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Abstract

Objective—Growing evidence indicates exposure to air pollution contributes to obesity and
cardiometabolic disease risk in children and adults, however studies are lacking in young
adulthood, an important transitional period in the life course. The aim of this study was to examine
the associations of short- and long-term regional ambient and near-roadway air pollution (NRAP)
exposures on adiposity and cardiometabolic health in young adults aged 17-22 years.

Methods—From 2014-2018, a subset of participants (n=158) were recruited from the Children’s
Health Study to participate in the Meta-AIR (Metabolic and Asthma Incidence Research) study to
assess obesity (body composition and abdominal adiposity) and cardiometabolic health (fasting
glucose, fasting insulin and lipid profiles) measures. Prior 1-month and 1-year average air
pollution exposures were calculated from residential addresses. This included nitrogen dioxide
(NO,), ozone (O3), particulate matter with aerodynamic diameter <10 pm (PM10), particulate
matter with aerodynamic diameter <2.5 um (PM> 5)) and NRAP (freeway, non-freeway, and total
nitrogen oxides (NOy)) exposures. Linear regression models examined associations of prior 1-
month (short-term) and 1-year (long-term) air pollution exposures on obesity and cardiometabolic
factors adjusting for covariates and past childhood air pollution exposures.
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Results—In the Meta-AlIR study, we conducted a comprehensive analysis with short- and long-
term regional ambient and NRAP exposures (in both single- and multi-pollutant models) and
obesity- and cardiometabolic-related outcomes and found associations with a few outcomes. A 1
standard deviation (SD) change in long-term NO, exposure was associated with a 11.3 mg/dL
higher level of total cholesterol (p=0.04) and 9.4 mg/dL higher level of low-density lipoproteins
(LDL)-cholesterol (p=0.04). Among obese participants, associations between long-term NO, and
total cholesterol and LDL-cholesterol were 4.5 and 9 times larger than the associations in non-
obese participants (Pinteraction=0-008 and 0.03, respectively). Additionally, we observed a
statistically significant association with increased short-term O3 exposure and higher triglyceride
and very-low-density lipoprotein (VLDL) cholesterol levels (p=0.04), lower high-density
lipoprotein (HDL) cholesterol levels (p=0.03), and higher hepatic fat levels (p=0.02). Amongst
glucose-related factors, long-term PM> 5 exposure was associated with higher levels of insulin area
under the curve (p=0.03). There were no other statistically significant associations with short- or
long-term air pollutants and BMI, other measures of adiposity, and cardiometabolic outcomes.

Conclusion—Higher exposure to regional air pollutants, namely prior 1-year average NO,, was
associated with higher fasting serum lipid measures. These associations were more pronounced in
obese participants, suggesting obesity may exacerbate the effects of air pollution exposure on lipid
levels in young adults. This study did not find any other associations between short- and long-term
ambient and NRAP exposures across a range of other obesity and cardiometabolic indicators.
Further studies in young adults are warranted as our study suggests potential deleterious
associations of both short- and long-term air pollution exposures and lipid metabolism.
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Introduction

New data shows significant increasing obesity trends in both youth and adults from 1999-
2016 (1). Early onset of detrimental health effects is a concern as obesity can influence the
development of type 2 diabetes (T2DM) (2-5) and cardiovascular disease (CVD) (6, 7) later
in life. As obese children are likely to become obese adults (8), it is important to
characterize obesity and cardiometabolic profiles in young adults as they are at the forefront
of the obesity epidemic and have greater risk to obesity-related health consequences. Apart
from traditional obesity risk factors of poor diet, low physical activity, and low
socioeconomic status (SES), epidemiological evidence has shown that air pollution may
contribute to increased risk for obesity (9-12) and cardiometabolic disease (13-17).
Furthermore, several studies have shown stronger associations with air pollution and adverse
cardiovascular health in obese subjects compared to normal weigh subjects suggesting that
obesity status may exacerbate the effects of air pollution (15, 18). Research on the effects of
air pollution on obesity and cardiometabolic outcomes focused on the young adulthood
period, however, is lacking in the literature.

Our current study, the Meta-AIR (Metabolic and Asthma Incidence Research) study, is a
subset of young adults aged 17-22 years from the larger Southern California Children’s
Health Study (CHS). We examined associations of prior 1-month (short-term) and prior 1-
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year (long-term) air pollution exposures on various indicators of obesity and
cardiometabolic health. Regional ambient pollutants explored include nitrogen dioxide
(NO2), ozone (03), particulate matter with aerodynamic diameter <10 um (PM10), and
particulate matter with aerodynamic diameter <2.5 um (PM2.5), and near-roadway air
pollution (NRAP) include freeway, non-freeway, and total nitrogen oxides (NOy). The aim
of this study was to determine if prior 1-month or 1- year ambient and NRAP exposures are
associated with obesity measures and cardiometabolic outcomes in young adults. We
hypothesized that increased exposure to prior 1-month and 1-year ambient and NRAP will
be associated with higher levels of adiposity measures and adverse levels of cardiometabolic
outcomes.

