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Abstract

The twenty-four hour sleep-wake pattern known as the rest-activity rhythm (RAR) is associated 

with many aspects of health and well-being. Researchers have utilized a number of interpretable, 

person-specific RAR measures that can be estimated from actigraphy. Actigraphs are wearable 

devices that dynamically record acceleration and provide indirect measures of physical activity 

over time. One class of useful RAR measures are those that quantify variability around a mean 

circadian pattern. However, current parametric and nonparametric RAR measures used by applied 

researchers can only quantify variability from a limited or undefined number of rhythmic sources. 

The primary goal of this article is to consider a new measure of RAR variability: the log-power 

spectrum of stochastic error around a circadian mean. This functional measure quantifies the 

relative contributions of variability about a circadian mean from all possibly frequencies, including 

weekly, daily, and high-frequency sources of variation. It can be estimated through a two-stage 

procedure that smooths the log-periodogram of residuals after estimating a circadian mean. The 

development of this measure was motivated by a study of depression in older adults and revealed 

that slow, rhythmic variations in activity from a circadian pattern are correlated with depression 

symptoms.
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1 Introduction

Modern wearable technology provides a practical, noninvasive means of gathering dynamic 

information within a natural environment. One such type of technology is actigraphy. 

Actigraphs are compact, lightweight, computerized accelerometer-based devices used to 

monitor physical activity. Actigraphy has been used to quantify both measures of sleep [1] 

and measures of daytime activity [25]. As actigraphs can be worn nearly continuously over 

extended periods of time, such as days or weeks, actigraphy also allows researchers and 
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clinicians to evaluate an individual’s 24-hour, or circadian, pattern of rest and activity. This 

pattern is commonly referred to as the rest-activity rhythm (RAR). RAR has been shown to 

be associated with many aspects of health. In particular, RAR provides an objective, indirect 

assessment of depression’s behavioral manifestations and risks [23]. Through this capacity, 

RAR measures have the potential to aid clinicians in monitoring risk and tailoring treatment 

for depression.

Applied researchers traditionally quantify RARs through two classes of subject-specific 

measures: parametric and nonparametric. Parametric measures are derived from the 

parameters of nonlinear regression models for the circadian mean function. The 

accompanying pseudo-F statistic of the fitted regression model is also considered as a 

measure of the fit of a mean circadian pattern relative to variation around this mean. Early 

approaches assumed a 24-hour cosinor model, while more recent approaches utilized a 5-

parameter extended cosine model [15]. Nonparametric approaches assume no parametric 

model for the mean and are derived directly through quadratic and linear functions of the 

time series. These include the quadratic functions known as interdaily stability (IS), which 

measures the relative strength of the circadian rhythm, and intradaily variability (IV), which 

quantifies the amount of fragmentation of this rhythm. It should be noted that, in addition to 

these two classes of measures that are derived individually for actigraphy time series, there 

has been recent research into the use of functional regression for analyzing population 

parameters of actigraphy ([7], [16], [27], [31]). The focus of this article is on methods that 

provide interpretable subject-specific measures, which are widely used by researchers and 

are of interest to clinicians when treating individual patients.

The primary goals of this article are three-fold. First, we aim to summarize and provide new 

insights into some of the popular subject-specific parametric and nonparametric RAR 

measures used by applied researchers. The second goal of this article is to introduce a 

flexible measure of RAR variability to enhance the information currently available through 

existing measures. The parametric pseudo-F statistic and the nonparametric IS and IV 

measures all provide measures of variability. However, each of these summary measures 

provides information about specific, and not often well defined, sources of harmonic 

variability. We introduce a functional measure, which we refer to as the residual circadian 

spectrum (RCS), that can capture full information about harmonic variability. This measure 

is defined as the log-spectrum of the stochastic variability when log-activity is modeled 

through a parametric circadian mean plus stationary stochastic variability. The RCS curve, 

which quantifies the amount of variation about the circadian mean from different 

frequencies, can be considered a semiparametric measure in that, although a parametric form 

is assumed for the mean, no parametric form is assumed for the spectrum. In addition to the 

information provided by individual RCS curves, frequency band-collapsed summary 

measures can be formulated to provide low-dimensional representations that best preserve 

information across RCS from different subjects within a population. These frequency band 

measures can then be used in further analyses to elucidate biobehavioral correlates of 

clinical outcomes. The final goal of this paper is to investigate the relationship between RAR 

and depression symptoms in a study of depression in adults. In this study, it is found that 

RCS is associated with depression symptoms and provides additional information beyond 

that provided by existing parametric and nonparametric RAR measures.
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The rest of this article is as follows. The motivating study of depression in adults is 

discussed in Section 2. Popular existing parametric and nonparametric RAR measures are 

discussed in Section 3. The proposed RCS measure is developed in Section 4. A discussion 

pertaining to summarizing RCS information from a population within frequency band-

collapsed measures is given in Section 5. The data from the motivating study are analyzed in 

Section 6. The article concludes with a discussion in Section 7.

2 Motivating Study

An estimated 300 million people globally suffer from depression [30], making it the leading 

cause of disability worldwide. Evidence suggests that RARs not only serve as a 

biobehavioral marker for depression, but more importantly, they represent a risk factor and a 

potential target for prevention [23]. We consider a study conducted at the University of 

Pittsburgh to better understand depression symptoms in adults. Study participants wore an 

Actiwatch 2 on the non-dominant wrist for approximately one week. The device included an 

accelerometer with a sampling rate of 32 Hz, whose data were processed to produce activity 

counts in 30 second epochs. Actigraphy profiles for 145 men and women aged 38–82 years, 

who may or may not have had a history of depression, but who had no history of other 

psychiatric disorders or substance abuse, were obtained. We illustrate activity counts on the 

logarithmic scale and display data for two subjects in Figure 1.

