
ARTICLE

Myeloid lineage enhancers drive oncogene synergy
in CEBPA/CSF3R mutant acute myeloid leukemia
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Acute Myeloid Leukemia (AML) develops due to the acquisition of mutations from multiple

functional classes. Here, we demonstrate that activating mutations in the granulocyte colony

stimulating factor receptor (CSF3R), cooperate with loss of function mutations in the tran-

scription factor CEBPA to promote acute leukemia development. The interaction between

these distinct classes of mutations occurs at the level of myeloid lineage enhancers where

mutant CEBPA prevents activation of a subset of differentiation associated enhancers.

To confirm this enhancer-dependent mechanism, we demonstrate that CEBPA mutations

must occur as the initial event in AML initiation. This improved mechanistic understanding

will facilitate therapeutic development targeting the intersection of oncogene cooperativity.
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Acute myeloid leukemia (AML) is a deadly hematologic
malignancy that results from the stepwise acquisition of
genetic aberrations. The mutations that collaborate to

produce AML often occur in distinct functional categories1. Class
I mutations activate signaling pathways and in isolation produce
disease with a myeloproliferative phenotype. Class II mutations
perturb the function of transcription factors or epigenetic
modifiers—and alone can cause a myelodysplastic phenotype.
However, when present in combination, Class I and Class II
mutations produce a highly proliferative disease with a block in
differentiation, both hallmarks of AML.

The transcription factor CCAAT enhancer-binding protein
alpha (CEBPA) is a master regulator of myeloid lineage com-
mitment. CEBPA is recurrently mutated in AML and is a classic
example of a Class II mutation2. The CEBPA gene comprises a
single exon with an internal translational start site. Mutations
in CEBPA cluster at the N- and C-terminus of the protein.
N-terminal mutations typically result in a frameshift, leading to a
premature stop codon and loss of expression of the long (p42)
isoform of the protein but ongoing translation of the short iso-
form (p30). The p30 isoform lacks a crucial transactivation
domain that represses cell cycle progression through a direct
interaction with E2F3. In contrast, C-terminal mutations occur in
the DNA-binding domain leading to loss of function and a
blockade in granulocytic differentiation2. The most common
pattern of mutation in AML is an N-terminal mutation on one
allele and a C-terminal mutation on the other allele. This results
in alterations in the ratio of the p42 to p30 CEBPA isoforms,
changing the balance of differentiation and proliferation. AML
with biallelic CEBPA mutations is associated with favorable
prognosis, with approximately 50% of younger patients achieving
a cure with chemotherapy alone. However, the precise determi-
nants of relapse in this mutational context are unknown.

Recent studies have identified a high rate of co-occurrence of
mutations in CEBPA with mutations the granulocyte-colony
stimulating factor receptor (CSF3R)4–7. Approximately 20–30%
of patients with CEBPA-mutant AML harbor a cooperating
mutation in CSF3R. Although CSF3R mutations are often asso-
ciated with biallelic CEBPA mutations, monoallelic cases also
occur. Interestingly, monoallelic C-terminal CEBPA mutations
are far more likely to co-occur with mutations in CSF3R. Patients
with CSF3R/CEBPA mutant AML have inferior outcomes to
those with mutant CEBPA alone, arguing that the presence of
Class I mutations in CSF3R may be an important determinant of
chemotherapy resistance and relapse8. The mutations in CSF3R
most commonly occur in the membrane proximal region, and
lead to ligand independent receptor dimerization and constitutive
signaling via the JAK/STAT pathway. Similar to other Class I
mutations, membrane proximal CSF3R mutations produce a
myeloproliferative phenotype when present in isolation and are
the major oncogenic driver of the disease chronic neutrophilic
leukemia9. During normal myeloid development, G-CSF signal-
ing via CSF3R leads to proliferation of myeloid precursors and
neutrophilic differentiation. CEBPA is required for CSF3R-
mediated transcription of myeloid specific genes, and myeloid
differentiation arrests at the level of the common myeloid pro-
genitor when CEBPA is deleted10,11. In spite of the established
functional interdependence of CSF3R and CEBPA during normal
hematopoiesis, the mechanism by which oncogenic mutations in
these two genes interact to drive AML remains unknown.

Herein, we demonstrate that CSF3R and CEBPA cooperate to
produce a highly proliferative immature myeloid leukemia in mice
that phenocopies the human disease transcriptionally and mor-
phologically. We establish that mutant CSF3R drives both pro-
liferation and differentiation of maturing myeloid cells. In contrast,
mutant CEBPA selectively blocks myeloid differentiation through

inactivation of myeloid lineage enhancers. We further demonstrate
that mutant CEBPA must occur prior to mutant CSF3R in order
for AML to initiate. This confirms predictions based on clinical
sequencing and provides a novel model to study oncogene order.

Results
Cooperativity Between CSF3RT618I and CEBPA Mutations. We
elected to study a representative N-terminal and C-terminal muta-
tion (F82fs and V314VW), in combination with mutant CSF3R, as
these specific mutations are known to co-occur in AML5. When
expressed in mouse bone marrow cells via retroviral transduction,
neither CEBPAF82fs nor CEBPAV314VW produced colonies in
cytokine-free methylcellulose (Fig. 1a, b). As previously reported,
CSF3RT618I produced a modest number of colonies in isolation9.
The addition of CEBPAV314VW, but not CEBPAF82fs, dramatically
augmented CSF3RT618I-driven colony production and produced
indefinite replating (Fig. 1c). These results were confirmed with a
second C-terminal CEBPA mutation CEBPAK313KR (Fig. 1d). As
CSF3R and CEBPA are both known to impact myeloid differ-
entiation, we assessed cell morphology after 3 days of culture under
cytokine-free conditions. Cells harboring empty vector and cells
with CEBPAF82fs alone demonstrated neutrophilic morphology
(Fig. 1e). CSF3RT618I increased the abundance of cells with larger
morphology and immature granulocytic morphology. Expression of
CEBPAV314VW produced a blast-like morphology, as did the
combination of CSF3RT618I with either CEBPA mutation. Thus, it
appears that mutant CSF3R drives proliferation of granulocytic
precursors. Both N- and C-terminal mutations appeared to impact
granulocytic differentiation in combination with CSF3RT618I;
however, CEBPAV314VW exerted a stronger effect, consistent with
observed changes in colony production.