Material and Methods

2.1. Study Recruitment

The Meta-AlIR study is a subset of young adults aged 17-22 years who were originally part
of the larger CHS. Details of the CHS have been described previously (19). Briefly, in 2002
a cohort of kindergarten and first grade children were recruited from public schools across
Southern California communities and followed through their high school years. Meta-AIR
subjects were selected based on their high school overweight or obese status in 2011-2012
of CHS as well as predicted NOx exposures from their respective residential addresses in
CHS towns. Potential participants were oversampled from “low” and “high” predicted NOx
exposures to ensure maximum exposure contrast amongst study subjects within each CHS
Southern California community. This recruitment strategy allowed for a wide range of air
pollution exposures amongst potentially overweight and obese CHS young adults. Inclusion
criteria included age- and sex-specific BMI percentiles > 85 percentile measured by CHS
staff in school year 2011-2012. Exclusion criteria were as follows: ineligible if using any
medications known to influence body composition and insulin action/secretion, any
diagnosis of diseases that may influence insulin or body composition including Type 1 and
Type 2 diabetes, and any major illness since birth. Eligible participants, who are now young
adults, were contacted and invited to enroll in the Meta-AIR study between 2014-2018.
Written informed assents and consents were obtained from study participants. The
Institutional Review Board at the University of Southern California approved this study.

2.2. Study Design

The Meta-AlIR study visit included several questionnaires as well as extensive phenotyping
of obesity and cardiometabolic outcomes conducted at the University of Southern California
Diabetes and Obesity Research Institute and the Clinical Trials Unit from 2014-2018. The
study visit flow is shown in Figure 1. In short, we administered questionnaires detailing
sociodemographic characteristics, parental health and education, smoking history including
e-cigarette use, self-reported physical activity, residential history, and 24-hour diet recalls
(20). The first dietary recall was completed in person at the study visit, and the second was
conducted by phone. A third phone recall was conducted if one of the first two recalls was
either “more than usual” or “less than usual” from what the participant usually consumes
day to day. These diet data were processed using the Nutrition Data System for Research

Environ Int. Author manuscript; available in PMC 2020 December 01.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnue Joyiny

Kim et al. Page 4

(version 2014, University of Minnesota). Details of adiposity and cardiometabolic measures
obtained are below.

2.3. Adiposity and Cardiometabolic Outcomes

2.3.1. Adiposity—Several anthropometric and body composition measures were taken to
estimate adiposity: 1) height and weight to determine body mass index (BMI) where BMI=
weight/height? (kg/m?2), 2) dual-energy X-ray absorptiometry (DEXA) scan to determine
total body fat percent, and 3) 3T magnetic resonance imaging (MRI) abdominal scan to
determine subcutaneous abdominal adipose tissue (SAAT), visceral adipose tissue (VAT),
and hepatic fat fraction (HFF). Obesity was defined as BMI> 30 kg/m? and nonobesity
defined as BMI <30.0 kg/m2.

2.3.2. Glucose and lipid metabolism—Following a minimum 10-hour fast, a 2-hour
oral glucose tolerance test (OGTT) was administered using a load of anhydrous glucose
dissolved in water for 1.75 grams per kilogram of body weight with a max dose of 75 grams.
All participants received the maximum glucose load. Blood glucose and insulin samples
were collected at fasting (pre-glucose load) and then post glucose challenge at 30-, 60-, 90-,
and 120-minutes. Glucose-related outcomes included fasting glucose, fasting insulin, insulin
area under the curve (AUC), homeostatic model assessment for insulin resistance (HOMA-
IR), and the Matsuda Index. Insulin AUC was calculated using the trapezoidal method using
all time points from the OGTT. HOMA-IR gives estimates of insulin resistance (IR) from

_JR = fasting glucose * fasting insulin
- 405

(21). The Matsuda Index gives an approximation of whole-body insulin sensitivity using all
times points from the OGTT were the ratio of plasma glucose to insulin concentrations are
calculated.

fasting insulin and glucose concentrations where HOM A

1000
* insulin

Matsuda index is defined as such that

\/glucose Fasting Fasting * AxB

A

(glucose fasting + 15 + glucose 30min * 30 + glucose 60min * 30 + glucose 90min * 30 + glucose 120min * 15)
120

and

_ (insulin fasting * 15 + insulin 30min * 30 + insulin 60min % 30 + insulin 90min * 30 4 insulin 120min * 15)
- 120

(22). Fasting lipid-related outcomes included triglycerides, total cholesterol, high-density
lipoprotein (HDL), low-density lipoprotein (LDL), and very-low-density lipoprotein
(VLDL) cholesterols.

