Skip to main content
. Author manuscript; available in PMC: 2020 May 1.
Published in final edited form as: Am J Ophthalmol. 2019 Jan 26;201:9–18. doi: 10.1016/j.ajo.2019.01.011

Table 2.

Mean global and sectoral minimum rim width relative to Bruch’s membrane opening values obtained from spectral-domain optical coherence tomography and corresponding mean values for the predictions from the deep learning algorithm in the test sample. The table also shows the Pearson’s correlation coefficient and mean absolute error between predictions and observations from the test sample.

Deep Learning Prediction from Fundus Photos Mean ± SD, μm SDOCT BMO-MRW Mean ± SD, μm P for difference in means r (R2) P for correlation MAE, μm
Global 228.8 ± 63.1 226.0 ± 73.8 0.415 0.88 (77%) <0.001 27.8
Temporal inferior 221.8 ± 78.9 228.4 ± 91.3 0.141 0.81 (66%) <0.001 41.7
Temporal Superior 206.8 ± 60.9 208.6 ± 75.7 0.667 0.78 (62%) <0.001 36.8
Temporal 165.9 ± 34.8 163.1 ± 54.7 0.487 0.68 (46%) <0.001 32.2
Nasal Superior 253.3 ± 72.9 254.6 ± 90.4 0.784 0.82 (67%) <0.001 38.8
Nasal Inferior 273.6 ± 77.8 277.6 ± 104.3 0.522 0.78 (60%) <0.001 51.9
Nasal 257.7 ± 71.2 253.9 ± 90.1 0.459 0.82 (68%) <0.001 40.4

SD = Standard Deviation; MAE = Mean Absolute Error; SDOCT = Spectral Domain-Optical Coherence Tomography; BMO-MRW = Minimum rim width relative to Bruch’s membrane opening; μm = microns