To determine how co-expression of both N- and C-terminal
CEBPA mutations would alter the effects of CSF3RT618I, we
expressed all three mutations simultaneously. In this context, the
addition of CEBPAF82fs mildly augmented CFU formation beyond
that seen with CSF3RT618I and CEBPAV314VW (Fig. 1f, g). To
establish whether the N- and C-terminal CEBPA mutations were
producing the expected shifts in the CEBPA p30/p42 isoform ratio,
we expressed each construct alone as well as the combination of
isoforms in K562 cells. Western blotting for CEBPA in these cell
lines revealed expression of the p30 isoform when CEBPAF82fs was
present and expression of both the p42 and p30 isoforms when
CEBPAV314VW was present (Supplementary Fig. 1A). We further
validated that both mutant CSF3R and CEBPA were expressed in a
cell line derived from mouse bone marrow colony-forming assay
(Supplementary Fig. 1A). To determine whether the observed
synergy between CSF3RT618I and CEBPAV314VW was more broadly
generalizable, we looked for other mutations that co-occur with
CEBPA in AML, which like CSF3RT618I, also activate the JAK/
STAT pathway. We identified a patient with CEBPA-mutant AML
from a recently published data set that had a previously
characterized activating mutation in JAK3 (JAK3M511I)12,13.
Simultaneous introduction of these mutations promoted cytokine-
independent colony growth in vitro (Fig. 1h, i). Finally, we wanted
to determine whether loss of CEBPA function is sufficient for
enhanced oncogenesis in the context of mutant CSF3R. We
therefore transduced bone marrow from CEBPA knockout mice
with CSF3RT618I, and found that they produced significantly more
colonies than littermate control bone marrow (Fig. 1j, k).

To characterize gene expression changes driven by CSF3RT618I

and CEBPAV314VW, we performed RNA-seq on hematopoietic
progenitors transduced with CSF3RT618I, CEBPAV314VW, or the
combination of both. After 48 h of in vitro culture, cells expressing
both oncogenes (marked by GFP and RFP) and not expressing
mature lineage antigens (Lin−) were sorted by FACS prior to RNA
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seq (Supplementary Fig. 1B, C). To describe the pattern of
transcriptional changes driven by each oncogene, we used a linear
model with an interaction term (Fig. 2a, Supplementary Data
File 1), and identified 683 genes that were significantly up or down-
regulated in response to CSF3RT618I (q < 0.05, Log2 fold change >1
or <−1). We also identified 773 genes up- or down-regulated in
response to CEBPAV314VW expression. Additionally, there were 570
genes that demonstrated an interaction between CSF3RT618I and
CEBPAV314VW (effect less or more than additive). These interacting
genes demonstrated a variety of patterns of regulation across all
four oncogene conditions as demonstrated by K-means clustering
(Fig. 2b). Of particular interest was a cluster of genes that were
strongly up-regulated by CSF3RT618I, but suppressed by co-
expression of CEBPAV314VW, as this mirrored the pattern of

myeloid differentiation. This cluster contained genes such as Nos2,
Hck, Stf1a, and Pla2g7, all of which are expressed in mature
neutrophils14. Also of interest was the gene Myb, a known driver of
myeloid oncogenesis15. CEBPAV314VW increased the expression of
Myb irrespective of the presence of CSF3R, suggesting that Myb
plays a role in driving CEBPA-mediated oncogenesis. To confirm
this, we overexpressed Myb in mouse bone marrow cells with and
without CSF3RT618I (Supplementary Fig. 1D, E). While Myb did
not drive cytokine-independent colony formation in isolation, it
dramatically increased colony formation in combination with
CSF3RT618I, similar to that observed with CEBPAV314VW.

To identify enriched transcriptional programs, we performed
Gene Set Enrichment Analysis (GSEA) comparing CSF3RT618I to
all other conditions (Fig. 2c, d, Supplementary Fig. 1F). CSF3RT618I
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dramatically up-regulated genes associated with myeloid differ-
entiation, while CEBPAV314VW strongly down-regulated them. In
addition, genes associated with the wild-type CEBPA network
followed a similar pattern (Fig. 2d). This suggests that myeloid
differentiation in response to CSF3RT618I is, at least in part,
dependent on CEBPA. We next performed motif enrichment
analysis at the promoters of each category of differentially expressed
genes (Fig. 2e). This identified a strong enrichment of STAT-
binding sites in the promoters of CSF3RT618I up-regulated genes.

This is consistent with the known role of STAT3 as a crucial
transcription factor downstream of oncogenic CSF3R mutations9,16.
To confirm that STAT3 activation still occurs in the context of
CSF3RT618I and CEBPAV314VW co-expression, we performed a
western blot on bone marrow cells harboring both mutant
CSF3RT618I and CEBPAV314VW growing in liquid culture after
isolation from colony assay. This confirmed an increase in
phosphorylated STAT3 relative to normal bone marrow (Supple-
mentary Fig. 1G). Given the results from the GSEA, we were
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somewhat surprised that CEBPA motifs were not detected at
the promoters of any of the groups of DE genes, suggesting
that CEBPAV314VW may impact CSF3RT618I-induced myeloid
differentiation through binding to non-promoter regulatory regions.
To determine, whether CEBPA binding was significantly associated
with any of the categories of differentially expressed genes, we
performed a permutation analysis using published ChIP-seq data
from mouse granulocyte–macrophage progenitors (GMPs)17. This
analysis revealed that the interacting genes, CSF3RT618I up genes,
and CEBPAV314VW down genes were all found in closer proximity
to CEBPA peaks than would be expected by random chance
(Supplementary Fig. 1H).

To validate these gene findings in human AML, we examined
RNA-seq data from the pediatric TARGET initiative18. A total of
152 patients were evaluated, including 7 patients with CEBPA
mutations and 2 patients with both CSF3R and CEBPA mutations.
Given the small number of patients, both monoallelic and biallelic
CEBPA mutations were considered together. Differential gene
expression revealed markedly decreased HOX gene expression in
CEBPA mutant samples compared with CEBPA WT samples, a
well-established finding in adult CEBPA mutant AML (Fig. 2f,
Supplementary Data File 2)19. Comparison of CEBPA mutant/
CSF3R WT and CEBPA mutant/CSF3R mutant patient samples
revealed 913 differentially expressed genes (Supplementary Data
File 2). Comparison of these differentially expressed genes to those
identified in mouse revealed 52 ortholog pairs with differential
expression driven by mutant CSF3R (Fig. 2g). Of these, 75%
demonstrated concordant regulation between mouse and human.
A similar analysis was performed on adult CEBPA/CSF3R mutant
AML samples from the Leucegene cohort, which also demon-
strated that the preponderance of orthologous gene pairs display
concordant regulation (68%; Fig. 2i)4. Both human/mouse
concordant gene sets were able to independently segregate
CSF3R mutant from wild-type samples by PCA (Fig. 2h, j).
As CEBPA is known to regulate CSF3R expression, we examined
CSF3R expression in CEBPA WT and Mutant AML samples
(Supplementary Fig. 1I)20. Both subsets of patients robustly
expressed CSF3R and no significant difference in expression was
observed on the basis of CEBPA mutational status. Thus, although
wild-type CEBPA does regulate the activity of the CSF3R
promoter, it appears that CSF3R expression is not dramatically
altered in AML by the presence of putative loss-of-function
mutations in CEBPA.