B

2.4. Assays

Blood samples from the OGTT were collected in potassium oxalate, sodium fluoride 2mL
tubes and centrifuged for 15 minutes at 1500 RCF. These plasma samples were then assayed
for glucose concentration by hexokinase-mediated reaction assay run on Roche Covas C501.
Additional OGTT samples were collected in sodium heparin 2mL tubes for insulin and
centrifuged at 2500 RPM for 10 minutes. Plasma samples were stored at —80°C and later
assayed for insulin in duplicate by Human Insulin ELISA Kit (EZHI-14BK). Fasting blood
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for lipids was collected in serum separator 4mL tube, inverted several times, placed in room
temperature for 60 minutes for clotting and centrifuged at 2000 RPM for 10 minutes. Serum
lipid samples were stored at —80°C and later assayed in duplicate by Fujifilm Wako
Diagnostics enzymatic assay.

2.5. Air Pollution Exposures

Residential history was collected from all Meta-AIR participants at their study visit
including move in and move out dates for each respective residence. Residential addresses
were geocoded using the Texas A&M geocoder (23) and assigned latitude and longitude
coordinates that reflect each subject’s housing unit or building. Monthly air pollution data
was averaged for prior 1-month and 1-year regional ambient and near-roadway air pollution
(NRAP) exposures to reflect short-term and long-term exposures prior to each participant’s
study visit. Exposures were weighted by time spent at each different residential address by
month since some of our Meta-AlIR participants were college students who lived between
two residences during the year. In these instances, short-term and long-term exposures prior
to the study visit accounted for both college and parental home residences using move in and
move out months to appropriately weigh time spent at each respective residence.
Additionally, our analysis included historic air pollution exposures or cumulative childhood
exposures that were obtained from the parent study CHS, which account for past exposures
beyond our periods of interests: prior 1-month and 1-year. For regional ambient pollutants,
historic air pollution was defined as average childhood exposures for each participant from
birth through year 2011. For NRAP, historic air pollution exposure was defined as average
childhood exposures from CHS study entry (May 2003) through year 2011 where all our
study participants had NRAP data available.

2.5.1. Ambient Air Pollution Exposures—Regional exposures were obtained from
ambient monitoring stations by downloading hourly air quality data from the U.S.
Environmental Protection Agency’s Air Quality System (http://www.epa.gov/ttn/airs/
airsags). Daily averages for four regional ambient air pollutants, NO,, O3, PMqq, and PM3 s,
were calculated. For O3 only, levels were characterized as the eight-hour average daily
maximum concentrations. Air monitoring stations in California are spaced 20-30 kilometers
(km) apart, which provides good characterization of air pollution gradients across the region.
Gaseous pollutants like NO, and O3 are measured by the Federal Reference Method (FRM)
monitors while particulates like PM1g and PM> 5 are measured through FRM and Federal
Equivalent Method (FEM) monitors. Monthly averages were calculated from daily data
using 75% completeness criteria. To calculate monthly ambient exposures, parcel level data
was used in the inverse distance-squared weighting algorithm which spatially interpolated
air quality data from up to four monitoring stations within a 50 km radius of the participant’s
residence (24).

2.5.2. Near-Roadway Air Pollution Exposures—NRAP exposures were estimated
by the California Line Source Dispersion Model (CALINEA4) through detailed residential
history where each participant’s residential addresses were geocoded. CALINE4 line-source
dispersion model then estimated concentrations of near-road NO, at each latitude and
longitude for freeway and non-freeway roads using traffic emissions (calculated within 5-km
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buffer of the residence), traffic volume, roadway geometry and meteorological conditions
including wind speed and direction, pollution mixing heights, and atmospheric stability (25).
Traffic counts and road geometry were obtained from Caltrans and TeleAtlas/GDT, and
average daily traffic volumes were assigned based on year. Monthly near-road freeway, non-
freeway and total NO, (sum of freeway and non-freeway) were then calculated for 1-month
(short-term) and 1-year (long-term) average NRAP exposures prior to the study visit

2.6. Statistical Methods

Physical and cardiometabolic characteristics of the cohort were compared by obesity status
(non-obese vs obese) using chi-square or t-tests. Non-obesity was defined as BMI <30.0
kg/m?2 and obesity as BMI=> 30.0 kg/m2. All outcomes were assessed for normality and
skewed measures were log transformed to fit a normal distribution. Triglycerides, VLDL-
cholesterol, fasting insulin, HOMA-IR, Matsuda Index were log transformed to meet
assumptions of the linear regression. One subject was removed from this analysis due to
undiagnosed diabetes; another subject was removed from the glucose-related
cardiometabolic analysis due to a high fasting insulin that was greater than 4 standard
deviations (SDs) above the mean.

