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The role and robustness of the 
Gini coefficient as an unbiased tool 
for the selection of Gini genes for 
normalising expression profiling 
data
Marina Wright Muelas   1*, Farah Mughal1, Steve O’Hagan2,3, Philip J. Day3,4* & 
Douglas B. Kell   1,5*

We recently introduced the Gini coefficient (GC) for assessing the expression variation of a particular 
gene in a dataset, as a means of selecting improved reference genes over the cohort (‘housekeeping 
genes’) typically used for normalisation in expression profiling studies. Those genes (transcripts) that 
we determined to be useable as reference genes differed greatly from previous suggestions based on 
hypothesis-driven approaches. A limitation of this initial study is that a single (albeit large) dataset was 
employed for both tissues and cell lines. We here extend this analysis to encompass seven other large 
datasets. Although their absolute values differ a little, the Gini values and median expression levels of 
the various genes are well correlated with each other between the various cell line datasets, implying 
that our original choice of the more ubiquitously expressed low-Gini-coefficient genes was indeed 
sound. In tissues, the Gini values and median expression levels of genes showed a greater variation, 
with the GC of genes changing with the number and types of tissues in the data sets. In all data sets, 
regardless of whether this was derived from tissues or cell lines, we also show that the GC is a robust 
measure of gene expression stability. Using the GC as a measure of expression stability we illustrate 
its utility to find tissue- and cell line-optimised housekeeping genes without any prior bias, that again 
include only a small number of previously reported housekeeping genes. We also independently 
confirmed this experimentally using RT-qPCR with 40 candidate GC genes in a panel of 10 cell lines. 
These were termed the Gini Genes. In many cases, the variation in the expression levels of classical 
reference genes is really quite huge (e.g. 44 fold for GAPDH in one data set), suggesting that the cure 
(of using them as normalising genes) may in some cases be worse than the disease (of not doing so). We 
recommend the present data-driven approach for the selection of reference genes by using the easy-to-
calculate and robust GC.

In a recent paper1, we introduced the Gini index (or Gini coefficient, GC)2–5 as a very useful, nonparametric 
statistical measure for identifying those genes whose expression varied least across a large set of samples (when 
normalised appropriately6 to the total expression level of transcripts). The GC is a measure that is widely used in 
economics (e.g.4,7–12) to describe the (in)equality of the distribution of wealth or income between individuals in 
a population. However, although it could clearly be used to describe the variation in any other property between 
individual examples13–16), it has only occasionally been used in epidemiology17–19 and in biochemistry1,5,20–25. Its 
visualisation and calculation are comparatively straightforward (Fig. 1): individual examples are ranked on the 
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abscissa in increasing order of the size of their contribution, and the cumulative contribution is plotted against 
this on the ordinate. The GC is given by the fractional area mapped out by the resulting ‘Lorenz’ curve (Fig. 1). 
For a purely ‘socialist’ system in which all contributions are equal (GC = 0), the curve joins the normalised 0,0 and 
1,1 axes, while for a complete ‘autocracy’, in which the resource or expression is held or manifest by only a single 
individual (GC = 1), the ‘curve’ follows the two axes (0,0 → 1,0 → 1,1).

Since the early origins of large-scale nucleic acid expression profiling, especially those using microarrays26–28, 
it has been clear that expression profiling methods are susceptible to a variety of more or less systematic artefacts 
within an experiment, whose resolution would require or benefit from some kind of normalisation (e.g.29–39). By 
this (‘normalisation of the first kind’), and what is typically done, we mean the smoothing out of genuine artefacts 
within an array or a run, that occur simply due to differences in temperature or melting temperature or dye bind-
ing or hybridisation and cross-hybridisation efficiency (and so on) across the surface of the array. This process 
can in principle use reference genes, but usually exploits smoothing methods that normalise geographically local 
subsets of the genes to a presumed distribution.

Even after this is done, there is a second level of normalisation, that between chips or experiments, that is 
usually done separately, not least because it is typically much larger and more systematic, especially because of 
variations in the total amount of material in the sample analysed or of the overall sensitivity of the detector (much 
as is true of the within-run versus between-run variations observed in mass spectrometry experiments40,41). This 
kind of normalising always requires ‘reference’ genes whose expression varies as little as possible in response to 
any changes in experimental conditions. The same is true for expression profiling as performed by qPCR42–47, 
where the situation is more acute regarding the choice of reference genes since primers must be selected for these 
a priori. Commonly, the geometric mean of the expression levels of that or those that vary the least is selected as 
the ‘reference’. The question then arises as to which are the premium ‘reference’ genes to choose.

Data-driven and hypothesis-dependent science are complementary, though when a field is data-rich but 
hypothesis-poor, as is genomics, data-driven strategies are to be preferred48. Perhaps surprisingly48, rather than 
simply letting the data speak for themselves, choices of candidate reference genes were often made on the basis 
that reference genes should be ‘housekeeping’ genes that would simply be assumed (‘hypothesised’) to vary com-
paratively little between cells, be involved in nominal routine metabolism and also that they should have a reason-
ably high expression level (e.g.49–66). This is not necessarily the best strategy, and there is in fact (and see below) 
quite a wide degree of variation of the expression of most standard housekeeping genes between cells or tissues 
(e.g.53,62,65,67–79). Indeed, Lee et al.69 stated explicitly that housekeeping genes may be uniformly expressed in cer-
tain cell types but may vary in others, especially in clinical samples associated with disease.