JAK/STAT activation and CEBPA dysregulation drive AML.
To establish whether oncogenic CSF3R and CEBPA mutations
collaborate in vivo to produce AML, we performed murine bone
marrow transplantation with fetal liver hematopoietic cells har-
boring compound heterozygous CEBPA mutations (CEBPAK/L)
or wild-type CEBPA retrovirally transduced with CSF3RT618I 21.
As previously reported, transplantation with CEBPAK/L cells
alone leads to disease onset with a median latency of

approximately 1-year post transplant (Fig. 3a). In contrast, mice
transplanted with CEBPAK/L cells harboring mutant CSF3R
developed AML that was uniformly lethal by 1 year and occurred
far more rapidly in the majority of cases. When leukemia
developed, it was accompanied by leukocytosis, splenomegaly and
morphologic myeloblasts in the bone marrow (Fig. 3b–d).

As CSF3R mutations appear to correlate most strongly with the
presence of C-terminal CEBPA mutations in human AML, and
our colony assay data presented in Fig. 1 demonstrate more
potent oncogenic activity in vitro we investigated whether similar
biology occurs in in vivo. We therefore also performed retroviral
bone marrow transplantation with retrovirally introduced
CSF3RT618I, CEBPAF82fs, CEBPAV314VW, and JAK3M511I with
corresponding single oncogene and empty vector controls. Mice
receiving cells transduced with CSF3RT618I and CEBPAV314VW

developed a myeloid leukemia that was uniformly lethal by day 14
post-transplant and was associated with leukocytosis and marked
splenomegaly (Fig. 3e, f, Supplementary Fig. 2A). In the bone
marrow, normal hematopoiesis was completely replaced by large
cells with myeloblastic morphology (Fig. 3g, Supplementary
Figs. 2B and 3A–C). Mice harboring CSF3RT618I alone or in
combination with CEBPAF82fs developed disease with a long
latency, associated with leukocytosis, variable splenomegaly,
mature immunophenotype, and morphologic neutrophils in the
peripheral blood and bone marrow (Fig. 3e, g). CEBPAV314VW

alone resulted in a long-latency myeloid leukemia with immature
histologic features at the time of ultimate disease development
(Fig. 3e, g). Similar to CSF3RT618I, JAK3M511I in combination
with CEBPAV314VW also produced a rapidly lethal myeloid
leukemia with markedly reduced latency compared with expres-
sion of either mutation alone, again with the accumulation of
marrow myeloblasts (Fig. 3e–g).

CSF3R mutations are associated with chronic neutrophilic
leukemia (defined by an abundance of mature neutrophils)
yet also accelerate AML formation in the context of mutant
CEBPA. Therefore, we were interested in understanding how the
presence of mutant CEBPA changes the oncogenic program of
mutant CSF3R. Unfortunately, the AML that develops from
CSF3RT618I/CEBPAV314VW co-expression results in a uniformly
lethal AML when control mice are still pancytopenic. Comparison
with untransplanted control mice reveals that CSF3R/CEBPA
mutant AML cells are CD11b positive and GR-1 dim and
completely replace the normal hematopoietic hierarchy (Supple-
mentary Fig. 3A–C). However, to make a direct comparison, we
transplanted syngeneic recipient mice with either 100,000 cells
expressing CSF3RT618I alone or 10,000 cells expressing CSF3RT618I

and CEBPAV314VW (Fig. 4a). This log-fold reduction in cell dose
delayed the timing of disease onset to approximately 20 days,
allowing for side by side comparison of these two groups. While
CSF3RT618I alone mice demonstrated an abundance of mature
neutrophils (marked by high levels of CD11b and GR-1), the
leukemic blasts seen in CSF3RT618I/CEBPAV314VW mice exhibited
lower levels of GR-1 staining consistent with an immature myeloid

Fig. 2 Mutant CEBPA blocks myeloid differentiation in response to CSF3R. a Venn diagram of differentially expressed genes from RNA-seq on lineage-
negative mouse bone marrow transduced with empty vector, CSF3RT618I, CEBPAV314VW or the combination of oncogenes. b Hierarchical clustering of
interacting genes. c, d Select enriched gene sets in CSF3RT618I vs. other categories NES = normalized enrichment score (q < 0.05). GSEA p value calculated
by empirical permutation test and FDR adjusted. e Motif enrichment at promoters of differentially expressed (DE) genes. Top five motifs per category with
q < 0.05 shown. P values generated via comparison to binomal distribution and FDR adjusted. f Expression of differentially expressed HOX genes in
pediatric AML patients harboring CEBPA mutations. g Expression of genes differentially expressed in both murine and pediatric human CSF3R/CEBPA
AML as compared with CEBPA-mutant CSF3R-WT AML. h PCA analysis of pediatric CEBPA mutant AML using convergent human-mouse gene set. Cases
with biallelic CEBPA mutations are indicated by CEBPA-Bi. i Expression of genes differentially expressed in both murine and adult human CSF3R/CEBPA
AML as compared with CEBPA-mutant CSF3R-WT AML. j PCA analysis of adult CEBPA mutant AML using convergent human–mouse gene set. Specific
CEBPA mutations are indicated by the text. Source data are provided as a Source Data file.
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phenotype (Fig. 4b–d, Supplementary Fig. 3D). Marked spleno-
megaly was observed in mice transplanted with CSF3RT618I/
CEBPAV314VW cells but not in mice receiving CSF3RT618I alone
cells (Fig. 4e, f). To establish whether the leukemic blasts generated
by co-expression of CSF3RT618I and CEBPAV314VW were capable
of indefinite self-renewal, we performed serial transplantation
studies. These experiments revealed that the leukemia was capable
of disease initiation in up to quaternary recipients (Supplementary
Fig. 3E–G).

