global minimum rim width relative to 

Bruch’s membrane opening (BMO-MRW) thickness measurements from spectral domain-

optical coherence tomography (SDOCT). Data is from the independent test set.
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Figure 2. 
Activation heatmaps showing the areas of the optic disc photograph that were most 

important for the deep learning algorithm predictions in an example of a healthy (Top row) 

and glaucomatous (Bottom row) eye.
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Figure 3. 
Random examples of optic disc photos from the test sample along with the corresponding 

global minimum rim width (MRW) relative to Bruch’s membrane opening deep learning 

(DL) predictions and spectral domain-optical coherence tomography (SDOCT) 

measurements. (Top) Random examples where predictions closely agreed to observations 

(within 20μm). (Bottom) Random examples where the predictions disagreed with the 

observations (greater than 50μm difference).
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Table 1.

Demographic and clinical characteristics of the eyes and patients included in the training and test samples.

Training sample (7,540 pairs of disc photos and SDOCT optic nerve head scans from 743 eyes of 392 subjects)

Normal Suspect Glaucoma

Number of eyes 124 178 441

Number of images 1,046 1,924 4,570

Age (years) 65.6 ± 10.9 66.9 ± 11.2 71.3 ± 10.6

Gender, % Female 67.8 58.2 52.0

Race (%) Caucasian 58.1 70.8 69.6

African-American 41.9 29.2 30.4

SAP MD (dB) −0.88 ± 1.68 −0.26 ± 1.63 −7.12 ± 7.24

SAP PSD (dB) 2.18 ± 0.91 1.59 ± 0.24 6.37 ± 4.02

Global BMO-MRW (μm) 301.0 ± 52.7 250.1 ± 58.3 205.3 ± 64.7

Test sample (1,742 pairs of disc photos and SDOCT optic nerve head scans from 184 eyes of 98 subjects)

Number of eyes 42 34 108

Number of images 340 432 970

Age (years) 68.3 ± 9.7 72.6 ± 9.1 72.0 ± 11.0

Gender, % Female 66.7 68.6 51.7

Race (%) Caucasian 61.9 81.4 80.8

African-American 38.1 18.6 19.2

SAP MD (dB) −0.39 ± 1.35 −0.04 ± 1.35 −5.62 ± 5.9

SAP PSD (dB) 2.14 ± 1.07 1.62 ± 0.20 5.11 ± 3.33

Global BMO-MRW (μm) 318.0 ± 51.2 230.1 ± 49.8 192.0 ± 60.2

SDOCT = Spectral Domain-Optical Coherence Tomography; SAP = Standard Automated Perimetry; MD = Mean Deviation; PSD = Pattern 
Standard Deviation; BMO-MRW = Minimum rim width relative to Bruch’s membrane opening; dB = Decibels; μm = microns
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Table 2.

Mean global and sectoral minimum rim width relative to Bruch’s membrane opening values obtained from 

spectral-domain optical coherence tomography and corresponding mean values for the predictions from the 

deep learning algorithm in the test sample. The table also shows the Pearson’s correlation coefficient and mean 

absolute error between predictions and observations from the test sample.

Deep Learning 
Prediction from Fundus 
Photos Mean ± SD, μm

SDOCT BMO-MRW 
Mean ± SD, μm

P for difference 
in means

r (R2) P for 
correlation

MAE, μm

Global 228.8 ± 63.1 226.0 ± 73.8 0.415 0.88 (77%) <0.001 27.8

Temporal 
inferior 221.8 ± 78.9 228.4 ± 91.3 0.141 0.81 (66%) <0.001 41.7

Temporal 
Superior 206.8 ± 60.9 208.6 ± 75.7 0.667 0.78 (62%) <0.001 36.8

Temporal 165.9 ± 34.8 163.1 ± 54.7 0.487 0.68 (46%) <0.001 32.2

Nasal Superior 253.3 ± 72.9 254.6 ± 90.4 0.784 0.82 (67%) <0.001 38.8

Nasal Inferior 273.6 ± 77.8 277.6 ± 104.3 0.522 0.78 (60%) <0.001 51.9

Nasal 257.7 ± 71.2 253.9 ± 90.1 0.459 0.82 (68%) <0.001 40.4

SD = Standard Deviation; MAE = Mean Absolute Error; SDOCT = Spectral Domain-Optical Coherence Tomography; BMO-MRW = Minimum 
rim width relative to Bruch’s membrane opening; μm = microns
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Table 3.

Correlations with 95% confidence interval between visual field sensitivity by sectors and the corresponding 

minimum rim width relative to Bruch’s membrane opening deep learning predictions and actual spectral-

domain optical coherence tomography values.

Deep Learning BMO-MRW Prediction (95% CI) SDOCT BMO-MRW (95% CI)

Temporal inferior 0.52 (0.42 – 0.63) 0.59 (0.49 – 0.70)

Temporal Superior 0.43 (0.32 – 0.54) 0.50 (0.39 – 0.61)

Temporal 0.38 (0.22 – 0.54) 0.41 (0.29 – 0.52)

Nasal Superior 0.40 (0.30 – 0.50) 0.42 (0.31 – 0.53)

Nasal Inferior 0.39 (0.28 – 0.50) 0.48 (0.37 – 0.60)

Nasal 0.36 (0.23– 0.50) 0.38 (0.27 – 0.50)

SDOCT = Spectral Domain-Optical Coherence Tomography; BMO-MRW = Minimum rim width relative to Bruch’s membrane opening; CI = 
Confidence Interval
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Table 4.

Areas under the receiver operating characteristic curves to discriminate eyes with glaucoma from healthy eyes 

in the test sample for spectral domain optical coherence tomography minimum rim width relative to Bruch’s 

membrane opening and the corresponding predictions from the deep learning algorithm assessing fundus 

photographs.

Deep Learning BMO-MRW Prediction SDOCT BMO-MRW P

Global 0.945 (0.874 – 0.980) 0.933 (0.856 – 0.975) 0.587

Temporal inferior 0.939 (0.885 – 0.973) 0.927 (0.843 – 0.969) 0.632

Temporal Superior 0.935 (0.879 – 0.970 0.904 (0.822 – 0.969) 0.334

Temporal 0.915 (0.829 – 0.962) 0.843 (0.734 – 0.927) 0.180

Nasal Superior 0.949 (0.886 – 0.980) 0.927 (0.848 – 0.974) 0.365

Nasal Inferior 0.942 (0.884 – 0.979) 0.952 (0.894 – 0.986) 0.689

Nasal 0.919 (0.837 – 0.973) 0.898 (0.794 – 0.958) 0.447

ROC = Receiver operating characteristic; SDOCT = Spectral Domain-Optical Coherence Tomography; BMO-MRW = minimum rim width relative 
to Bruch’s membrane opening

Am J Ophthalmol. Author manuscript; available in PMC 2020 May 01.


	Abstract
	INTRODUCTION
	METHODS
	Spectral Domain Optical Coherence Tomography
	Development of the Deep Learning Algorithm
	Statistical Analyses

	RESULTS
	DISCUSSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