It became obvious that an analysis of the GC of the various genes was actually precisely what was required to 
assess those ‘housekeeping’ (or any other) genes that varied least across a set of expression profiles, and we found 
35 transcripts for which the GC was 0.15 or below when assessing 56 mammalian cell lines taken from a wide 
variety of tissues1. These we refer to as the ‘Gini genes’. Most of these were ‘novel’ as they had never previously 
been considered as reference genes, and we noted that their Gini indices were significantly smaller (they were 
more stably expressed) than were those of the more commonly used reference genes66. However, this analysis 
was done on only one (albeit large) dataset of gene expression profiles. While some of the compilations (e.g.65,80) 
contain massive amounts of expression profiling data, many of these, especially the older ones, may well be of 
uncertain quality. Thus, especially since the GC is very prone to being raised by small numbers of large outliers, 
we decided for present purposes that we should compare our analyses of candidate Gini genes using a smaller but 
carefully chosen set of expression profiling experiments. The more modern RNA-seq (e.g.81–85), in which individ-
ual transcripts are simply counted digitally via direct sequencing, is seen as considerably more robust81,86,87 and 
sensitive88,89, and so we selected additional large and recent datasets that used RNA-seq in cell lines and tissues 
(Table 1). We note too that the precision of these digital methods (as with other, digital, single-molecule strate-
gies90–92), means that the requirement for reasonably high-level expression levels is much less acute.

In a similar vein (Table 2), we selected a small number of reasonably detailed studies in which particular 
housekeeping genes had been proposed as reference genes.

To our knowledge, there are no large-scale studies to determine housekeeping genes in large, cell-line cohorts; 
the present paper serves to provide one. In addition, we include an experimental RT-qPCR analysis of a subset of 
the Gini genes.

Figure 1.  Graphical indication of the means by which we calculate the Gini coefficient.
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Results
The Gini Coefficient as a robust measure of gene expression stability in multiple cell-line data 
sets.  We previously identified a number of genes in the Human Protein Atlas (HPA) cell line data set93 with 
very low expression variability and thus potential for use as reference genes1. However, we did not compare these 
Gini genes to other genes that have previously been proposed as housekeeping genes. We therefore performed a 
similar analysis using the potential housekeeping genes we proposed in1 as well as other reference genes proposed 
in other studies (Table 2) with additional large RNA-Seq cell line data sets (Table 1).

Figure 2A shows a plot of the GC of a variety of candidate Gini genes versus their median expression level in 
the HPA cell lines dataset set93. It is clear that genes we identified previously have much lower GC values in the 
HPA dataset than do any of the others (just two, VPS29 and CHMP2A, were also identified by Eisenberg and 
Levanon and another, RPL41, by Caracausi). This is not at the expense of an unusually low expression (Fig. 2A), 
a finding broadly confirmed when we look at the median expression levels for the CCLE dataset (Fig. 2B) and of 
the Klijn dataset (Fig. 2C).

Figure 3 shows the GC values for the various genes in two other datasets, viz CCLE and Klijn. Our previous 
Gini genes have a lower GC than that of any of the other housekeeping genes in 25 out of 38 cases in Klijn (all 
under 0.2) and in 26 out of 40 cases for CCLE (all under 0.22). In confirmation of this, and of the correlation 
found above between the median expression levels in CCLE and Klijn, the GC values are also well correlated with 
each other for the two datasets (Fig. 3). Thus, although the absolute numbers are slightly larger than are those 
for the HPA dataset (unsurprisingly, given the much larger number of examples), the trend is still very clear: the 
GiniGenes remain the best among those variously proposed as reference genes in a variety of large and quite inde-
pendent datasets. It also suggests that variations in the total amount of mRNA are not an issue either.

Another common statistical measure, more resistant to individual outliers, is the interquartile ratio (the ratio 
between the 25th and 75th percentile when expression levels are ranked); by this measure too, the Gini genes that 
we uncovered previously stand out as being the least varying (Fig. 4 A,B). This suggests that, as a measure of gene 
expression stability, the GC is robust: the GiniGenes have the lowest ratio between their maximum and minimum 
expression values in the HPA dataset (Fig. 4C) and also the lowest interquartile ratio in their levels of expression 
in all three cell line data sets explored here (Fig. 4B,C) with good correlation between these two datasets.

Use of the Gini Coefficient to find GiniGenes in an unbiased manner in cell-line data sets.  Up 
to now, our analyses of these data sets have used a set of predefined genes to look at expression stability. We next 
sought to investigate whether the GC would highlight genes with high expression stability that have been reported 
by others or by ourselves when performing this analysis in a data-driven manner. To that end, we found 115 genes 
shared between the three data sets with a GC ≤ 0.2 (Figs. 5, 6). This value for the GC was chosen since reducing 
this to ≤0.15 meant no or very few genes were found in some data sets (e.g. no genes in the CCLE data set had 
a GC ≤ 0.15) and going above this meant the number of genes were unmanageable (e.g. 1051 genes with a GC 
≤ 0.21 in the Klijn data set). Of the 115 genes shared between the datasets with GC < 0.2, 13 were GiniGenes 

Study short name Comments Reference

GiniGene Study presenting novel potential housekeeping genes in cells and tissues from the HPA project 
cell and tissue RNA-seq data.

1

geNorm or Vandesompele Classic set of reference genes in tissues and a means of analysing them 66

Eisenberg Very detailed analysis of housekeeping/ reference genes in tissues using the Illumina Body Map 
study of RNA-seq of 16 Human Tissues. E-MTAB-513.

49

Lee Two novel reference genes from a detailed analysis of 281 normal tissue samples from 17 different 
organs then compares between disease states m and cell lines.

131

Caracausi 646 expression profile data sets from 54 different human tissues. 65

Table 1.  Studies used for assessing proposed stable reference genes.

Dataset short name Comments Reference

HPA
RNA-seq-based dataset from the Human Protein Atlas group. Two data sets available: 
one of 19,628 protein coding genes in 56 cell lines (HPA_C) and another of 19,613 
protein coding genes in 59 tissues (HPA_T).