CEBPA mutations disrupt myeloid lineage enhancers. During
normal hematopoietic development, CEBPA is responsible for
establishing the enhancer landscape that permits myeloid differ-
entiation22. We therefore hypothesized that CEBPAV314VW

blocks differentiation by inhibiting priming or activation of
myeloid lineage enhancers. To test this, we utilized murine
HoxB8-ER cells, which mimic GMPs and differentiate down the
neutrophilic lineage to become CD11b and GR-1 positive after
estrogen withdrawal23. In this model, expression of CSF3RT618I

accelerated differentiation, while CEBPAV314VW blocked differ-
entiation, as measured by CD11b and GR-1 expression (Supple-
mentary Fig. 4A, B). The combination of mutations produced
maturation arrest, similar to CSF3R/CEBPA mutant murine
leukemia. We confirmed that neither oncogene was changing the
expression of the other by qPCR (Supplementary Fig. 4C), con-
sistent with our findings in human CEBPA mutant AML. Thus,
HoxB8-ER cells expressing CSF3RT618I and CEBPAV314VW

recapitulate the phenotype seen in our in vivo model.
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To study enhancer dynamics in the context of these
mutations, we performed chromatin immunoprecipitation
sequencing (ChIP-seq) for H3K4me1, H3K4me3, and H3K27ac
in HoxB8-ER cells transduced with CSF3RT618I, CEBPAV314VW,
both mutations, or empty vectors. We identified 42,124 active
enhancers (defined as high H3K4me1, low H3K4me3, and high
H3K27ac) across all four conditions (Supplementary Data File 3).
To validate these findings in human AML, we mapped our
enhancers to orthologous human genomic coordinates and
assessed overlap of enhancers only active in the CSF3RT618I/
CEBPAV314VW condition with those present in human AML

with mutant CEBPA24. We observed a significant enrichment of
overlap between our mouse AML enhancers with those found in
human CEBPA mutant AML, suggesting conserved biology
(Supplementary Fig. 5A). Furthermore, our murine leukemic
enhancers demonstrated less overlap than expected through
random chance with those found in human CEBPA wild-
type AML.

We next focused on enhancers that were active exclusively
in one condition (Condition-Specific Enhancers, Fig. 5a, b,
Supplementary Fig. 5B). Gene ontology analysis on the 2237
CSF3RT618I-specific enhancers revealed enrichment for terms
associated with immune responses and phagocytosis, demon-
strating that these genes are associated with the mature
neutrophil phenotype (Fig. 5c, Supplementary Data File 4).
To understand whether CEBPAV314VW blocks myeloid differ-
entiation through disruption of CSF3RT618I-specific enhancers
and associated gene expression, we performed microarray gene
expression analysis on HoxB8-ER cells harboring each onco-
gene in isolation or the combination, and the expression of key
genes was validated by qPCR (Supplementary Data File 5,
Supplementary Fig. 5C). Genes associated with mature myeloid
phenotypes, such as Nos2, Hck, Bcl6, and Pla2g7, displayed
increased expression in the CSF3RT618I condition, and were
repressed with co-expression of CEBPAV314VW. To globally
assess whether CSF3R target genes were associated with
CSF3RT618I-specific enhancers, we performed hierarchical
clustering on genes that were differentially expressed in one
or more treatment condition. We then examined enrichment of
each condition-specific enhancer group across these clusters
(Supplementary Fig. 5D, Supplementary Data File 5). This
analysis demonstrated globally that activated enhancers are
associated with increased expression of the nearest gene.

To identify possible regulators of enhancer activation, we
performed transcription factor motif enrichment. This analysis
demonstrated enrichment of CEBPA motifs in CSF3RT618I-
specific enhancers, but not in any other group (Fig. 5d). This
suggests that CEBPAV314VW blocks differentiation by disrupting
the interaction of wild-type CEBPA with CSF3RT618I-specific
enhancers. To provide further evidence for this hypothesis, we
utilized published CEBPA ChIP-seq data from GMPs (the nearest
normal cell to HoxB8 immortalized progenitors)17. We found
strong enrichment of CEBPA peaks overlapping CSF3RT618I-
specific enhancers, but not the other condition-specific enhancer
groups (Fig. 5e, f). These data suggest that these differentiation-
associated enhancers are regulated by direct CEBPA binding
during normal hematopoiesis and the presence of mutant CEBPA
prevents activation of these enhancers.

Our data suggest that differentiation in response to
oncogenic CSF3R signaling requires the action of wild-type
CEBPA at differentiation-associated enhancers. However, the
proliferative effects of CSF3RT618I are likely independent of
CEBPA. To identify the effectors of CSF3R-induced prolifera-
tion, we examined enhancers activated by CSF3RT618I irrespec-
tive of the presence of mutant CEBPA. Gene ontology analysis
on this subset of enhancers identified multiple pathways
associated with cell cycle progression (Fig. 5g). One likely
driver of this CSF3R-induced proliferation is the transcription
factor E2f2 which is strongly induced by CSF3RT618I in the
presence and absence of CEBPAV314VW (Fig. 5h). Correlation
with published STAT3 ChIP seq data from murine myeloid
cells reveals STAT3 binding to an enhancer at the E2f2 locus
that is activated by CSF3RT618I (Fig. 5h)25. Thus, it seems likely
that key components of the proliferative program downstream
of CSF3RT618I are driven via activation of enhancers associated
with cell cycle progression, possibly in a STAT3-dependent
manner.
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CEBPA mutations must precede mutations in CSF3R. Enhan-
cer priming and activation precede promoter activation, sug-
gesting that epigenetic changes at enhancers must occur as early
events26. Clinical sequencing data demonstrate that CEBPA
mutations frequently occur at higher variant allele frequencies

than CSF3R mutations4,5. This has led to the prediction that
CEBPA mutations occur early in disease development. Con-
versely, however, it is possible that CEBPA mutations could be
acquired late during blast-crisis transformation of chronic neu-
trophilic leukemia. To evaluate the impact of mutation order on
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AML initiation, we developed a Cre-inducible retroviral vector.
We paired this vector with hematopoietic cells from Rosa 26ERT2-
Cre mice, in which recombination is activated via tamoxifen
administration (Fig. 6a). We co-expressed this inducible vector
with a constitutive vector, enabling the study of two distinct
mutational orders of acquisition: CSF3RT618I-first and CEB-
PAV314VW-first. We first assessed the impact of mutation order
on bone marrow colony formation by plating both ordered
combinations in the presence of 4-hydroxytamoxifen (4-OHT),
thus delaying the expression of the second oncogene by
approximately 48 h. Strikingly, we found that CSF3RT618I-first
produced far fewer colonies than CEBPAV314VW-first (Fig. 6b, c).
Numerically and morphologically, CSF3RT618I-first colonies were
closer to CSF3RT618I-only. This finding was not due to differ-
ential expression of CEBPA from the inducible and constitutive
vectors, as both showed equivalent CEBPA expression (Fig. 6d).