Study participants underwent a clinical examination prior to being fitted with the actigraph. 

During this examination, the 17-item Hamilton Depression Rating Scale was administered 

[10]. The Hamilton Depression Rating Scale is a clinical tool for measuring depressive 

symptoms in which patients are rated on 17 domains by a clinician on a 3- or 5-point Likert 

scale, depending on the question. These scores are then totaled to compute a Hamilton 

Depression Score (HAMD). Larger values indicate more sever depression symptoms, with 

scores of 0–7 being indicative of no depression, 8–16 of mild depression, 17–23 of moderate 

depression, and greater than 24 of severe depression [32]. HAMD among study participants 

ranged from 0 to 52, with a mean of 21.15 and a standard deviation of 17.72.

3 Popular RAR Measures

There exist two popular classes of RAR measures: parametric and nonparametric. The two 

classes of measures are complimentary, each with its own strengths and weaknesses. The 

class of parametric measures, which are reviewed by Marler et al. (2006) [15], are derived 

from the parameters of a deterministic model for a circadian rhythm. Parametric measures 

have a strength in that the parameters provide interpretable measures about the shape, size 

and timing of the RAR. They have a weakness in that, although popular parametric models 

are flexible and can capture a variety of shapes, the measures are still dependent on the 

validity of a parametric model. Nonparametric measures, which are described by van 

Someren et al. (1996) [24], are defined directly by quadratic and linear statistics of the time 

series. They have the strength in that they do not depend on the validity of some model, but 

have the weakness of only quantifying a limited number of specific characteristics whose 

interpretations are not always direct.
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3.1 Parametric Measures

Consider the time series of log-activity counts, xt, t = 1, …, T. A one is added to each count 

before taking the logarithm to avoid zero counts. We assume that the series represents counts 

within regular intervals, with there being r intervals per hour. Equivalently, we assume 

activity is summed within adjacent, non-overlapping epochs of length 1/r hours. In our 

motivating example, activity is computed within 30 second epochs where r = 120, but 1 

minute (r = 60) and 1 hour (r = 1) epochs are also common. The parametric approach 

assumes that

xt = h(t; θ) + ϵt, (1)

where h is a deterministic circadian function of time (i.e. a function with a 24-hour period), 

θ ∈ ℝp is a collection of p parameters indexing the circadian function, and ϵt is a mean-zero 

second order stationary stochastic process. Early approaches used a cosinor model where h 
is a linear combination of sine and cosine functions with 24-hour periods. Although this 

provides a very simple model, RARs typically do not follow a pure sinusoidal pattern with a 

24-hours period. Multiparameter extended cosine models take a nonlinear transformation of 

the 24-hour cosine function and provide flexible models of RAR with interpretable 

parameters. A review of a class extended cosine models is given by Marler et al. (2006) [15]. 

Here, we consider one specific and widely used model, which is referred to as the anti-

logistic or expit model. In this model, h is parameterized by p = 5 parameters θ = (m, a, α, 

β, ϕ)’ such that

h(t; θ) = m + a × expit β cos t
r − ϕ 2π

24 − α ,

where expit(x) = ex/ (1 + ex) is the expit, or anti-logistic, function. For identifiability, we 

assume that m > 0 a > 0 α ∈ (−1,1), β > 0 and ϕ ∈ [0, 24]. The maximum value of h occurs 

when t = ϕ. We refer to ϕ as the acrophase, which represents the time of the day when peak 

activity occurs. The parameters α and β are shape parameters. The parameter α controls the 

amount of time spent at rest relative to active time, with more negative values indicating less 

resting time. The parameter β is proportional to the rate of change when transitioning from 

rest to activity, with larger values indicating a quicker transition between rest and peak 

activity.

The parameters m and a control the extremes of h. By noting that expit(x) has asymptotes at 

0 and 1 for x ∈ ℝ, m is commonly interpreted as the minimum and a as the amplitude (i.e. 

the difference between the maximum and the minimum) [15]. However, it should be noted 

that, given a set of shape parameters α and β, expit (β [cos {(t/r − ϕ) 2π/24} − α]) can be 

bounded rather far from 0 and 1. Consequently, we consider the minimum and amplitude 

defined as the smallest value of h(t; θ) and the difference between the largest and smallest 

values of h(t; θ) given the parameters θ, which can be computed as

min = m + a e−β

eα + e−β ,
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amp = a eβ − e−β

eα + e−α + eβ + e−β .

The parameter θ is estimated though nonlinear least squares

θ = argmin
θ ∈ ℝp

∑
t = 1

T
xt − h(t; θ) 2,

which can be computed using Gauss-Newton [2]. Estimated circadian functions h(t; θ) are 

displayed in Figure 1 for two participants in the motivating study.

In addition to the estimated parameters in θ, the psuedo-F statistic of the nonlinear 

regression model

F = RSS/MSE,

RSS = ∑
t = 1

T
h t; θ − x 2/4,

MSE = ∑
t = 1

T
xt − h(t; θ) 2/ T − 5 ,

where x = ∑t = 1
T xt /T, is also reported. The psuedo-F statistic is interpreted as a measure of 

how well observed activity are fit by a circadian rhythm relative to variability around the 

circadian mean.