1,93,140

CCLE RNA-seq-based dataset (Cancer Cell Line Encyclopedia) of 58,035 genes in 934 human 
cancer cell lines (downloaded from EBI Expression Atlas E-MTAB2770).

141

Klijn / Genentech RNA-seq-based analysis of 57,711 genes in 622 human cancer cell lines (downloaded 
from EBI Expression Atlas E-MTAB-2706).

142

GTEx RNA-Seq data of 46,711 genes in 53 human tissue samples from the Genotype-Tissue 
Expression (GTEx) project (downloaded from EBI Expression Atlas E-MTAB-5214).

143

PCAWG
RNA-Seq of 46,816 genes in 76 tissues, cancer and normal, from The International 
Cancer Genome Project: Pan Cancer Analysis of Whole Genomes (downloaded from 
EBI Expression Atlas E-MTAB-5200).

 https://dcc.icgc.org/pcawg

HBM
Illumina Body Map: RNA-seq of 16 Human tissues. (downloaded from EBI 
Expression Atlas E-MTAB-513). Used by Eisenberg and colleagues in their analysis of 
housekeeping/ reference genes in tissues.

49

Table 2.  Studies used for expression profiling data.
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and two were housekeeping genes defined by Caracausi and colleagues (Fig. 5B). When we selected the top 20 
expressing genes in each data set, only 13 of these were common across these data sets; Table 3 shows some 
descriptive statistics of 13 of these, with descriptive statistics of all 115 genes found in Supplementary Table S1. 
Of these genes, two (HNRNPK and PCBP1) are GiniGenes and one (SLC25A3) is a gene previously reported by 
Caracausi et al. Seven out of the 13 genes (HNRNPK, HNRNPC, PCBPB, SF3B1, SRSF3, EDF1 and EIF4H) here 

Figure 2.  Gini coefficient and median expression levels of proposed reference genes in the HPA cell-line 
dataset. (A) GC versus median expression level of HPA dataset. (B) Median expression levels of CCLE vs HPA 
datasets. Line of best linear fit (in log space) shown is y = 0.991 + 0.827 × (r2 = 0.606). (C) Median expression 
levels of CCLE vs Klijn datasets. Line of best linear fit (in log space) shown is y = 0.998 + 0.804 × (r2 = 0.593). 
Colour coding: red, GeneGini reference genes; blue Eisenberg & Levanon; yellow Vandesompele; green Lee; 
lilac both GeneGini and Eisenberg and Levanon.
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share important roles in RNA transcription, translation and stability94–102, are implicated in a number of diseases, 
including cancer94,97,103–113, and some, such as SRSF3 are essential for embryo development114. Given their pivotal 
functions, it may be unsurprising that the expression of these genes are tightly regulated across cell lines of differ-
ent tissue origins, even where these are cancer cell lines. Overall, the distribution, expression stability and impor-
tant functional roles of these genes suggest that these are excellent housekeeping genes across different cell types.

Of particular interest to us was finding one gene encoding a mitochondrial phosphate transporter protein 
(SLC25A3115) to be within this list of the top expressing stably expressed genes. This might seem logical since 
mitochondrial ATP synthesis is required by all cell types and tissues.

Figure 7 shows the robustness of the GC for the subset of 115 genes common between the three data sets stud-
ied here with a low GC (<0.2). Lower Gini coefficients correlate with lower IQR and Max:median ratios (Fig. 7: 
only results for the Klijn data set are shown). The range of IQR values of these genes was smaller in the larger 
two data sets (CCLE, 1.42–1.67; Klijn, 1.30–1.64) than in the HPA data set (1.26–1.84) suggesting the measured 
expression values were more stable in the larger data sets (Supplementary Table S1). This may, however, be due to 
a larger number of cell lines in these two large datasets (934 and 622 in CCLE and Klijn) compared with the HPA 
data set (56 cell lines).

Application of the Gini coefficient to human tissue RNA-Seq data sets.  The results presented thus 
far are representative of human cell lines. Most reports in the literature regarding housekeeping genes refer to 
tissue expression data. This may be due to the cell lines being “dedifferentiated” with respect to the tissues from 
which they are derived116.

In our previous report1 we also analysed RNA-Seq data from tissues93 and found 22 genes with a GC < 0.15, of 
which 3 (CHMP2A, VPS29 and PCBP1) were also found in cell line data with a GC < 0.15. The median expres-
sion level and GC of these and other candidate GiniGenes in this tissue data set are shown in Fig. 8. As with cell 
line data, the genes we previously identified (GGs, green dots in Fig. 8) have much lower GCs in this tissue data 
set than do any of the other candidate GiniGenes, with only two of these genes (VPS29 and CHMP2A) identified 
previously by Eisenberg & Levanon49. The low GC value of these GiniGenes is not at the expense of low expres-
sion: of the 22 GiniGenes, 13 are expressed at a median level of between 40 and 200 TPM (see Supplementary 
Table S2). Moreover, the GC was also representative of the variation in expression of these genes (albeit influenced 
to a lesser extent by outliers), as shown in Fig. 9A,B, with all GiniGenes having a GC < 0.15 and the lowest RSD 
(relative standard deviation), ranging from 24.096% to 28.66% and IQR (1.26 to 1.44) of this list of housekeeping 
genes. The expression of other housekeeping genes such as GAPDH, ACTB, RPL13A, SDHA, B2M was quite 
varied according to these measures. For example, the GC of GAPDH (a commonly used HKG) was 0.33, with a 
RSD of 72.4% and IQR of 2.24, and for ACTB (another commonly used HKG) these values were 0.29, 55.24%, 
and 2.11.