To establish the transcriptional profile of these two distinct
mutation orders, we performed RNA-seq on lineage negative
mouse bone marrow transduced with CSF3RT618I-only,
CSF3RT618I-first, and CEBPAV314VW-first, cultured for 48 h
with 4-OHT (Supplementary Fig. 6A, B, Supplementary Data
File 6). Unsupervised clustering by Euclidean distance revealed
that CSF3RT618I-only and CSF3RT618I-first cluster together and
are globally distinct from CEBPAV314VW-first (Fig. 6e). The
expression of differentiation-associated genes (Nos2, Hck, Bcl6,
Pla2g7) in CSF3RT618I-first cells was intermediary between
CSF3RT618I-only and CEBPAV314VW-first (Fig. 6f, Supplemen-
tary Data File 6). GSEA revealed enrichment for numerous
signatures associated with myeloid differentiation and inflam-
matory responses in CSF3RT618I-first cells (Fig. 6g, Supple-
mentary Fig. 6C). CEBPAV314VW-first cells demonstrated
enrichment for signatures associated with cell cycle progression
and stem/progenitor cell phenotype. Taken together, these
studies demonstrate a profound effect of mutation order on
gene expression and hematopoietic phenotype in vitro.

We next explored the contribution of mutation order to
disease latency and phenotype in vivo. Mice were transplanted
with CSF3RT618I-first or CEBPAV314VW-first cells and allowed
to recover for 4-weeks post-transplant. After 4-weeks, the
second oncogene was induced with tamoxifen (Fig. 7a).
CEBPAV314VW-first mice succumbed to lethal myeloid leukemia
with a median survival of 3.5 weeks post-tamoxifen (Fig. 7b).
CEBPAV314VW-first leukemia was associated with bone marrow
and peripheral blood blasts with an immature immunopheno-
type as well as splenomegaly (Fig. 7c–g, Supplementary Fig. 7A,
B). In contrast, CSF3RT618I-first mice displayed a differentiated
myeloid immunophenotype when sacrificed at an early time
point. Only one CSF3RT618I-first mouse developed leukemia at
7 weeks post-tamoxifen administration. Bone marrow cytology
revealed a blast-like morphology; however, flow cytometry
revealed increased GR-1 staining, indicative of a higher degree
of myeloid maturation (Fig. 7c, e). Collectively, these data reveal
that when CEBPA mutations are introduced after mutations in
CSF3R, they are unable to fully block myeloid differentiation.
Importantly, this impaired ability to block differentiation
disrupts the development of AML in vivo.

Discussion
Our study adds to a growing body of data demonstrating that
enhancer biology is integral to the development of hematologic
malignancies. While AML is very heterogeneous from a genomic
standpoint, recent work demonstrates that there are only a few
epigenetic disease subtypes24,27. Although multiple global epige-
netic regulators are recurrently mutated in AML, these have little
impact on the organization of the epigenome24,27. Instead,

mutations in lineage determining transcription factors are a
major determinant of clustering. Thus, understanding the epi-
genetic dysfunction associated with transcription factor muta-
tions in AML may provide broad insight into therapeutic
approaches.

N- and C-terminal CEBPA mutations exert distinct biological
roles in leukemia initiation21,28. While it is clear that reduced
CEBPA activity is potently oncogenic, CEBPA knockout mice fail
to develop AML29. Similarly, mice with homozygous C-terminal
mutations (putatively loss of function) develop leukemia with an
exceedingly long latency21. Interestingly, the phenotype of these
leukemias is erythroid rather than myeloid. This is consistent with
data from MLL-rearranged leukemias, where CEBPA is requisite
for entrance into the myeloid lineage and leukemia initiation30,31.
As the majority of patients with CEBPA mutant AML harbor
combined N- and C- terminal CEBPA mutations, it is possible that
the N-terminal CEBPA mutation provides sufficient residual
myeloid differentiation potential to enter the myeloid lineage and
initiate AML. This relationship becomes even more complex when
CSF3R mutations are considered. While the majority of CSF3R
mutations occur in CEBPA-bi cases there are a number of CSF3R
mutant CEBPA C-terminal monoallelic cases as well5. Our data
demonstrate that CSF3RT618I potently synergizes with biallelic
CEBPA mutations to induce AML. Our retroviral model best
represents monoallelic cases (with the caveats of ectopic expres-
sion), and demonstrates that C- but not N-terminal CEBPA
mutations exhibit synergy with mutant CEBPA confirming the
high degree of clinical association between these mutations. It is
possible that mutant CSF3R provides both a myeloid commitment
signal and proliferative advantage, thus rendering N-terminal
CEBPA mutations less crucial for AML initiation. Going forward,
it will be crucial to define the biological interaction with mutant
CSF3R and N- and C-terminal mutations present in the endo-
genous locus to understand whether these mutant forms of CEBPA
demonstrate differential binding or recruitment of cofactors to
critical differentiation-associated enhancers.

Although we focused on differentiation-associated enhancers
driven by the CSF3RT618I, our study revealed a second set of
enhancers that were activated exclusively in the presence of both
mutant CSF3R and CEBPA. Both subsets of enhancers demon-
strated strong enrichment of PU.1 motifs, consistent with the
known role of this transcription factor in driving myeloid
development. In normal hematopoiesis, PU.1 and CEBPA
cooperate to open myeloid lineage enhancers with PU.1 per-
forming pioneering function in early progenitors and CEBPA
assuming this role late22. Thus, it is likely that certain early
myeloid lineage enhancers can be activated by CSF3RT618I in a
CEBPA-independent manner via PU.1. Another interesting
finding was the enrichment of RUNX motifs in enhancers acti-
vated only in the presence of both oncogenes. The RUNX family
of transcription factors are critical to normal hematopoietic
development, and in addition to being the targets of chromoso-
mal translocations in core-binding factor AML, also frequently
harbor point mutations in AML32. Interestingly, Runx1 hap-
loinsufficiency leads to hypersensitivity to G-CSF, suggesting a
negative feedback role33. The role of RUNX transcription factors
in driving CEBPA/CSF3R mutant AML is an interesting area for
future work.