3.2 Nonparametric Measures

Researchers also consider a set of nonparametric measures. The nonparametric measures do 

not assume an underlying model for the time series of activity counts, only that they come 

from a second-order stationary process. Traditionally, these measures are computed using 

hourly activity (r = 1), but minute activity (r = 60) has also been recently considered [8]. In 

this article, we consider hourly epochs. There are two primary nonparametric measures of 

variability: interdaily stability (IS) and intradaily variability (IV).

IS is a measure of the strength of a circadian pattern. It is a signal-to-noise ratio defined as 

the ratio of the average square-error of hourly means from the grand mean divided by the 

sample variance. Formally,

IS =
∑s = 1

24 xs − x 2/24

∑t = 1
T xt − x 2/T

,

where xs is the mean of the activity score at hour s = 1, …, 24 over multiple days of 

observation.
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IV measures fragmentation of the circadian rhythm and is defined as

IV =
∑t = 2

T xt − xt − 1
2/(T − 1)

∑t = 1
T xt − x 2/T

.

When there is high variation in hour-to-hour activity, the numerator is large. Consequently, 

IV is a ratio of hour-to-hour variation relative to total variability. By noting that the first 

differencing operator is a high-pass filter [22], one could also interpret the numerator as a 

measure of variability at high frequencies. Consequently, IV can also be interpreted as the 

percent of total variability that is accounted for by high-frequency variation.

It should also be noted that, in addition to IV and IS, nonparametric measures of minimum 

and maximum activity can also be considered. The nighttime activity level (L5) is the mean 

of the 5-hour period with lowest activity, and the daytime activity level (M10) is the mean of 

the 10-hour period of maximum activity. However, the focus of this article is on measures of 

variability, so we will not consider L5 and M10.

4 Residual Circadian Spectrum (RCS)

4.1 Definition

Thus far we have discussed three popular measures related to RAR variability: the 

parametric pseudo-F and the nonparametric measures IS and IV. However, these three 

measures offer only limited or partial information abut which rhythmic activity patterns 

significantly influence RAR variability. First, the pseudo-F statistic only provides a very 

gross measure of variation about the circadian mean with no insight into exactly how a 

person’s activity varies. For instance, a small pseudo-F statistic could be a result of an 

individual going to bed later every Friday and Saturday compared to other days, or it could 

be a result of an individual waking up regularly and often every night, or it could be the 

result of an individual alternating between hourly periods of high and low activity during the 

day. The measure IS provides a measure of the strength of a circadian signal relative to 

variance, but can also not distinguish between low-frequency variability between days and 

high-frequency variability within-days. The measure IV provides an understanding of the 

presence of high-frequency variation, but cannot speak about low-frequency variations. Our 

goal is to introduce a functional measure that can summarize variation from all possible 

rhythmic sources and pinpoint frequencies of importance.

We will assume the parametric model (1). Here, the stochastic term ϵt contains information 

with regards to variability about the deterministic circadian rhythm h. We will assume that ϵt 

has mean zero and is second-order stationary, from which we can define the autocovariance 

function

γ(s) = E ϵtϵt − s , s = ℤ .

Krafty et al. Page 6

Stat Biosci. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When γ(s) decays fast enough so that it is absolutely summable, we can define the power 

spectrum

f (ω) = ∑
s = − ∞

∞
γ(s)e−2πisω .

The function f is periodic, such that f (ω) = f (ω + 1), and is an even function, where f (ω) = 

f (−ω). Due to the periodic and even nature of power spectra, we display f over frequencies 

between [0,1/2]. In addition, power spectra are non-negative, and we assume that f is 

positive, or f (ω) > 0 for ω. To aid visualization and avoid the need for constrained 

estimation, we consider the spectrum on the log-scale, and define

g(ω) = log f (ω) .

We refer to g as the residual circadian spectrum (RCS).

There is a one-to-one transformation between the autocovariance and the power spectrum, 

where the inverse relationship is

γ(s) = ∫−1/2
1/2

f (ω)e2πiωsdω .

Substituting s = 0, it can be seen that

γ(0) = var  ϵt = ∫−1/2
1/2

f (ω)dω .

Consequently, the power spectrum can be thought of as a type of ANOVA decomposition, 

where f (ω)dω represents the amount of the total variance that is attributable to periodic 

variations at frequencies within some small radius dω of ω. In our motivating study, data are 

summarized in 30 second epochs, so that ω is in units of cycles per 30 seconds. For 

example, the amount of variability attributed to 12-hour variation, or one cycle per 12 hours, 

is given by f evaluated at ω = 1/1440 cycles per 30-second. However, for ease of 

interpretation, we change units to cycles per hour when reporting results.

It should be noted that, under the nonparametric model where it is only assumed that yt is 

second-order stationary, one could conduct a spectral analysis directly on yt rather than on 

the residuals from a parametric model. However, this would address the question of how 

much variance in activity is attributable to variability at given frequencies. We are concerned 

with the slightly different question that is addressed by the RCS: how much of the variance 

not accounted for by a mean circadian rhythm is attributable to variability at different 

frequencies.
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4.2 Estimation

Estimation of a power spectrum traditionally begins by considering the periodogram, or the 

square modulus of the discrete Fourier transform. Since the variables ϵt are not observed, we 

take a two-step estimation procedure. In the first step, the nonlinear regression model is fit 

and the residuals

ϵt = yt − h(t; θ)

are computed. Then, the periodogram of the residuals are computed

zk = T−1 ∑
t = 1

T
ϵte

−2πiωkt 2
,

for k = 1, …, K, where K = ⌊(T − 1)/2⌋, ⌊x⌋ represents the largest integer less than x, and ωk 

= k/T are the Fourier frequencies.