The median expression levels of the proposed reference genes show a similar level of correlation between the 
data sets as was found with the cell line data (Fig. S1A–C), and GiniGenes displayed a mid-range level of expres-
sion. The GC of the tissue GiniGenes we proposed however, tended to be higher and more variable in their GC 
values than in the HPA dataset (Fig. S2,A–C) suggesting that those genes may be representative of the HPA data 
set only. As an example, in the GTEx dataset only 28 genes had a GC < 0.2, of which the majority (17) were those 
reported by Caracausi and colleagues, and 7 were GiniGenes. The results here are likely influenced by the number 
and status (disease or normal) of the tissues analysed in the various data sets compared; for example, the GTEx 
data come from 53 different, normal human tissues, whereas the HPA tissue data include a mixture of disease 
and normal tissue samples. In addition, compared to the cell line data where hundreds (in the case of the Cancer 
Cell Line Encyclopedia) of cell lines were analysed, the number of tissues in these data sets was fewer than 100.

Figure 3.  Gini coefficient of candidate reference genes in CCLE and Klijn/Genentech cell-line datasets. Left 
panel shows all proposed housekeeping genes considered in this study, with the right panel showing labels of 
those genes with a GC < 0.25. The line of best fit is y = −0.171 + 0.829 × (r2 = 0.909). Colour code as in Fig. 2.
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In the case of the data set used by Eisenberg and Levanon49, viz. the Illumina Human Body Map 
(E-MTAB-513), 10 of the 11 housekeeping genes proposed here (which included 2 Gini Genes, CHMP2A and 
VPS29) had a GC ≤ 0.2 and were reasonably well expressed (with median expression levels between 50–270 TPM, 
see Supplementary Table S2 and Supplementary Fig. S4). This may be compared to the 5 other GGs with GC < 
0.2 in this data set whose expression value was lower, with median expression between 19–35 TPM. This suggests 
that finding suitable HKGs may be dependent on the data set itself, and the type of tissue under investigation.

We next sought to perform a more comprehensive and integrative analysis by filtering the tissue data sets to 
only include genes with a GC ≤ 0.2 to find common genes across these data sets with reasonable expression stabil-
ity (Supplementary Table S3). As shown in Fig. 10 only 15 genes were shared between the four data sets with a GC 
≤ 0.2, none of which has been reported previously as a housekeeping genes. Table 4 shows some descriptive statis-
tics of these genes. In any case, the names of the proteins encoded by these 15 genes suggest these play important 
and essential roles. The median expression values of these genes varied from around 10–450 TPM, with SNX3 

Figure 4.  Robustness of the Gini coefficient. (A) IQR of different genes in Klijn/Genentech vs HPA cell-line 
dataset. Left panel shows all genes considered in this study, with right panel showing genes with IQR < 2 in both 
datasets. Line of best linear fit (in log space) shown is y = 0.01 + 1.11 × (r2 = 0.937). (B) IQR of different genes 
in CCLE vs HPA cell-line dataset. Left panel shows all genes considered in this study, with right panel showing 
genes with IQR < 2 in both datasets. Line of best linear fit (in log space) shown is y = 0.04 + 0.99 × (r2 = 0.930). 
(C) Min vs Max: Median expression levels in HPA data set. Colour code as in Fig. 2.
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(Sorting nexin-3 (Protein SDP3)) and COX4I1 (Cytochrome c oxidase subunit 4 isoform 1) being consistently 
the two highest-expressing genes.

Sorting nexins are a group of cytoplasmic and membrane-associated proteins involved in the regulation of 
intracellular trafficking117. SNX3 has been reported to play a role in receptor recycling and formation of multive-
sicular bodies118, and its dysregulation has been implicated in disorders of iron metabolism and the pathogenesis 
of some neurodegenerative diseases119,120.

The COX4I gene encodes the nuclear-encoded cytochrome c oxidase subunit 4 isoform 1, the terminal 
enzyme in the mitochondrial respiratory chain. Given the key role of the mitochondrial respiratory chain in all 
human cells (except red blood cells), stable expression of such a gene in all tissues may not be a surprising result. 
Increased RNA COX4I1 levels have been reported in sperm of an obese male rat model121 and thus may play a role 
in obesity-related fertility problems, and reduced expression of this subunit leads to a reduction in mitochondrial 
respiration as well as sensitising cells to apoptosis122.

The small number of genes shared between these data sets with a GC < 0.2 indicates that the data in these 
studies are more variable compared to cell lines alone. The cause of this variation may be due to the tissue data 
having been obtained from different subjects123. Moreover, tissues are themselves a mixture of cell types with 
varying levels of gene expression in each cell type124, while cell lines are nominally clonal.

Our results suggest that in the case of RNA-seq tissue data sets, where gene expression tends to be more varia-
ble, an unbiased approach, using the Gini coefficient, may be more fruitful in the search for stably expressed genes 
with which to perform normalisation, than the other commonly used methods used until now123,125.

RT-qPCR analysis of gene expression stability of some housekeeping genes in 10 cell lines.  In 
order to illustrate the utility of the GC to find suitable housekeeping genes, we next chose to assess this experi-
mentally by RT-qPCR using a small subset of candidate reference genes (40; top 32 genes from genes ordered by 
GC and expression value from94, plus 8 of the most commonly used from the literature, including seven from66 
and one (RPL32) from126,127, and 10 cell lines from a range of tissues (see Tables 5 and 6). We first set a Cq value 
(which is inversely proportional to expression level) cut-off of 32, above which no expression is observed, and 
subsequently used the Cq values of genes in cell lines as a relative expression level (Cq cut off/Cq value of gene). 
Descriptive statistics of the expression of each gene in individual cell lines were then calculated. As a final step, the 
median expression value of each gene in individual cell lines was used to calculate descriptive statistics, including 
the GC, of gene expression across these cell lines. Figure 11 illustrates a KNIME workflow128–130 that we wrote for 
this purpose. The raw data and descriptive statistics extracted are provided in Supplementary Tables S5 and S6 
respectively, and the KNIME analysis workflow in Supplementary File 1.