We present the first direct evidence that the order in which
oncogenic mutations occur is a major determinant of leukemia
development (Fig. 8). Our finding that myeloid differentiation
blockade can only occur with a distinct mutational order may
also be a broadly conserved mechanism that applies to Class I
and Class II mutation pairings. As nearly all prior studies
have investigated mutation cooperation in the setting of
simultaneous introduction, it is likely that important aspects of
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sequencing performed on lineage negative mouse bone marrow expressing CEBPA-first, CSF3R-first, or CSF3R-only (n= 3–4/group). f K-means clustering of
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from GSEA performed on samples from e (n= 3–4/group). GSEA p value calculated by empirical permutation test and FDR adjusted. In all cases, values are
represented as mean with error bars representing SEM. **p < 0.01, ****p < 0.0001, as measured by ANOVA with Sidak’s post-test. Source data are provided as
a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13364-2

10 NATURE COMMUNICATIONS |         (2019) 10:5455 | https://doi.org/10.1038/s41467-019-13364-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


order-dependent disease biology have not yet been discovered.
If reprogramming of the lineage-specific enhancer repertoire is
a common initiating event in AML, this creates even more
impetus for the development of treatment strategies targeting
these epigenetic pathways.

Our finding that epigenetic dysfunction is an obligate early
event is likely to be generalizable to other forms of cancer.
In renal cell carcinoma, loss of the tumor suppressor von
Hippel-Lindau (VHL) is widely regarded as an initiating event
and associated with dramatic changes in global DNA

methylation, potentially impacting subsequently acquired sig-
naling mutations34. In breast cancer, mutation order is an
important determinant of cancer phenotype, with luminal-type
tumors demonstrating early loss of PTEN while basal-type
tumors display early p53 mutation35. In colon cancer, the
canonical APC mutations decrease DNA methylation through
upregulation of demethylases, which potentially alters the impact
of RAS mutations acquired later in disease evolution36. Order-
dependent mutational phenotypes were recently reported in
myeloproliferative neoplasms, where the order of mutations in

dsRed Ex2gag Oncogene

STOP

gag Oncogene

+Cre recombinase

Rosa
ERT2-Cre
donor

BMT

1st gene ON

Tamoxifen

2nd gene ON

1st gene ON

4 weeks

a

CSF3RT618I

first
CEBPAV314VW

first

5 weeks 7 weeks

CSF3RT618I

first leukemia

GR-1

C
D

11
b

c

0 5 10 15 20 25
0

50

100

Weeks

P
er

ce
nt

 s
ur

vi
va

l

CEBPAV314VW first
CSF3RT618I first**

b

Ban
d

Seg

Ly
m

ph
M

on
o

Blas
ts

0

20

40

60

80

P
er

ce
nt

 c
el

ls

** ****

0

100

200

300
*

S
pl

ee
n 

w
ei

gh
t (

m
g)

CEBPA
V31

4V
W
 fir

st

 

CSF3R
T61

8I
 fir

st

 

f

d

e

CSF3RT618I first CSF3RT618I first
moribund

CEBPAV314VW first 

Bone marrow

Spleeng

400

Fig. 7 CEBPA mutations must precede mutations in CSF3R for AML initiation. a Diagram of order of acquisition system. Oncogenes in the MIG vector
tagged with GFP are constitutively expressed and oncogenes in the idsRed vector are expressed only after Cre mediated recombination. Expression of the
second oncogene can be induced by administration of tamoxifen. Mice were administered 75,000 GFP/RFP-positive cells. b Survival reported as time from
day 1 of tamoxifen induction (n= 5/group). Statistical significance calculated by Log Rank test, **p < 0.01. c Expression of CD11b and GR-1 in bone marrow
at 5 weeks in moribund CEBPAV314VW-first mice, healthy CSF3RT618I-first mice or at 7-weeks in leukemic CSF3RT618I-first mice (only one animal
represented by CSF3R-first leukemia, others are representative of 3/group). d Manual differentials of peripheral blood from mice 5 weeks after tamoxifen
induction (n= 3/group), **p < 0.01, ****p < 0.0001. e Representative bone marrow histology (scale bar represents 10 μm). f Spleen weight of mice
sacrificed at 5 weeks post tamoxifen treatment, *p < 0.05 as calculated by Student’s T-test g Representative spleen histology (scale bar represents 100 μm
for upper panels and 20 μm for lower panels). In all cases, values are represented as mean with error bars representing SEM. Source data are provided as a
Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13364-2 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5455 | https://doi.org/10.1038/s41467-019-13364-2 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


JAK2 and TET2 are important determinants of disease pheno-
type37. When TET2 precedes JAK2, patients are more likely to
present with polycythemia vera. In contrast, patients with JAK2-
first disease were more likely to have essential thrombocytosis.
Thus, it appears that preceding TET2 mutation provides an
epigenetic context supporting erythroid development for
subsequently-acquired JAK2 mutations.

In summary, we describe the epigenetic mechanism by which
mutant CEBPA and CSF3R interact to drive AML development.
Our study demonstrates that a subset of differentiation-associated
enhancers are dysregulated by mutant CEBPA, preventing nor-
mal myeloid maturation. Critically, this epigenetic dysregulation
must occur as the initial event otherwise AML does not develop.
These differentiation-associated enhancers represent a promising
novel therapeutic target in this poor prognosis molecular subtype
of AML.

Methods
Mice. C57BL/6J mice (#000664), Balb/cJ mice (#000651), Rosa26 ERT2-Cre mice
(#008463), MX-1 Cre mice (#003556), and CEBPAFlox/Flox mice (#006447) were
obtained from The Jackson Laboratories. Female mice were used between 6 and
20 weeks, and age and weight matched in all experiments. Tamoxifen was dissolved
in corn oil (Sigma) and injected intraperitoneally at 75 mg/kg/day for 5 days. Poly
I:C (Sigma) was dissolved in PBS at 12 mg/kg on days 1, 3, and 5. All experiments
were conducted in accordance with the National Institutes of Health Guide for the
Care and Use of Laboratory Animals, and approved by the Institutional Animal
Care and Use Committee of Oregon Health & Science University (Protocol
#TR01_IP00000482).

Cell Lines. 293T17 cells were obtained from ATCC and cultured in DMEM
(Gibco) with 10% fetal calf serum (FCS; HyClone). Murine HoxB8-ER cells were a
generous gift from David Sykes (Massachusetts General Hospital, Boston, MA) and
cultured in RPMI (Gibco) with 10% FCS and CHO-SCF cell conditioned media
(final concentration ~100 ng/mL)27. Wild-type HoxB8-ER cells were differentiated
in estrogen-free media23. Cell lines were tested monthly for mycoplasma

contamination and all lines utilized tested negative. Cell lines were authenticated by
ATCC prior to shipment.