Linear regression models were used to estimate effects of short-term (1-month) and long-
term (1-year) air pollution exposures prior to study visit on obesity and cardiometabolic
measures. Models were adjusted for age, sex, race/ethnicity, occupational status of
participant (SES surrogate), parental education (SES surrogate), self-reported exercise,
current cigarette smoking, e-cigarette use, body fat percent, diet (average total calories per
day), season of study visit (warm or cool), historic air pollution exposure, and baseline CHS
town as a random effect. Historic air pollution data, or cumulative childhood exposures,
allows us to evaluate the effects of short- and long-term exposures on obesity- and
cardiometabolic-related outcomes independent of past childhood air pollution exposures.
Given we had this data available from the parent CHS study, we included these historic
exposures to be able to account for the more recent short-term or long-term exposures of
interest. Besides near-road non-freeway and total NOy, historic air pollution exposures have
low to median correlation with prior 1-month or 1-year average air pollution exposures (all
spearman correlation coefficient <0.7, Supplement Table 2). Association estimates of air
pollution exposure and obesity- and cardiometabolic-related outcomes are reported for a 1
SD in air pollution exposure for prior 1-month and 1-year average regional ambient and
NRAP exposures. We also investigated whether the associations between air pollution
exposure and metabolic outcomes differed by sex, race/ethnicity and obesity status by
testing the interaction terms in the full model. Additionally, we further explored associations
with multipollutant models with additional short-term pollutants in short-term associations
as well as additional long-term pollutants in long-term air pollution exposure associations. A
two-sided p-value < 0.05 was considered statistically significant for all models. All analyses
were performed in SAS, version 9.4 (SAS, Institute, Cary, NC).
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3. Results

From 2014-2018, the Meta-AlIR study enrolled 158 young adults who underwent extensive
obesity and cardiometabolic phenotyping. General study characteristics are presented in
Table 1. Briefly, mean age of participants was 19.7 years (SD=1.2, range=17.6-22.9). There
were slightly more males than females (52.5% vs 47.5%), and 60% of participants were
Hispanic, 28% were Non-Hispanic White and remaining 13% of participants were Asian,
African American or other/mixed races. Generally, participants were full-time college
students, students with part time/full time jobs, or working full time. Approximately 80% of
participant’s parents had education levels of high school graduation and beyond. About 6%
of participants were current smokers who have smoked 20 cigarettes or more in the past
month, and e-cigarette ever use was about 15% amongst study participants. Our participants
consumed an average of 2050 kcal (SD=632) per day obtained from the dietary recalls.
Sociodemographic characteristics did not differ by obesity status (non-obese vs obese)
across all variables (all p>0.1, Table 1).

Mean adiposity- and cardiometabolic-related outcomes amongst all Meta-AlIR participants
as well as by obesity status are shown in Table 2. Of the 158 participants, 37% were obese
(n=59) with BMI = 30 kg/m?, 47% were overweight (n=75) with 25 kg/m? < BMI< 30
kg/m2, and 15% had normal BMI (n=24) with BMI<25 kg/m2. Amongst all study
participants, mean BMI was 29.9 kg/m? (SD=5.1) and mean body fat percent was 34.9%
(SD=8.5). As expected, obesity-related measures (BMI, total body fat percent, SAAT, VAT,
and HFF) were higher in obese compared to non-obese participants, all p<0.0001 (Table 2).
Cardiometabolic measures were classified into two groups: lipid and glucose metabolism.
For lipid metabolism, means for fasting lipid measures are presented in Table 2. Higher
levels of triglycerides and VLDL-cholesterol are seen in obese versus non-obese subjects
(p=0.0004); furthermore, lower HDL-cholesterol levels were seen in obese compared to non-
obese subjects (p=0.006). Total cholesterol and LDL-cholesterol levels were similar across
non-obese and obese subjects (p=0.6 and 0.7, respectively). Details of glucose metabolism
measures are found in Table 2. Higher levels of glucose-related metabolic measures, like
fasting glucose and fasting insulin, are seen in obese compared to non-obese participants, all
p<0.01. Compared to the non-obese participants, obese participants show early signs of
insulin resistance with higher HOMA-IR (3.2 in obese vs 1.5 in non-obese) and lower
Matsuda index levels (3.9 in obese vs 7.3 in non-obese) (Table 2). In adults, the HOMA
cutoff point for IR is >2.5 (21); however studies in children and adolescents have proposed
higher cut off points >3.16 (26) and >4.0 (27). The Matsuda Index <2.5 has been proposed
as the cut off for IR (28).

Prior to study visit, 1-month and 1-year average regional ambient and NRAP exposures are
shown in Table 3, and historic exposures are show in Supplemental Table 1. To avoid
potential collinearity of 1-month vs historic or 1-year vs historic air pollution exposures in
the same model, Spearman correlations between 1-month vs historic exposures and 1-year
vs historic exposures are shown in Supplemental Table 2. All regional ambient models
(NOy, O3, PM1g, and PM,, 5) for 1-month and 1-year average air pollution exposures
included the historic exposures (all correlations<0.7). For NRAP models (freeway, non-
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freeway, total NOy), freeway NO, was the only NRAP exposure that included the historic
exposures in the 1-month and 1-year NRAP models (correlation<0.7).