Figure 12 uses RT-qPCR data to plot the GC of the candidate reference genes analysed here versus their 
relative median expression level. Three GiniGenes94 (RBM45, TRNT1 and CNOT2) had very low and variable 
expression. Most of the other genes analysed showed low GC values with a range of (relative) expression values; 
the inset in Fig. 12 shows genes with a GC < 0.2 including a mix of 35 genes: 26 GiniGenes and 6 housekeeping 
genes referenced by Vandesompele and colleagues66, one referenced by Caracausi65 and one by Lee et al.131. Two 
of these GiniGenes, HNRNPK and PCBP1, which we also found to be stably expressed in the cell line data sug-
gesting these may be potential stable housekeeping genes. As shown in Fig. 13 and inset, the GC is well correlated 
with the % RSD.

More importantly, the GC of our GiniGenes was particularly low (Fig. 12). The low absolute magnitude 
reflected the fact that Cq value is based on a logarithmic scale. Various commonly used housekeeping genes 
(HPRT1, GAPDH, ACTB, SDHA, HMBS and B2M) displayed higher % RSDs and GC than other genes studied 
here in spite of their higher relative expression levels. This was also the case when inspecting the interquartile 
ratio against the GC of these (Fig. S3).

The above results suggest that the GC is also applicable to RT-qPCR data, with GiniGenes having good poten-
tial (as novel “housekeeping” genes) for the normalisation of such data.

Figure 5.  Shared and unique genes in HPA, CCLE and Klijn/Genentech cell-line data sets. (A) Genes with a 
GC < 0.2 .(B) Housekeeping genes in Table 2 with GC < 0.2.
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Discussion
Reference genes are commonly used to normalise gene expression data, so as to account for bias resulting from 
both biological and technical variability, and to enable quantification of gene expression changes or differences in 
the system under study. It is generally considered that such reference genes should come from pathways that are 
required for general metabolism, using only one gene per ‘pathway’ to avoid co-regulation which might make the 
gene expressions look very stable.

Such reference genes are commonly referred to as ‘housekeeping’ genes (HKGs) because they are consid-
ered to participate in essential cellular functions, are ubiquitously expressed in all cells and tissue types, and 
their expression is considered to be stable49–66). A number of such genes have been proposed over the years, 
and genes such as GAPDH, ACTB, RPL13A, SDHA, B2M are frequently used in such studies66. However, the 

Figure 6.  GC vs Median for 115 genes in. (A) HPA, (B). CCLE and C. Klijn/Genentech cell-line data sets. 
Colour coding: Blue, Caracausi; Green, GeneGini reference genes; Grey, neither. Shape coding: Circle, other; 
Triangle, SLC coding gene.
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expression levels of these and other proposed HKGs have in fact been shown to vary widely between cells and 
tissues (e.g.53,62,65,67–79) and their expression has also been reported to be affected by a number of factors relating 
to the experiment such as cell confluence132, pathological, experimental and tissue specific conditions133. As high-
lighted by Huggett et al.134, despite the reports of the potential variability of expression of ‘classic’ references genes 
such as GAPDH and ACTB, these are still used without mention of any validation processes. Our GiniGenes are 
selected as reference genes through different, data-driven, criteria.

Various tools have been developed to evaluate and screen reference genes from experimental datasets; these 
include geNorm66, NormFinder135, Best Keeper136 and the comparative ΔCT finder52. RefFinder (http://leonxie.
esy.es/RefFinder/#) and RefGenes (https://refgenes.org/rg//) can integrate these to enable a comparison and rank-
ing of any tested candidate reference genes137.

Gene

Gini 
(HPA 
Cells)

Gini 
(CCLE)

Gini 
(Klijn)

Median 
(HPA 
Cells)

Median 
(CCLE)

Median 
(Klijn)

RSD 
(HPA 
Cells)

RSD 
(CCLE)

RSD 
(Klijn)

GeneGini 
(GG)/
GeNorm 
(V), 
Eisenberg 
(EL), 
Lee (L), 
Caracausi 
© /N (Cell 
Line Data 
sets) Reference S/A/O Protein name

Uniprot 
ID Role

ARF1 0.18 0.19 0.18 316.70 423.00 517.00 32.54 35.87 35.17 N N O ADP-ribosylation 
factor 1 P84077

Essential and ubiquitous GTP-
binding protein regulators of 
vesicular trafficking and actin 
remodeling.

CNBP 0.15 0.20 0.16 324.24 602.00 637.50 28.47 37.37 29.49 N N O
Cellular nucleic 
acid-binding 
protein

P62633
Zinc finger protein, function 
unclear (Pellizzoni et al. 1997), 
regulates protein translation 
and transcription (Wei 2018)

DYNLL1 0.17 0.19 0.16 485.97 215.50 224.00 30.73 34.50 28.50 N N O Dynein light chain 
1, cytoplasmic P63167

Component of dynein 
involved in intracellular 
transport and motility

EDF1 0.16 0.19 0.18 449.42 379.00 502.50 29.69 33.83 34.30 N N O
Endothelial 
differentiation-
related factor 1

O60869

Modulates transcription of 
genes involved in endothelial 
differentiation, also acts as a 
transcriptional coactivator 
(Cazzaniga 2018)

EIF4H 0.15 0.18 0.17 294.21 553.50 673.00 27.91 33.27 30.64 N N O
Eukaryotic 
translation 
initiation factor 4H

Q15056 Translation initiation factor

HNRNPC 0.18 0.19 0.17 800.62 314.50 409.50 32.96 34.41 29.97 N N O
Heterogeneous 
nuclear 
ribonucleoproteins 
C1/C2

P07910
RNA binding protein involved 
in regulation of RNA splicing, 
export, expression, stability, 
and translation.