Cloning and Retrovirus production. The following plasmids were utilized:
pMSCV-IRES GFP9, pMXs-IRES-Puro (Cell Biolabs Inc), pMSCV-IRES-mCherry
FP (a gift from Dario Vignali, Addgene #52114), pMSCV-loxp-dsRed-loxp-eGFP-
Puro-WPRE (a gift from Hans Clevers, Addgene #32702). The CSF3RT618I

mutation was generated previously9. Full-length CEBPA and JAK3 cDNA was
obtained from Genecopia. The CEBPA and JAK3 mutations were generated using
the Quikchange Site Directed Mutagenesis Kit (Agilent) using the primers in
Supplementary Table 1. To produce retrovirus, 293T17 cells were transfected with
EcoPac helper plasmid (a gift from Dr. Rick Van Etten) and the appropriate
transfer plasmid. Conditioned media was harvested 48–72 h after transduction.

Western blotting. K562 cells were transfected with lipofectamine 2000 according
to the manufacturer’s instructions. Normal mouse bone marrow cells were isolated
fresh on the day of the experiment. CSF3RT618I/CEBPAV314VW cells were cultured
in IMDM media supplemented with 20% FCS after isolation from methocult. In all
cases, 2 × 106 cells were used per condition. Cells were lysed in cell lysis buffer (Cell
Signaling Technologies) containing complete mini protease inhibitor tablets
(Roche). To pellet cellular debris, the lysates were spun at 12,000 r.p.m., 4 °C for 10
min, and subsequently mixed with 3× SDS sample buffer (75 mmol/L Tris (pH 6.8),
3% SDS, 15% glycerol, 8% β-mercaptoethanol, and 0.1% bromophenol blue).
Samples were incubated at 95 °C for 5 min and run on Criterion 4 to 15% Tris-HCl
gradient gels (Bio-Rad). Gels were transferred to PVDF membranes and blocked in
Tris-buffered saline with Tween (TBST) with 5% bovine serum albumin (BSA).
Blots were probed with the antibodies listed in Supplementary Table 3. Horseradish
peroxidase-conjugated secondary antibodies against mouse IgG and rabbit IgG
(CS) were used followed by imaging of the blots on a BioRad Touch Gel Doc
(BioRad).

Retroviral transduction. Retroviral conditioned media was produced using
293T17 cells transduced with packaging plasmid and the appropriate transfer
plasmid. Mouse bone marrow cells were harvested from healthy syngeneic donors
at age 6–12 weeks and spinnoculated on two successive days with supernatant in
the presence of polybrene9,16. Cells expressing GFP or GFP/mCherry were sorted
by FACS using an FACSAria III sorter (BD). For colony assay, 2500 sorted cells
were used per replicate. For bone marrow transplantation experiments, donor mice
were treated with 100 mg/kg 5-FU 5 days prior to harvest. In all cases, 200,000 cells
were administered, with the balance of non-transduced cells as fresh syngeneic

Proliferation

Differentiation

Chronic neutrophilic 
leukemia

Early CEBPA mutation
AML

Late CEBPA mutation
no AML

CSF3RT618I

CEBPA

C
E

B
P

A CEBPA

C
E

B
P

A
V

31
4V

W

C
E

B
P

A
V

31
4V

W

Normal maturation Differentiation arrest Normal maturation
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bone marrow. Survival endpoints for mutation comparison studies included WBC
count >100, weight loss >20% initial weight, and moribund appearance.

Real-time PCR. RNA was extracted using RNeasy or RNeasy micro kit (Qiagen).
cDNA was synthesized using a High Capacity cDNA Synthesis kit (ThermoFisher).
Real-time PCR was performed using the QuantStudio7 Real Time PCR System
(ThermoFisher) and Taqman primer probes (ThermoFisher). For Taqman low-
density arrays, array cards were custom printed by the manufacturer (Thermo-
Fisher). Taqman primer probes used in this study are listed in Supplementary
Table 2.

Flow cytometry. The antibodies listed in Supplementary Table 3 were utilized for
FACS according to the manufacturer instructions. Stained cells were analyzed on a
FACSAria III flow cytometer (BD).

RNA sequencing. Bone marrow from C57BL/6 mice was harvested and retro-
virally transduced with the indicated oncogene combinations as described above.
Cells were stained with a lineage cocktail, and lineage-negative GFP/mCherry-
double-positive cells were sorted. For order of acquisition experiments, cells were
cultured in cytokine-free I20 media for 48 h after sorting in the presence of 500 nM
4-Hydroxytamoxifen. RNA was extracted using the RNeasy micro kit (Qiagen).
cDNA libraries were constructed using the SMARTer universal low input RNA kit
(Clonetech) and sequenced using a HiSeq 2500 Sequencer (Illumina) 100 bp SR.

Microarray. Labeled target, sscDNA was prepared from 12 RNA samples using the
GeneChipTM WT-Plus protocol (ThermoFisher). Prior to cDNA synthesis and
amplification, sample order was randomized. Amplified and labeled cDNA target
samples were hybridized to a GeneChip Clariom S-Mouse array (ThermoFisher).
Image processing was performed using Affymetrix Command Console (AGCC)
v.3.1.1 software and expression analysis was performed using Affymetrix Expres-
sion Console. Differential expression analysis was performed using the Transcript
Analysis Console 4.0 (ThermoFisher).

Chromatin-immunoprecipitation sequencing (ChIP-seq). Twenty-five million
cells per condition (Empty vector, CSF3RT618I-only, CEBPAV314VW-only, and
CSF3RT618I+ CEBPAV314VW) were fixed with 1% formaldehyde and quenched by
glycine. Cells were resuspended in lysis buffer (0.1% SDS, 0.5% Triton X-100,
20 mM Tris-HCl pH= 8.0, 150 mM NaCl, 1× Proteinase inhibitor (Roche)), and
sheared using the Bioruptor Pico sonicator (Diagenode). Reactions were rotated
overnight at 4 °C with antibody (H3K4me1 (ab8895; Abcam), H3K4me3 (ab8580;
Abcam), and H3K27ac (ab4729; Abcam), Table S10). Next, samples were rotated
with Protein A/G Magnetic Beads (Pierce). Beads were washed with TBST buffer
(3×), lysis buffer, and 2× TE pH= 8. Chromatin was eluted at room temperature in
1% SDS, 0.1 M NaHCO3. Crosslinks were reversed at 65 °C overnight, digested
with RNAse A and proteinase K, then purified by phenol–chloroform extraction.
Sequencing libraries were generated using the NEBNext Ultra II DNA Library Prep
Kit for Illumina (New England Biolabs). Libraries were sequenced using SE 75 bp
Illumina NextSeq.

