Skip to main content
. Author manuscript; available in PMC: 2020 Jan 1.
Published in final edited form as: Am J Ophthalmol. 2018 Sep 17;197:45–52. doi: 10.1016/j.ajo.2018.09.002

TABLE 1.

Results of model fit indices for the latent class models investigating National Eye Institute Visual Function (NEI VFQ-25) questionnaire data from 263 glaucoma patients. Results are given for models ranging from 1 to 5 classes.

1 class 2 classes 3 classes 4 classes 5 classes
n, by group 263 215; 48 35; 72; 155 19; 21; 78; 145 14; 16; 18; 67; 148
Entropy - 0.965 0.881 0.896 0.910
AIC 5382.889 4564.693 4409.870 4389.380 4395.768
BIC 5525.775 4854.037 4845.672 4971.641 5124.487
aBIC 5398.956 4597.229 4458.874 4454.853 4477.710
LMRT - 896.273 235.791 101.944 71.220
LMRT, P value - <0.001 0.001 0.195 0.539
BLRT, P value - <0.001 <0.001 <0.001 0.333

Entropy measures accuracy of classification of participants in latent classes, values closer to 1.0 indicate better classification; AIC: Akaike information criterion, smaller values indicate better fit; BIC: Bayesian information criterion, smaller values indicate better fit; aBIC: BIC adjusted for sample size, smaller values indicate better fit; LMRT: Lo-Mendell-Rubin test and BLRT: Bootstrap likelihood ratio test, P < 0.05 indicates a model superiority to a model with one less latent class. Boldface indicates the retained class solution.