HNRNPK 0.14 0.17 0.12 603.32 548.00 625.50 25.19 29.60 21.35 GG 1 O
Heterogeneous 
nuclear 
ribonucleoprotein 
K

P61978
Regulation of RNA 
transcription and translation, 
splicing, nuclear export, and 
decay

PCBP1 0.14 0.20 0.16 291.40 336.00 452.00 24.52 36.23 29.01 GG 1 O Poly(rC)-binding 
protein 1 Q15365

Regulation of mRNA 
transcription, translation and 
stability

PFDN5 0.17 0.20 0.19 451.20 158.00 152.50 31.60 41.30 35.69 N N O Prefoldin subunit 5 Q99471

Molecular protein folding 
cytosolic chaperone. 
Prevents misfolding of 
newly synthesised nascent 
polypeptides

SF3B1 0.16 0.19 0.15 179.26 143.00 164.00 29.26 33.89 27.01 N N O Splicing factor 3B 
subunit 1 O75533

Essential RNA-protein 
complex involved in pre-
mRNA splicing

SLC25A3 0.17 0.18 0.16 471.21 154.00 193.00 30.19 32.86 28.39 C 65 S
Phosphate 
carrier protein, 
mitochondrial

Q00325
Phosphate transport from 
cytoplasm to mitochondria, 
with protons.

SRP14 0.17 0.19 0.17 224.37 296.00 347.50 30.36 34.77 30.62 N N O
Signal recognition 
particle 14 kDa 
protein

P37108

Signal-recognition-particle 
assembly has a crucial role in 
targeting secretory proteins 
to the rough endoplasmic 
reticulum membrane. 
Required for elongation arrest 
by binding with SRP9 to the 
Alu domain.

SRSF3 0.19 0.19 0.15 260.33 164.00 207.00 35.17 33.97 28.60 N N O
Serine/arginine-
rich splicing 
factor 3

P84103

splicing factor that 
promotes exon inclusion 
during alternative splicing. 
Regulatory roles in RNA 
metabolism and functions 
such as mRNA splicing and 
3’end processing. Essential for 
embryo development

Table 3.  Descriptive statistics of 13 genes common across cell-line data sets with GC < 0.2. In addition, the 
protein name, as well as UniProt ID and function are shown. S/A/O refers to SLC, ABC or Other respectively.
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Figure 7.  Robustness of GC for finding stably expressed genes using shared genes between HPA, CCLE and 
Klijn/Genentech cell-line data sets with GC < 0.2. Shown are the results for the Klijn/Genentech dataset. (A) 
IQR vs GC, (B). Max:Mean vs Min. Colour coding: Blue, Caracausi; Green, GeneGini reference genes; Grey, 
neither. Shape coding: Circle, other; Triangle, SLC coding gene.

Figure 8.  Gini coefficient and median expression levels of proposed reference genes in the HPA tissue dataset. 
Colour coding: blue, Caracausi; purple, Eisenberg and Levanon; green, GeneGini reference genes; yellow, both 
GeneGini and Eisenberg and Levanon; orange, Lee; black, Vandesompele.

Figure 9.  Robustness of the Gini coefficient in the HPA tissue data set. (A) RSD versus Gini coefficient 
of candidate reference genes. Line of best linear fit (in log space) shown is y = 2.45 + 1.24 × (r2 = 0.938) 
(B). IQR versus Gini coefficient of candidate reference genes. Line of best linear fit (in log space) shown is 
y = 0.87 + 0.96 × (r2 = 0.566). Colour code as in Fig. 8.
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Gene

Gini Gini Gini Gini Median Median Median Median % RSD % RSD % RSD % RSD

Protein name
UniProt 
ID Function (UniProt)

(HPA 
Tissue) (GTEx) (PCAWG) (HBM)

(HPA 
Tissue) (GTEx) (PCAWG) (HBM)

(HPA 
Tissue) (GTEx) (PCAWG) (HBM)

CHCHD4 0.19 0.14 0.19 0.19 13.08 17 20 25.69 36.11 27.26 40.35 35.44

Mitochondrial 
intermembrane 
space import 
and assembly 
protein 40

Q8N4Q1

Functions as a chaperone and catalyses 
formation of disulfide bonds in substrate 
proteins such as COX17, COX19 and 
MICU1. Required for import of small 
cysteine-containing proteins in the 
mitochondrial intermembrane space.

COPS5 0.17 0.17 0.2 0.17 45.27 19 20 20 32.46 30.76 43.24 33.27

COP9 
signalosome 
complex subunit 
5 (SGN5)

Q92905

Probable protease subunit of the 
COP9 signalosome complex (CSN), a 
complex involved in various cellular and 
developmental processes. The CSN complex 
is an essential regulator of the ubiquitin 
(Ubl) conjugation pathway by mediating the 
deneddylation of the cullin subunits of the 
SCF-type E3 ligase complexes, leading to 
decrease the Ubl ligase activity of SCF-type 
complexes such as SCF, CSA or DDB2. The 
complex is also involved in phosphorylation 
of p53/TP53, c-jun/JUN, IkappaBalpha/
NFKBIA, ITPK1 and IRF8, possibly via its 
association with CK2 and PKD kinases. 
CSN-dependent phosphorylation of 
TP53 and JUN promotes and protects 
degradation by the Ubl system, respectively. 
In the complex, it probably acts as the 
catalytic center that mediates the cleavage 
of Nedd8 from cullins. It however has 
no metalloprotease activity by itself and 
requires the other subunits of the CSN 
complex. Interacts directly with a large 
number of proteins that are regulated by 
the CSN complex, confirming a key role 
in the complex. Promotes the proteasomal 
degradation of BRSK2.