3.1. Associations of Short- and Long-Term Ambient Air Pollution and Obesity-Related

Outcomes

Associations of short-term (1-month) and long-term (1-year) average ambient air pollution
exposures and obesity-related outcomes are shown in Table 4. All models reflect association
estimates for one obesity outcome and one short-term or long-term ambient air pollutant
adjusting for age, sex, race/ethnicity, occupational status of participant, parental education,
self-reported exercise, current cigarette smoking, e-cigarette use, total body fat % (not
included in SAAT, VAT, HFF models), diet, season of visit, and respective historic air
pollution exposures. In models pertaining to adiposity measures of total body fat percent and
abdominal adiposity (SAAT, VAT, and HFF), we found prior 1-month O3 exposure was
statistically, significantly associated with HFF, liver fat. A 1 SD (14.1 ppb) increase in prior
1-month O3 exposure was associated with a 20% higher liver fat levels after adjusting for
covariates (p=0.02) (Table 4). We further explored the association between liver fat and
short-term O3 exposure in multipollutant models where short-term NO or short-term PM 5
were added separately to the model as these pollutants were not highly correlated with short-
term O3 (Supplemental Table 3). Association estimates were slightly attenuated by adding
short-term NO», or PM; 5, however associations remained statistically significant
(Supplemental Table 5). The association between HFF and short-term O3 was not modified
by sex (male vs female), Hispanicity (non-hispanic white vs hispanic), or obesity status
(obese vs non-obese) (all Pinteraction>0-1). We did not find any other statistically significant
associations of BMI, total body fat percent, SAAT, or VAT and short- or long-term ambient
measures of NO,, O3, PM1g, and PM5 5.

3.2. Associations of Short-Term Ambient Air Pollution and Cardiometabolic-Related

Outcomes

Associations with short-term, prior 1-month, ambient pollutant exposures and
cardiometabolic measures are shown in Table 5. Amongst lipid metabolism measures,
statistically significant associations with higher short-term O3 exposures and higher
triglycerides, higher VLDL-cholesterol, and lower HDL-cholesterol levels were found after
adjusting for covariates (all p<0.05, Table 5). For example, a 1 SD (14.1 ppb) increase in
prior 1-month O3 exposure was associated with a 18% higher triglyceride levels (p=0.04)
and a 18% higher VLDL-cholesterol levels (p=0.04). Additionally, a 1 SD increase in prior
1-month O3 exposure was associated with a 3.02 mg/dL lower HDL levels after adjusting for
covariates (p=0.03).

We further explored short-term O3 and lipid associations in multipollutant models by adding
short-term NO> or short-term PM, 5 (Supplemental Table 5). In multipollutant models with
short-term Oz and NO,, there was slight attenuation in association estimates across
triglycerides, HDL-cholesterol and VLDL-cholesterol but all associations remained
statistically significant (all p<0.05). With short-term O3z and PM5 5, association estimates
were also attenuated, however triglyceride and VLDL-cholesterol models were no longer
statistically significant (p=0.09 and p=0.09, respectively). Effect modification by sex,
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Hispanicity, and obesity status for triglycerides, HDL-cholesterol, and VLDL-cholesterol
models were further explored however there were no statistically significant interactions
were found (all pinteraction™>0-1). No other statistically significant associations were found
with short-term ambient pollution exposures, NO,, PM1g, and PM5 5, and lipid metabolism
measures. Glucose metabolism measures of fasting glucose, fasting insulin, insulin AUC,
HOMA-IR and Matsuda Index were not associated with short-term ambient pollutants.

3.3 Associations of Long-Term Ambient Air Pollution and Cardiometabolic-Related

Outcomes

Associations of long-term, prior 1-year, ambient pollution exposures and cardiometabolic
measures are shown in Table 6. Amongst lipid metabolism measures, higher long-term
ambient NO», exposure was associated with higher fasting total cholesterol and LDL-
cholesterol levels in this cohort of young adults (Table 6). For example, a 1 SD (3.9 ppb)
increase in 1-year average NO, exposure was associated with 11.3 mg/dL higher total
cholesterol levels after adjusting for covariates (p=0.04). Similarly, a 1 SD increase in 1-year
NO, exposure was associated with a 9.4 mg/dL higher LDL-cholesterol levels (p=0.04).
Additional exploration with multipollutant models was completed by adding long-term O3
or long-term PM> 5. (Supplemental Table 4). In multipollutant models with long-term NO»
and long-term Og, associations were slightly attenuated in total cholesterol and LDL-
cholesterol models with marginal significance (p=0.05 and p=0.06, respectively)
(Supplemental Table 6). In multipollutant models with long-term NO, and long-term PM s,
associations strengthened when adding long-term PM 5 in total cholesterol and LDL-
cholesterol models maintaining statistical significance p<0.05 (Supplemental Table 6).