When T is sufficiently large, zk are approximately independent and distributed as f ωk χ2
2/2. 

This implies that zk is an approximately unbiased but inconsistent estimator of f (ωk). A 

consistent estimator can be obtained by smoothing the periodogram across frequency. Many 

approaches are available for smoothing the periodogram, including local averaging [22], 

smoothing splines [26], and wavelets [17]. Here, we adopt a smoothing spline approach that 

minimizes a penalized Whittle likelihood. Smoothing spline estimators are obtained by 

minimizing penalized functions comprised of two parts: a measure of the lack of fit of an 

estimator to observed data and a penalty regularizing the smoothness of the estimator. The 

large sample distribution of the periodogram leads to the so-called Whittle likelihood [28]. 

The negative log-Whittle likelihood can be used as the measure of lack of fit to obtain 

efficient estimators ([19], [20]). We will regularize the roughness of the estimate by 

penalizing the integrated square second derivative of the log-spectrum. Formally, given a 

smoothing parameter λ > 0, we estimate the RCS g as the unique periodic, even function 

with a finite square-integrable second derivative that minimizes

∑
k = 1

K
g ωk + zke

−g ωk + λ∫0
1/2

g″(ω)dω .

The smoothing parameter balances the smoothness of the estimated spectrum with its fit to 

the data. As λ → ∞, the estimated spectrum approaches a constant function of frequency 

and, as λ → 0, the estimated spectrum interpolates the periodogram. Estimated residuals ϵ t, 

estimated RCS g, and bias-adjusted log-periodograms, log(zk) + τ, where τ ≈ 0.577 is the 

Euler-Mascheroni constant, are displayed in Figure 2 for the two subjects whose activity 

data are displayed in Figure 1.

The minimizer of the penalized negative log-Whittle likelihood has the form
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g(ω) = c0 + ∑
k = 1

K
ckQ ω, ωk ,

where Q(ω, ν) = ∑k = 1
∞ (2πk)−4cos(2πkω) cos(2πkν) and the coefficients ck, k = 0, …, K, can 

be computed via Newton-Raphson or Fisher Scoring [9]. It should be noted this penalized 

Whittle likelihood estimator uses a different kernel Q than the smoothing spline estimators 

considered by others ([9], [19], [20]). These other approaches model the log-spectrum as 

smooth and periodic, but do not account for its even structure. As discussed by Krafty & 

Collinge (2013) [12], accounting for the even nature of the log-spectrum aides estimation, 

especially at the boundary near ω = 0 and ω = 1/2.

5 Frequency Band-Collapsed Summary Measures

5.1 Low Dimensional Measures

The RCS from an individual subject provides information about variability in activity from 

all rhythmic sources around their circadian mean. In practice, researchers and clinicians are 

also interested in understanding RCS within a population of subjects and in how RCS is 

associated with clinical and biological variables.

The infinite dimensional nature of a power spectrum as continuous function of frequency 

poses challenges in conducting such analyses. Although RCSs from multiple subjects could 

be treated as a functional variable whose association with clinical and biological variables 

could be assessed via functional regression models, such an approach could fail to provide 

interpretable, lowdimensional measures that can be used by clinicians and researchers. 

Utilizing the continuous nature of spectra from biological and behavioral time series, where 

power at neighboring frequencies can contain indistinguishable information, but where 

power from distant frequencies are approximately uncorre lated, researchers typically 

summarize spectral information within frequency bands. A frequency band is an interval of 

frequencies and a frequency band-collapsed measure is derived by taking a linear 

combination of power within the band. Popular examples include EEG, where power is 

commonly collapsed within the delta band of frequencies less than 4 Hz, the theta band 

between 4–8 Hz, the alpha between 8–15 Hz, the beta band between 16–31 Hz, and the 

gamma band of frequencies greater than 32 Hz, and heart rate variability, where power is 

collapsed into low frequencies between 0.05–0.15 Hz and high frequencies between 0.15–

0.40 Hz [4].

Formally, a set of L frequency bands is defined by a partition of the frequency space into 

non-overlapping sets Wℓ ⊂ [0, 1/2], Wℓ ∩ Wm = 0, ℓ, m = 1, …, L, ℓ ≠ m, and associated 

weight functions γℓ. The weight function for the ℓth band has rapport within Wℓ such that γℓ
(ω) = 0 for all ω ∉ Wℓ,. The spectral power is then summarized through the L measures 

defined as linear combinations of the log-spectra with weight functions γℓ. The value of the 

ℓth frequency band-collapsed measure for the jth subject, j = 1, …, N, is
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y j𝓁 = ∫0
1/2

γ𝓁 (ω)g j (ω) dω .

The subject-specific scores yjℓ can then be used in analyzes of association with other 

variables, such as HAMD in our motivating study.

5.2 Functional Principal Component Analysis (FPCA)

Consider a collection of RCS, gj, j = 1, …, N, that can be modeled as independent 

realizations of a stochastic process with covariance function

Γ(ω, ν) = cov g j (ω), g j (ν) , ω, ν ∈ [0, 1/2] .