COX4I1 0.17 0.12 0.18 0.16 447.69 123 144 94.13 33.09 22.96 37.11 28.92

Cytochrome c 
oxidase subunit 
4 isoform 1, 
mitochondrial

P13073

This protein is one of the nuclear-coded 
polypeptide chains of cytochrome c oxidase, 
the terminal oxidase in mitochondrial 
electron transport.

IDH3G 0.16 0.18 0.17 0.18 44.67 56 60 34.75 28.6 31.58 33.02 32.45

Isocitrate 
dehydrogenase 
[NAD] subunit 
gamma, 
mitochondrial

P51553

Regulatory subunit which plays a role in 
the allosteric regulation of the enzyme 
catalyzing the decarboxylation of 
isocitrate (ICT) into alpha-ketoglutarate. 
The heterodimer composed of the alpha 
(IDH3A) and beta (IDH3B) subunits and 
the heterodimer composed of the alpha 
(IDH3A) and gamma (IDH3G) subunits, 
have considerable basal activity but the full 
activity of the heterotetramer (containing 
two subunits of IDH3A, one of IDH3B and 
one of IDH3G) requires the assembly and 
cooperative function of both heterodimers.

MAP2K2 0.2 0.17 0.18 0.17 60.91 55 58.5 30.75 36.87 31.05 34.07 31.65

Dual specificity 
mitogen-
activated 
protein kinase 
kinase 2 (MAP 
kinase kinase 2) 
(MAPKK 2) (EC 
2.7.12.2)

P36507

Catalyzes the concomitant phosphorylation 
of a threonine and a tyrosine residue in 
a Thr-Glu-Tyr sequence located in MAP 
kinases. Activates the ERK1 and ERK2 MAP 
kinases (By similarity).

MTIF3 0.18 0.17 0.19 0.19 45.15 51 55 72.63 33.81 30.61 37.88 37.82

Translation 
initiation 
factor IF-3, 
mitochondrial 
(IF-3(Mt))

Q9H2K0

IF-3 binds to the 28 S ribosomal subunit 
and shifts the equilibrium between 55 S 
ribosomes and their 39 S and 28 S subunits 
in favor of the free subunits, thus enhancing 
the availability of 28 S subunits on which 
protein synthesis initiation begins.

MTRF1L 0.17 0.19 0.19 0.14 7.86 11 17 17 31.84 33.29 34.42 28.57

Peptide 
chain release 
factor 1-like, 
mitochondrial

Q9UGC7

Mitochondrial peptide chain release factor 
that directs the termination of translation in 
response to the peptide chain termination 
codons UAA and UAG.

NDUFB8 0.16 0.16 0.18 0.19 143.5 39 37.5 56.63 30.35 28.76 33.91 35.07

NADH 
dehydrogenase 
[ubiquinone] 1 
beta subcomplex 
subunit 8, 
mitochondrial

O95169

Accessory subunit of the mitochondrial 
membrane respiratory chain NADH 
dehydrogenase (Complex I), that is believed 
not to be involved in catalysis. Complex 
I functions in the transfer of electrons 
from NADH to the respiratory chain. The 
immediate electron acceptor for the enzyme 
is believed to be ubiquinone.

NMT1 0.2 0.2 0.18 0.16 29.71 46 51.5 39.94 36.83 35.09 34.69 29.15

Glycylpeptide 
N-tetradecanoyl-
transferase 1 (EC 
2.3.1.97)

P30419

Enzyme catalysing transfer of myristate 
from CoA to proteins. Required for full 
expression of the biological activiteies of 
several N-myristoylated proteins, including 
the alpha subunit of the signal-transducing 
guanine nucleotide-binding protein (G 
protein) GO (GNAO1; MIM 139311)

PPID 0.16 0.17 0.17 0.19 31.11 29 32.5 44.75 29.02 32.72 34.11 33.73

Peptidyl-prolyl 
cis-trans 
isomerase D 
(PPIase D) (EC 
5.2.1.8)

Q08752

Catalyze the cis-trans isomerization 
of proline imidic peptide bonds in 
oligopeptides and accelerate the folding 
of proteins. This protein has been shown 
to possess PPIase activity and, similar to 
other family members, can bind to the 
immunosuppressant cyclosporin A.

Continued
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Gene

Gini Gini Gini Gini Median Median Median Median % RSD % RSD % RSD % RSD

Protein name
UniProt 
ID Function (UniProt)

(HPA 
Tissue) (GTEx) (PCAWG) (HBM)

(HPA 
Tissue) (GTEx) (PCAWG) (HBM)

(HPA 
Tissue) (GTEx) (PCAWG) (HBM)

RTCA 0.17 0.18 0.2 0.18 26.5 24 27 33.69 30.67 35.82 42.89 33.68

RNA 3’-terminal 
phosphate 
cyclase (RNA 
cyclase)

O00442

Catalyzes the conversion of 3’-phosphate 
to a 2’,3’-cyclic phosphodiester at the end 
of RNA. The mechanism of action of the 
enzyme occurs in 3 steps: (A) adenylation 
of the enzyme by ATP; (B) transfer of 
adenylate to an RNA-N3’P to produce RNA-
N3’PP5’A; (C) and attack of the adjacent 
2’-hydroxyl on the 3’-phosphorus in the 
diester linkage to produce the cyclic end 
product. The biological role of this enzyme 
is unknown but it is likely to function in 
some aspects of cellular RNA processing.