Associations of long-term NO, exposure and total cholesterol and LDL-cholesterol were
further assessed for effect modification by sex, Hispanicity, and obesity status. There were
no statistically significant interactions of sex and hispancity (all p>0.1); however, the
interaction for obesity status (non-obese vs obese) and NO, were statistically significant for
total cholesterol (p=0.008) and LDL-cholesterol (p=0.03). These results suggest differences
in the effect of long-term NO, exposure on lipid levels by obesity status, so associations
were stratified by obesity status. In obese subjects, the association estimate of prior 1-year
NO, exposure on total cholesterol and LDL-cholesterol were substantially higher compared
to non-obese subjects (Figure 2). The association estimates between prior 1-year NO»
exposure and total cholesterol among obese participants were nearly 5-fold larger (21.4
mg/dL vs 4.7 mg/dL) than non-obese participants. Likewise, the association estimates
between prior 1-year NO, exposure and LDL-cholesterol among obese participants were 9-
fold larger (19.9 mg/dL vs 2.2 mg/dL) than non-obese participants.

Amongst glucose metabolism measures, higher long-term PM, 5 exposure was associated
with higher insulin AUC such that a 1 SD (2.5 pg/md) increase in prior 1-year PM 5
exposure was associated with 33.6 higher units of insulin AUC (p=0.03). Further exploration
was conducted with multipollutant models adding long-term NO» or long-term O3
(Supplemental Table 4). In the multipollutant model with long-term PM5 5 and NO,, the
association with insulin AUC was attenuated and was no longer statistically significant
(p=0.09, Supplemental Table 7). Similarly, the multipollutant model with long-term PM 5
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and Og, further attenuation was found with loss in significance (p=0.17, Supplemental Table
7). There was no effect modification with insulin AUC and long-term PM, 5 exposure by
sex, Hispanicity, and obesity status (Pinteraction™0.1). There were no other statistically
significant associations between long-term ambient exposures, NO,, O3, PM1g, and PM> 5,
and glucose metabolism measures of fasting glucose, fasting insulin, insulin AUC, HOMA-
IR, and Matsuda Index.

3.4 Associations of Long-Term and Short-Term NRAP and Obesity- and Cardiometabolic-
Related Outcomes

Like regional ambient air pollution exposures, associations of short-term and long-term
NRAP exposures with obesity- and cardiometabolic-related outcomes were explored
(Supplemental Table 8-9). There were no statistically significant associations with prior 1-
month and 1-year average NRAP exposures of non-freeway, freeway and total NOy with
obesity- or cardiometabolic-related outcomes.

4. Discussion

In the Meta-AlIR study, we conducted a comprehensive analysis with short- and long-term
regional ambient and NRAP exposures (in both single- and multi-pollutant models) and
obesity- and cardiometabolic-related outcomes and found associations with only a few
outcomes. These associations include liver fat (with short-term Os), lipid profiles (with
short-term O3 and long-term NO>) and insulin-related phenotype (with long-term PM5 5).
Though we did not find statistically significant associations with short-term or long-term
ambient and NRAP exposures and BMI and other adiposity measures, we showed a positive
association where higher short-term (prior 1-month) O3 exposure was associated with higher
liver fat in young adults. Increasing incidence of non-alcoholic fatty liver disease (NAFLD),
an accumulation of liver fat, has been strongly liked to obesity, and many with NAFLD are
obese and insulin resistant which draws concerns (29). Additionally, there is some evidence
of the role of air pollution on NAFLD (30).

Our findings suggest that higher short-term Oz and higher long-term NO, exposures may
increase risk of dyslipidemia in young adults. Though it is not clear why higher short-term
O3 and higher long-term NO, exposures affects different lipid types, perhaps some ambient
pollutants like Os elicit acute or short-term effects whereas NO, exposures may have more
chronic or long-term effects on lipid profiles. Several reported associations support our study
findings, however most studies have focused effects of air pollution and lipid abnormalities
in adult and elderly populations (31-34). Similar to our findings, a recent study of 15,000
Chinese adults (aged 18-74 years) detected statistically significant associations with
increased long-term ambient air pollution exposures and altered lipid measures with stronger
associations in obese participants (34). Studies in young adults are lacking, though one study
in youth has shown deleterious effects of poor air quality and elevated levels of total
cholesterol and triglycerides in Irani adolescents (35). Additionally, an experimental model
has shown that increased air pollution exposure may perturb lipid levels (36), though exact
biological mechanism remains uncertain. One proposed mechanism is inflammatory
responses from air pollution exposure which induces macrophage infiltration in adipose
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tissue (37). Macrophage infiltration then cues expression of proinflammatory cytokines
inducing uncontrolled lipolysis which may lead to elevated levels of circulating nonesterified
fatty acids (38). These fatty acids are transported to the liver for upregulation of triglycerides
synthesis, VLDL production and ultimately dyslipidemia.