An intuitive approach for optimally defining frequency bands to preserve variability among 

subjects is through functional principal component analysis (FPCA). The first principle 

component is defined as the linear combination of RCS that preserves the most variability, or 

maximizes

var  ∫0
1/2

γ1(ω)g j(ω)dω

such that ∫ 0
1/2γ1

2(ω)dω = 1. Higher order components are successively defined as 

maximizers orthogonal to lower-order components. Formally, given weight functions for the 

first L − 1 components, γ1, …, γL-1, the Lth component maximizes var  ∫ 0
1/2γL(ω)g j (ω)dω

such that ∫ 0
1/2γL

2(ω)dω = 1 and ∫ 0
1/2γ𝓁(ω)γL(ω)dω = 0 for 𝓁 = 1, …, L − 1.

The principal components can be computed through the eigenfunctions of Γ. When Γ is 

square-integrable, it possess the eigendecomposition

Γ(ω, ν) = ∑
𝓁 = 1

∞
τ𝓁γ𝓁(ω)γ𝓁(ν)

for orthonormal eigenfunctions γℓ and non-negative, non-increasing, summable eigenvalues 

τℓ. The eigenfunction γℓ is a weight function for the ℓth principle component and var(yjℓ) = τℓ. 

The eigenvalues τℓ can be used to determine the number of components for analysis by 

choosing L such that the fraction of variance explained (FVE) by the first L components, 

∑𝓁 = 1
L τ𝓁, relative to the total variance, ∑𝓁 = 1

∞ τ𝓁 is above some threshold.

5.3 Localized Functional Principal Component Analysis (LFPCA)

FPCA has been an essential tool for the analysis of functional data since the 1980’s [3]. 

Early methods focused on utilizing the functional or smooth nature of functional data. For 

example, Rice & Silverman (1991) [21] consider estimating the first FPCA at discretized 
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values from the observed data gj = [gj(ω1), …, gj(ωK)]′, j = 1, …, N, by maximizing trace 

[(S – ρ0D) (γγ′)] such that γ′γ = 1, where S is the K × K sample covariance matrix, D = Δ
′Δ is a K × K roughening matrix with Δ being the (K − 2) × K matrix where Δij = 1 when j ∈ 
{i, i + 2} Δij = −2 when j = i +1, and is zero otherwise. The parameter ρ0 controls the 

smoothness of the estimated component, and can be selected either subjectively or through 

cross-validation.

Although this approach can provide consistent estimators, the estimated eigenfunction will 

have non-zero support across the entire range of frequencies, even if the true component is 

band limited and has support only within a subinterval of frequencies. This issue, which 

creates complications for interpretation, is especially troublesome in our setting, were we 

desire low-dimensional measures that are band-limited and interpreted as power within a 

range of frequencies. A naive approach would be to directly add an ℒ1 penalty to impose 

localization. However, such an approach presents a non-convex and computationally 

intractable problem. Chen & Lei (2015) [5] proposed a solution byembedding the problem 

within the Fantope, or the convex hull of rank-one projection matrices, 

ℱ = H : 0 ≼ H ≼ I,  trace (H) = 1 , where A ≼ B implies that B − A is nonnegative 

definite. Formally, the first estimated weight function γ  is defined as the first eigenvector of 

the matrix H that maximizes

trace  S − ρ0D H − ρ1 H 1

such that H ∈ ℱ and ||H||1 is the matrix ℒ1 norm that is the sum of the absolute value of all 

elements of H. The tuning parameter ρ1 controls the amount of localization. This convex 

optimization problem can be efficiently solved through an alternating direction method of 

multipliers algorithm. Higher-order components can be computed similarly, but optimizing 

over a deflated Fantope that is orthogonal to previously estimated lower-order components.

6 Data Analysis

6.1 Estimated RCS

We applied the proposed procedure to the data from the study of depression in adults 

described in Section 2. The RCS was estimated for each subject using the smoothing spline 

described in Section 4.2, with smoothing parameters selected through generalized maximum 

likelihood [29]. Figure 3 displays the estimated RCS from all 145 subjects, both for the full 

range of frequencies and, to aid visualization, also restricted to the range of low frequencies 

up to 2 cycles per hour.

6.2 Frequency Bands

A LFPCA was conducted on the estimated RCS curves, using leave-out-one cross-validation 

to select the smoothing parameter ρ0, and selecting the localization parameter ρ1 and 

number of components L to maintain 90% of the FVE. Figure 4 displays the first 3 estimated 

eigenfunctions, which account 76.8%, 9.3% and 5.6% of total variability, respectively. The 

first component is a function of frequencies less than or equal to 2/24 cycles per hour, or two 
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cycles per day. The second component is a function of frequencies between 2/24 cycles per 

hour and approximately 25 cycles per hour, while the third component is a function of 

frequencies greater than approximately 25 cycles per hour. We refer to these three band-

collapsed measures as low-frequency (LF), middle-frequency (MF) and high-frequency (HF) 

power, respectively.