RNA-seq analysis: murine samples. Raw reads were trimmed with Trimmo-
matic38 and aligned with STAR39. Differential expression analysis was performed
using DESeq2 (ref. 40). Raw p values were adjusted for multiple comparisons using
the Benjamini–Hochberg method.

RNA seq analysis: TARGET pediatric AML samples. RNA sequencing was
performed on RNA collected from pediatric AML samples as described in the
initial TARGET AML publication18. Raw reads were aligned with Kallisto with
count tables produced using Tximport41,42. Differential expression analysis was
performed using DESeq2 (ref. 40). Raw p values were adjusted for multiple com-
parisons using the Benjamini–Hochberg method. For comparison with mouse
RNA seq, genes with differential expression between CSF3R WT and CSF3RT618I

were mapped to orthologous human genes using ensembl BioMart. Genes with
differential expression in both mouse and human were considered and compared
by Log2 Fold change between CSF3Rmutant and CSF3RWT conditions.

Convergent gene expression analysis: Leucegene AML. RPKM values from
adult AML samples from the Leucegene cohort were downloaded using the fol-
lowing SRA accession numbers: GSE49642, GSE52656, GSE62190, GSE66917,
GSE67039. Mouse genes with differential expression driven by CSF3RT618I were
converted to human gene symbols as above. Genes demonstrating an absolute fold
change of >2 in both datasets were compared by Log2 Fold change between
CSF3Rmutant and CSF3RWT conditions.

Motif enrichment analysis. The enrichment analysis for motifs was performed
using HOMER43 using the -findMotifs command in a 500 bp window upstream
and 200 bp downstream of the transcriptional start site. De novo motifs at
enhancers were identified using the -findMotifsGenome command in HOMER in a

±1000 bp region surrounding the peak center. De novo motifs were matched to
their closest known motif and displayed with the alignment score (with 1 being a
perfect match). Top five motifs with p < 1E-10 for each group of promoters or
enhancers are displayed.

Gene set enrichment analysis. Gene set enrichment analysis using the GSEA
software44. As CSF3RT618I-only and CSF3RT618I-first groups clustered together by
Euclidian distance, they were combined and compared with CEBPAV314VW-first
samples. Analysis was performed using the C2 collection from MSigDB. Permu-
tations were performed by gene set and significance was set as an FDR adjusted
p value of <0.05.

Permutation analysis. CEBPA ChIP-seq peaks from GMPs17 were converted from
the mm9 to mm10, using the liftOver tool from the UCSC genome browser. We
used BEDTools45 to randomly shuffle the location of all interacting genes, within
their original chromosomes. After each shuffle, we used the closest-features sub-
command in BEDOPS46 to calculate the distance between the new position of all
shuffled genes and the closest CEBPA ChIP-seq.

ChIP-seq analysis. Reads were aligned to the mouse reference genome (mm10)
using bwa 0.7.12 (ref. 47) with default single end settings. Low mapping alignments
were removed with samtools (MAPQ <30)48. For quality control purposes, PCA
was performed using Deeptools49 which showed separation of signal by oncogene
condition. Next, MACS2 2.1.1 (ref. 50) was used to predict significant peaks of
ChIP-seq enrichment relative to the appropriate input controls and generate fold
enrichment tracks. We used the ChromHMM software51 to characterize and
annotate the genomes of each treatment group according to six chromatin states,
based on different combinations of H3K4me1, H3K4me3, and H3K27ac marks.
Enhancers were identified through the presence of H3K4me1 and H3K27Ac,
absence of H3K4me3. Enhancers less than 500 bp apart were merged. The closest
gene to each enhancer was identified using BEDOPS46. In order to remove
potential false positives due to proximity to large H3K27ac peaks, we removed
treatment-specific putative enhancers without a H3K27ac peak summit.

Gene Ontology Analysis for ChIP-seq. Gene Ontology Analysis for histone mark
ChIP-seq performed by Genomic Regions Enrichment of Annotations Tool52 using
the basal plus extension model to annotate enhancer coordinates with
nearby genes.

Correlation of gene expression with enhancer activation. All differentially
expressed genes as assessed by microarray analysis utilized for unsupervised
hierarchical clustering analysis with a k-means= 8. Each active enhancer was then
annotated to the nearest gene. Condition-specific enhancers associated with each
cluster of differentially expressed genes were counted and enrichment assessed as
described under statistics.

Overlap of CEBPA peaks with condition-specific enhancers. We used publicly
available genome-wide positions of all GMP CEBPA ChIP-seq peaks17. CEBPA
peaks overlapping each group of condition-specific enhancers were identified using
the mergePeaks command in HOMER with the -cobound option. CEBPA peaks
associated with each group of condition-specific enhancers were counted and
enrichment assessed as described below under statistics.

Enhancer overlap using BEDTools. Published human CEBPA AML DNase sen-
sitivity peaks27 and enhancers22 were compared with mouse CSF3R/CEBPA-spe-
cific enhancers. The coordinates for mouse enhancers converted to human
coordinates using the UCSC liftover tool. Overlap was assessed using the BEDTools
fisher test45. Enrichment of overlap is detected using a Fisher’s exact test with a
significant right-sided p value while depletion is detected with a significant left-
sided p value.

Quantification and statistical analysis. Data are expressed as mean ± SEM.
Statistical analysis was performed using Prism software (Version 7.0; Prism Soft-
ware Corp.) or RStudio. Statistical analyses are described in the figure legends. All
data were analyzed with either an unpaired Student’s t-test, or ANOVA followed by
post hoc analysis using a Sidak’s corrected t-test. For Taqman-based array,
microarray and RNA-seq data, p values were adjusted for repeated testing using a
false discovery rate by the method of Benjamini–Hochberg53. For enhancer
enrichment analyses, a χ2 analysis was utilized with individual p values adjusted by
the method of Holm–Bonferroni. Survival analysis was conducted using the
method of Kaplan–Meier and statistical significance was assessed using a log rank
test.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
The accession numbers for all genomic data reported in this paper is GSE122166. The
source data underlying Figs. 1–7 and Supplementary Figs. 1–6 are provided as a Source
Data file.
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