Lastly, associations of air pollution and glucose metabolism in children and adolescents have
been shown previously (13, 39, 40); yet again, studies are limited in young adults. One study
from Southern California showed adverse effects of higher NO, and PM, 5 exposures on
insulin sensitivity and beta-cell function in overweight and obese children (aged 8-15 years)
after an average 3 year follow up period (13). Though we did not find statistically significant
associations with short-term ambient and NRAP exposures and glucose metabolism
measures, our study suggests higher long-term (prior 1-year) PM, 5 exposure may be
associated with higher insulin AUC levels. Several animal models have proposed
mechanisms by which air pollution may affect glucose metabolism (37, 41).

The Meta-AlIR study has notable strengths. Unlike most air pollution studies, our study had
life-time residential history on our participants by which we were able to incorporate past,
childhood air pollution exposures. We used the well-established CHS to recruit our Meta-
AIR participants where we sampled across high and low air pollution exposures across CHS
communities to ensure a wide range of air pollution exposures in both regional ambient and
NRAP exposures. An extensive number of exposure metrics (both short- and long-term
regional and local traffic pollutants) alongside various measures of adiposity and
cardiometabolic health were carried out in this study. A rigorous collection of adiposity
measures using gold-standards such as DEXA and MRI and cardiometabolic-related
outcomes were performed prospectively. We collected many different measures of
modifiable risk factors such as diet, physical activity, current smoking and e-cigarette use,
and non-modifiable risk factors age, race/ethnicity, sex, occupational status of participant
and parental education via questionnaires. Our air pollution exposure estimates incorporated
multiple residences as our study population included college-aged subjects who resided at
their parent’s residence as well as their school residence giving appropriate weights to each
respective residence.

Despite the strengths, there were limitations to this current study. First, we cannot draw
causal relationships between air pollution exposures and obesity- and cardiometabolic-
related outcomes as our study outcomes were only collected at one time point. \We were
limited in our sample size as we only had 158 young adults in this study; therefore, various
interactions tested should be interpreted with caution. Given our study design, our
participants were primed for potentially adverse levels of obesity and cardiometabolic
outcomes, however given the standard deviations of our clinical measures, there was an
adequate range of outcomes. There were no contextual variables in our analysis given that
~70% of our participants were students (full time or part time), about half lived in multiple
residences due to school addresses and parental addresses (time spent in summer and winter
break months). Contextual covariates would need to incorporate several different addresses,
weighting time spent at in each neighborhood as most student who lived in college dorms or
apartment were not in their hometowns. Though this may be feasible, we collected a rather
robust list of individual-level covariates that may capture this information. Despite
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incorporating multiple residences, we were unable to incorporate other locations such as
work locations that our subjects may have frequently visited or indoor exposures. We also
acknowledge our variables of occupational status of the participant and parental education
may not capture SES fully. Our study findings may be only generalizable to young adults
with similar demographic data (primarily Hispanic or White), with similar range of air
pollution exposures, and those with a history of overweight/obesity during mid-teenage
years. Additionally, markers of oxidation were not available in this current study. Finally,
our findings cannot determine the precise mechanism behind the association of air pollution
and obesity and cardiometabolic health, however our results indicate potential pathways that
may involve disrupted lipid metabolism, increased liver fat and increased insulin production.

5. Conclusion

Findings from the Meta-AlIR study suggests that differential ambient regional air pollution
exposures, NO,, Oz and PM5 5, may contribute to poor cardiometabolic health in young
adults aged 17-22 years. Notably, the association between long-term NO, and fasting lipid
measures may adversely affect obese young adults compared to non-obese young adults.
Differences in association by obesity status suggest that obese young adults may be more
susceptible to adverse effects of long-term air pollution exposure, and this may exacerbate
indicators of cardiometabolic health. Additional longitudinal studies in young adults are
warranted as to verify associations of air pollution and adverse obesity and cardiometabolic
outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights
. We assessed measures of adiposity, cardiometabolic health in 158 young
adults.
. Ambient air pollution was associated with some cardiometabolic risk factors.
. Long-term NO, was associated higher total cholesterol and LDL-C levels.
. Associations between NO, and lipids were more pronounced in obese

participants.