The first component, or the LF component, accounts for the majority of variability. To 

examine this measure, Figure 5 graphically displays LF variation in the two subjects whose 

data were considered in Figures 1 and 2. A low-pass filter was applied to the residuals from 

the estimated deterministic circadian rhythm ϵ t to maintain only variation at frequencies less 

than or equal to 2/24 cycles per hour. The LF score for a subject is approximately 

proportional to the sample variance of the low-pass filtered residual series. In Figure 5, it can 

be seen that Subject 1 has a higher LF score than Subject 2. The LF band is comprised of 

frequencies less than 2 cycles per day. This includes variation at frequencies of 1 cycle per 

day and slower, which account for variation in activity between days. For instance, Subject 1 

experienced higher than average levels of activity during days 5 and 7, and less than average 

activity on days 1 and 6. The upper bound of the LF band of 2 cycles per day reflects 

differences in variation from the circadian mean in the morning and in the afternoon/evening 

on the same day. For example, during the second day, Subject l’s activity was above the 

circadian mean before 1pm, but below the circadian mean after 1pm. Consequently, LF can 

be viewed as a measure of deviation from the circadian mean due to variability in activity 

between days as well as due to variability between mornings and afternoon/evenings within 

days.

6.3 Associations with Other Variables

To conduct an exploratory analysis of associations between the RCS band-collapsed 

measures and other variables, Table 1 displays estimated pair-wise Pearson correlation 

between the clinical outcome HAMD, the three RCS band-collapsed measures (LF, MF, 

HF), the two nonparametric measures (IS, IV), and the six traditional parametric measures 

(F, α, β min, amp, ϕ). The three RCS band-collapsed measures are negatively correlated 

with F. This is anticipated, as F is a measure of the goodness-of-fìt of the parametric 

circadian mean and the RCS quantifies variability of the residuals from this model. All three 

RCS band-collapsed measures are also negatively associated with IS; LF has the strongest 

association, with an estimated correlation of −60%. This is also anticipated, as IS is a 

measures of the strength of a daily signal and LF is comprised, in part, of daily variation. 

The three RCS band-collapsed measures are positively correlated with IV; MF and HF has 

the strongest associations, with estimated correlations of 53% and 47%, respectively. IV is a 

measure of the fragmentation of the circadian rhythm, which as previously discussed, is 

equivalent to relative variability after applying a first-difference high-pass filter to highlight 

hourly variation and faster, which is contained in MF and HF.

HAMD is positively correlated with all three RCS band-collapsed measures, negatively 

correlated with F and IS, and positively correlated with IV. These are all consistent with 

previous findings, where increased variability from a stable circadian mean have been found 

to be associated with increased depression [23]. It is interesting to note that, out of the large 
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number of RAR parameters investigated, LF had the highest estimated correlation with 

HAMD at 31%. This is exemplified by the two subjects considered in Figures 1, 2 and 5. 

Subject 1 had a higher LF (2074 vs. 1731) and a higher HAMD (52 vs. 0) compared to 

Subject 2. This result could be suggestive that both daily variation from a circadian mean 

and variation between morning and afternoon/evening could provide biobehavioral 

information that is associated with depression. To closer investigate the possible additional 

information provided by LF in predieting HAMD beyond that contained in existing 

measures, Table 2 displays the results of 4 linear regression models: HAMD regressed only 

on LF, HAMD regressed on LF and the two nonparametric measures, HAMD regressed on 

LF and F, and HAMD regressed on LF and the 5 parametric shape and location parameters. 

We see that LF is positively and significantly associated with HAMD, not only marginally, 

but also when controlling for other variables.

7 Discussion

Patterns of rest and activity are associated with many aspects of health and functioning. In 

this article, we considered their connection to depression, but they have been shown to 

associated with many facets of well-being. The relative inexpensiveness and accessibility of 

actigraphy gives researchers the ability to measure such data in a high-resolution manner, 

over long periods of time, in one’s natural environment. Ideally, this information can be used 

to inform interventions and treatments. Researchers use several subject-specific measures to 

quantify the RAR, but measures of variability about a mean circadian rhythm have been 

limited. This article introduces a new measure, RCS, which accounts for and quantifies 

variability of activity about a circadian mean from all rhythmic sources.

It should be noted that the procedure considered for estimating the RCS is based on the 

periodogram, which is defined assuming that there are no missing data. However, technical 

issues and, more importantly, non-wear, could lead to missing values in the activity count 

time series. When there is little missing data or data are missing in a periodic fashion, such 

as an individual removing the device at approximately the same time each day, the 

periodogram can be adjusted by replacing the missing values with the sample mean of the 

observed values and adjusting the sample size to reflect the number of observed data points 

[18]. If data are missing in a more complicated manner, the Lomb periodogram [14] could 

be used in lieu of the considered Fourier periodogram. In the case of more complicated 

patterns of missing data, alternative, non-periodogram based approaches for spectral 

estimation could be used to estimate the RCS, including maximum likelihood estimation 

under parametric models [22] and nonparametric time-domain approaches [13].

There remain several open problems that need to be addressed before the RCS can have 

applied impact. First, the RCS is computed off-line using data from a fixed time frame. A 

real time measure would be more practical for monitoring an individual’s risk. Second, the 

reliability of the RCS, and in particular of LF measures, is dependent on the number of days 

of activity under observation. Although anecdotal suggestions for a minimum of a week’s 

worth of data to allow one to capture weekly variation can be stated, the number of days 

required to obtain stable estimates of not only the RCS, but also other RAR parameters, is 

unknown. The establishment of guidelines for then number of required days to obtain stable 
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RAR estimates, similar to guidelines established for sleep variables [11], will be a focus of 

future research. Third, the proposed procedure assumes that residuals are second-order 

stationary. If they are not, the RCS would measure some sort of average phenomenon, but its 

interpretation is not clear. It should be noted that similar issues arise for other RAR 

measures of variability as well. The extension of the proposed RCS within a locally 

stationary time series setting [6] to obtain time-varying spectral measures could provide 

useful information when residuals are not stationary. Lastly, one would ideally want to 

leverage other available information. This can include demographics and other information 

that can be collected by the wearable device, such as heart rate and light exposure. The 

development of a predictive measure that can fuse RAR information with other sources of 

data will be essential in developing tools to monitor and tailor treatments.

Acknowledgments

This work was funded by National Institutes of Health through grants R01GM113243, R01HL1104607 and 
K01MH112683.

References

1. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Poliak CP: The role of actigraphy in 
the study of sleep and circadian rhythms. Sleep 26(3), 342–392 (2003) [PubMed: 12749557] 

2. Bates DM, Watts DG: Nonlinear Regression Analysis and Its Applications, 2nd edn. Wiley, New 
York (2007)

3. Besse P, Ramsay JO: Principal components analysis of sampled functions. Psychometrika 51, 285–
311 (1986)

4. Cacioppo JT, Tassinary LG, Bernston G: Handbook of Psycholphysiology, 3 edn. Cambridge 
University Press, Cambridge (2007)

5. Chen K, Lei J: Localized functional principal components analysis. Journal of the American 
Statistical Association 110, 1266–1275 (2015) [PubMed: 26806987] 

6. Dahlhaus R: Locally stationary processes. Handbook of Statistics 30, 351–413 (2012)

7. Goldsmith J, Zipunnikov V, Schrack J: Generalized multilevel function-on-scalar regression and 
principal component analysis. Biometrics 71(2), 344–353 (2015) [PubMed: 25620473] 

8. Gonçalves BSB, Cavalcanti PRA, Tavares GR, Campos TF, Araujo JF: Non-parametric methods in 
actigraphy: An update. Sleep Science 7(3), 158–164 (2014) [PubMed: 26483921] 

9. Gu C: Smoothing Spline ANOVA Models, 2nd edn. Springer-Verlag, New York (2013)

10. Hamilton M: A rating scale for depression. Journal of Neurology Neurosurgury and Psychiatry 
23(1), 56–62 (1960)

11. Israel B, Buysse DJ, Krafty RT, Begley A, Miewald M, Hall MH: Short-term stability of sleep and 
heart rate variability in good sleepers and patients with insomnia: For some measures, one night is 
enough. Sleep 35(9), 1285–1291 (2012) [PubMed: 22942507] 

12. Krafty RT, Collinge WO: Penalized multivariate Whittle likelihood for power spectrum estimation. 
Biometrika 100(2), 447–458 (2013)

13. Krafty RT, Zhao M, Buysse DJ, Thayer JF, Hall MH: Nonparametric spectral analysis of heart rate 
variability through penalized sum of squares. Statistics in Medicine 33(8), 1383–1394 (2014) 
[PubMed: 24254401] 

14. Lomb NR: Least-squares frequency analysis of unequally spaced data. Astrophysics and Space 
Science 39, 447–462 (1976)

15. Marler MR, Gehrman P, Martin JL, Ancoli-Israel S: The sigmoidally transformed cosine curve: a 
mathematical model for circadian rhythms with symmetric non-sinusoidal shapes. Statistics in 
Medicine 25(22), 3893–3904 (2006) [PubMed: 16381069] 

Krafty et al. Page 14

Stat Biosci. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Morris JS, Arroyo C, Coull BA, Ryan LM, Herrick R, Gortmaker SL: Using wavelet-based 
functional mixed models to characterize population heterogeneity in accelerometer profiles: A case 
study. Journal of the American Statistical Association 101(476), 1352–1364 (2006) [PubMed: 
19169424] 

17. Moulin P: Wavelet thresholding techniques for power spectrum estimation. IEEE Transactions on 
Signal Processing 42(11), 3126–3136 (1994)

18. Parzen E: Spectral analysis of asymptotically stationary time series. Bulletin de International de 
Statistique 33 (1962)

19. Pawitan Y, O’Sullivan F: Nonparametric spectral density estimation using penalized Whittle 
likelihood. Journal of the American Statistical Association 89, 600–610 (1994)

20. Qin L, Wang Y: Nonparametric spectral analysis with applications to seizure characterization using 
EEG time series. Annals of Applied Statistics 2, 1432–1451 (2008)

21. Rice JA, Silverman BW: Estimating the mean and covariance structure nonparametrically when the 
data are curves. Journal of the Royal Statistical Society, Series B 53, 233–243 (1991)

22. Shumway R, Stoffer D: Time series analysis and its applications. Springer: New York (2011)

23. Smagula SF: Opportunities for clinical applications of rest-activity rhythms in detecting and 
preventing mood disorders. Current Opinions in Psychiatry 29(6) (2016)

24. van Someren EJW, Hagebeuk EEO, Lijzenga C, Scheltens P, de Rooij SEJA, Jonker C, Pot AM, 
Mirmiran M, Swaab DF: Circadian rest-activity rhythm disturbances in Alheimer’s disease. 
Biological Psychiatry 40(4), 259–270 (1996) [PubMed: 8871772] 

25. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M: Physical activity in the 
United States measured by accelerometer. Medicine & Science in Sports & Exercise 40(1), 181–
188 (2008) [PubMed: 18091006] 

26. Wahba G: Automatic smoothing of the log-periodogram. Journal of the American Statistical 
Association 75(369), 122–132 (1980)

27. Wang J, Xian H, Licis A, Deych E, Ding J, McLeland J, Toedebusch C, Li T, Duntley S, Shannon 
W: Measuring the impact of apnea and obesity on circadian activity patterns using functional 
linear modeling of actigraphy data. Journal of Circadian Rhythms 9(11) (2011)