. Short-term Oz was associated with higher triglycerides and VLDL-C and
lower HDL-C.
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Figure 1. Meta-AIR Study? Flow
aMeta-AlIR subjects were recruited between 2014-2018 from Children’s Health Study to

examine the effects of short- and long-term ambient and near-roadway air pollution
exposures on obesity and cardiometabolic health in young adults.
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Figure 2. Associations? of Prior 1-Year NO, Exposures and Lipid Metabolism Measures by
Obesity Status in 158 Participants Enrolled in the Meta-AIR Study from 2014-2018.

NO,= nitrogen dioxide; HDL= high-density lipoprotein; LDL= low-density lipoprotein;
VLDL= very low-density lipoprotein; obese= BMI = 30.0 kg/m?2, non-obese= BMI< 30.0
kg/m2.

@Associations reflect change in outcome measure (association estimate (B)) scaled to 1
standard deviation of prior 1-year average ambient NO, with 3.9 ppb stratified by obesity
status (non-obese vs obese).

BLinear regression model was used to estimate the associations of 1-year NO, and lipid
metabolism outcomes after adjusting for age, sex, race/ethnicity, occupational status of
subject, parental education, self-reported exercise, current cigarette smoking, e-cigarette use,
total body fat percent, diet, season, and historic air pollution exposure.

*p<0.05
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Sociodemographic Characteristics by Obesity Status of 158 Participants Enrolled in the Meta-AlIR Study from

Table 1.

2014-2018.
Total® Non-Obeseb Obese® p-valued
Sex n (%) n (%) n (%) 0.24
Male 83 (52.5) 56 (56.6) 27 (45.8)
Female 75 (47.5) 43 (43.4)  32(54.2)
Race/Ethnicity 0.11
White 44 (27.9) 33(333)  11(18.6)
Hispanic 94 (59.5) 53 (53.5) 41 (69.5)
Other® 20 (12.7) 13 (13.1) 7 (11.9)
Occupational Status 0.44
Student only 53 (33.5) 33(33.3) 20(33.9)
Full or part time work only 32 (20.3) 22 (22.2) 10 (17.0)
Student + full/part time 65 (41.2) 41 (41.4) 24 (40.7)
Unemployed + other 8(5.1) 3(3.0 5(8.5)
Parental Education
Less than high school 31 (20.3) 20 (20.4) 11 (20.0) 0.28
High school graduate 24 (15.7) 12 (12.2) 12 (21.8)
Some college and beyond 98 (64.1) 66 (67.3) 32 (58.2)
Self-Reported Exercise 0.24
Yes 121(765)  79(79.8)  42(71.2)
No 37 (23.9) 20(202)  17(28.9)
Current Smokerf 049
Yes 9(5.7) 7(7.1) 2(3.4)
No 149 (94.3)  92(929)  57(96.6)
E-cigarette Use 0.31
Ever 20 (15.4) 11 (12.8) 9 (20.5)
Never 110 (846)  75(87.2)  35(79.5)

a\/ariable denominators may differ due to missing values.

bNon-Obese= BMI<30.

CObese= BMI > 30.

dChi-square (non-obese vs obese) p-value.

eOther races= Asian (n=10), African-American (n=6), Other/Mixed Races=(n=4).

f . .
Current smoker= smoked more than 20 cigarettes (1 pack) in the past month.
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Table 3.

Short- and Long-Term Regional Ambient and Near-Roadway Air Pollution Exposures Among 158
Participants Enrolled in the Meta-AIR Study from 2014-2018.

1-Month (Short-term) Exposurea Mean  SD IQR

Regional Ambient Air Pollutants

NO, (ppb) 161 57 12.6-20.0
O3 (ppb) 488 141 385-58.1
PMyq (Hg/m3) 303 9.7 228-36.7
PM,5 (ug/m3) 124 43  9.2-152

Near-Roadway Air Pollutants

Freeway NOy (ppb) 5.6 6.4 2.1-6.3
Non-freeway NO, (ppb) 17 13 0.8-2.2
Total NO (ppb) 69 69  3.0-80
1-Year (Long-term) Exposureb Mean  SD IQR
Regional Ambient Air Pollutants
NO, (ppb) 160 39 14.3-18.7
0; (ppb) 487 65 422-533
PMyg (Hg/m?3) 309 79 261-350
PM, 5 (Lg/m?) 124 25 10.3-145
Near-Roadway Air Pollutants
Freeway NO (ppb) 6.0 6.3 2.0-7.9
Non-freeway NO, (ppb) 18 14 0.8-2.3
Total NO, (ppb) 73 69 3393

SD=standard deviation; IQR=interquartile range; NO2= nitrogen dioxide; O3=0zone 8-hour maximum daily; PM10= particulate matter with
aerodynamic diameter <10 pm; PM2 5=particulate matter with aerodynamic diameter <2.5 um; ppb=parts per billion; NOx=nitrogen oxides.

a . . . -
1-month average air pollution exposure prior to the Meta-AIR visit date.

b . . . .
1-year average air pollution exposure prior to the Meta-AlIR visit date.
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