28. Whittle P: Estimation and information in stationary time series. Arkiv fñr Matematik 2(23), 423–
434 (1953)

29. Wood SN: Fast stable restricted maximum likelihood and marginal likelihood estimation of 
semiparametric generalized linear models. Journal of the Royal Statistical Society, B 73(1), 3–36 
(2011)

30. World Health Organization: Depression Fact Sheet (2017). URL http://www.who.int/mediacentre/
factsheets/fs369/en/

31. Xiao L, Huang L, Schrack JA, Ferrucci L, Zipunnikov V, Crainiceanu CM: Quantifying the 
lifetime circadian rhythm of physical activity: a covariate-dependent functional approach. 
Biostatistics 16(2), 352–367 (2015) [PubMed: 25361695] 

32. Zimmerman M, Martinez JH, Young D, Chelminski I, Dalrymple K: Severity classification on the 
Hamilton depression rating scale. Journal of Affect Disorders 150, 384–388 (2013)

Krafty et al. Page 15

Stat Biosci. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.who.int/mediacentre/factsheets/fs369/en/
http://www.who.int/mediacentre/factsheets/fs369/en/


Fig. 1. 
Log-activity counts and fitted mean circadian rhythms for two subjects in the depression 

study. Subject 1 (left) had a HAMD score of 52 and Subject 2 (right) had a HAMD score of 

0.
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Fig. 2. 
Residuals, bias-adjusted log-periodograms and estimated RCS for the two subjects whose 

activity count data are displayed in Figure 1.
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Fig. 3. 
Estimated RCS curves for the entire range of frequencies (left) and restricted to low 

frequencies less than 2 cycles per hour (right).
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Fig. 4. 
First L = 3 estimated LFPCA weight functions, which account for 76.8%, 9.3% and 5.6% of 

total variability, respectively. The first component is plotted as a function across all 

frequencies (top left) and within frequencies less than 4/24 cycles per hour (top right) to aid 

visualization.
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Fig. 5. 
LF variation (top row), estimated deterministic circadian mean (bottom row, red dotted line) 

and estimated deterministic circadian mean plus LF variation (bottom row, solid blue line) 

for the two subjects whose data were considered in Figures 1 and 2.
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Table 1

Estimated correlation between HAMD, the three RCS frequency-band collapsed measures (LF, MF, HF), the 

two nonparametric measures (IS, IV) and the six parametric measures (F, a, β, min, amp, ϕ).

HAMD LF MF HF IS IV

HAMD 1.00 0.31 0.20 0.20 −0.23 0.18

LF 0.31 1.00 0.03 0.02 −0.60 0.13

MF 0.20 0.03 1.00 0.08 −0.29 0.53

HF 0.20 0.02 0.08 1.00 −0.23 0.47

IS −0.23 −0.60 −0.29 −0.23 1.00 −0.51

IV 0.18 0.13 0.53 0.47 −0.51 1.00

F −0.23 −0.48 −0.52 −0.45 0.51 −0.38

α 0.25 0.16 0.05 0.01 −0.26 0.01

β −0.01 −0.34 0.03 0.02 0.14 0.29

min 0.25 0.10 0.23 0.23 −0.31 0.38

amp −0.12 0.06 −0.52 −0.54 0.27 −0.59

ϕ 0.24 0.34 0.03 0.08 −0.41 0.21

F α β min amp ϕ

HAMD −0.23 0.25 −0.01 0.25 −0.12 0.24

LF −0.48 0.16 −0.34 0.10 0.06 0.34

MF −0.52 0.05 0.03 0.23 −0.52 0.03

HF −0.45 0.01 0.02 0.23 −0.54 0.08

IS 0.51 −0.26 0.14 −0.31 0.27 −0.41

IV −0.38 0.01 0.29 0.38 −0.59 0.21

F 1.00 −0.37 0.25 −0.11 0.24 −0.34

α −0.37 1.00 −0.21 0.46 0.04 0.28

β 0.25 −0.21 1.00 0.27 −0.27 −0.05

min −0.11 0.46 0.27 1.00 −0.43 0.08

amp 0.24 0.04 −0.27 −0.43 1.00 −0.07

ϕ −0.34 0.28 −0.05 0.08 −0.07 1.00
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Table 2

Results of 4 fitted linear regression models regression HAMD on LF, LF and F, LF and the nonparametric 

measures IS and IV, and LF and the five parametric shape and location parameters a, β, min, amp and ϕ.

Estimate Std. Error t-Statistic P-value

Intercept −67.3960 24.0749 −2.80 0.0059

LF 0.0423 0.0115 3.68 0.0003

Intercept −49.7148 28.2993 −1.76 0.0813

LF 0.0349 0.0130 2.68 0.0084

F −0.0018 0.0015 −1.18 0.2386

Intercept −82.3788 40.4900 −2.03 0.0439

LF 0.0430 0.0148 2.90 0.0044

IS 4.9836 14.2304 0.35 0.7268

IV 21.0823 12.6452 1.67 0.0979

Intercept −60.0925 31.9261 −1.88 0.0621

LF 0.0357 0.0129 2.76 0.0067

α 14.8166 9.7457 1.52 0.1309

β 0.1182 0.1798 0.66 0.5119

min 3.6367 6.3257 0.57 0.5664

amp −2.4669 2.5817 −0.96 0.3411

ϕ 1.3232 1.3014 1.02 0.3112
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