SELENOK 0.19 0.16 0.18 0.18 31.07 49 49 80.94 36.89 30.39 38.19 33.31 Selenoprotein K 
(SelK) Q9Y6D0

Required for Ca2 + flux in immune cells 
and plays a role in T-cell proliferation 
and in T-cell and neutrophil migration 
(By similarity). Involved in endoplasmic 
reticulum-associated degradation 
(ERAD) of soluble glycosylated proteins 
(PubMed:22016385). Required for 
palmitoylation and cell surface expression 
of CD36 and involved in macrophage 
uptake of low-density lipoprotein and 
in foam cell formation (By similarity). 
Together with ZDHHC6, required for 
palmitoylation of ITPR1 in immune cells, 
leading to regulate ITPR1 stability and 
function (PubMed:25368151). Plays a 
role in protection of cells from ER stress-
induced apoptosis (PubMed:20692228). 
Protects cells from oxidative stress 
when overexpressed in cardiomyocytes 
(PubMed:16962588).

SMG5 0.19 0.16 0.19 0.18 34.89 63 64 34.13 35.95 27.52 44.99 34.09
Protein SMG5 
(EST1-like 
protein B)

Q9UPR3

Plays a role in nonsense-mediated mRNA 
decay. Does not have RNase activity by itself. 
Promotes dephosphorylation of UPF1. 
Together with SMG7 is thought to provide 
a link to the mRNA degradation machinery 
involving exonucleolytic pathways, and 
to serve as an adapter for UPF1 to protein 
phosphatase 2 A (PP2A), thereby triggering 
UPF1 dephosphorylation. Necessary for 
TERT activity.

SNX3 0.17 0.18 0.19 0.18 169.22 190 208.5 327.06 30.77 31.22 39.21 33.13 Sorting nexin-3 
(Protein SDP3) O60493

Phosphoinositide-binding protein required 
for multivesicular body formation. 
Specifically binds phosphatidylinositol 
3-phosphate (PtdIns(P3)). Also can 
bind phosphatidylinositol 4-phosphate 
(PtdIns(P4)), phosphatidylinositol 
5-phosphate (PtdIns(P5)) and 
phosphatidylinositol 3,5-biphosphate 
(PtdIns(3,5)P2) (By similarity). Plays a 
role in protein transport between cellular 
compartments. Together with RAB7A 
facilitates endosome membrane association 
of the retromer cargo-selective subcomplex 
(CSC/VPS). May in part act as component 
of the SNX3-retromer complex which 
mediates the retrograde endosome-
to-TGN transport of WLS distinct 
from the SNX-BAR retromer pathway 
(PubMed:21725319, PubMed:24344282). 
Promotes stability and cell surface 
expression of epithelial sodium channel 
(ENAC) subunits SCNN1A and SCNN1G 
(By similarity). Not involved in EGFR 
degradation. Involved in the regulation of 
phagocytosis in dendritic cells possibly by 
regulating EEA1 recruitment to the nascent 
phagosomes (PubMed:23237080). Involved 
in iron homeostasis through regulation 
of endocytic recycling of the transferrin 
receptor TFRC presumably by delivering 
the transferrin:transferrin receptor complex 
to recycling endosomes; the function may 
involve the CSC retromer subcomplex 
(By similarity). In the case of Salmonella 
enterica infection plays arole in maturation 
of the Salmonella-containing vacuole (SCV) 
and promotes recruitment of LAMP1 to 
SCVs (PubMed:20482551).

SURF1 0.18 0.15 0.2 0.17 18.3 47 57.5 45.69 34.94 26.2 38.25 32.15 Surfeit locus 
protein 1 Q15526

Component of the MITRAC 
(mitochondrial translation regulation 
assembly intermediate of cytochrome c 
oxidase complex) complex, that regulates 
cytochrome c oxidase assembly.

Table 4.  Descriptive statistics of 15 common genes across tissue data sets with a GC < 0.2. In addition, the 
protein name, as well as UniProt ID and function are shown.
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These tools assess expression stability of genes in different ways:

•	 geNorm determines gene stability through a stepwise exclusion or ranking process followed by averaging the 
geometric mean of the most stable genes from a chosen set. Python implementation: https://eleven.readthe-
docs.io/en/latest/.

•	 BestKeeper also uses the geometric mean but using raw data rather than copy numbers. BestKeeper136 can be 
used as an Excel-based tool. It can accommodate up to 10 housekeeping genes in up to 100 biological sam-
ples. Optimal HKGs are determined by pairwise correlation analysis of all pairs of candidate genes, and the 
geometric mean of the top-ranking ones. http://www.gene-quantification.info.

•	 NormFinder measures variation, and ranks potential reference genes between study groups. NormFinder135 
has an add-in for Microsoft Excel and is available as an R programme. It recommends analysis of 5–10 candi-
date genes and at least 8 samples per group. https://moma.dk/normfinder-software.

•	 The comparative ΔCT finder requires no specialist programmes since this involves comparison of compari-
sons of ΔCTs between pairs of genes to find a set of genes that show least variability.

•	 RefGenes allows one to find genes that are stably expressed across tissue types and experimental conditions 
based on microarray data, and a comparison of results from geNorm, NormFinder and Best Keeper to find a 
set of reference genes. However, this is not a free service unless one searches for one gene at a time. Further-
more, the site for this tool is no longer available. Moreover, all these tools require the user to make a prior 
selection of such HKGs (introducing bias and potential errors) and most are cumbersome to understand and 
calculate.

We have here shown how via a simple calculation, the GC, we can find potential reference genes, and illus-
trated its utility in large-scale cell-line, tissue RNA-Seq data sets and RT-qPCR data. The expression of a num-
ber of classical HKGs from a number of carefully selected publications do in fact vary much more substantially 
between large RNA-Seq data sets, both for tissues and cell lines.

Whilst not all studies will involve large data sets such as those we have analysed here; the GC should also be 
of use for smaller-scale studies to select a subset of genes in a panel of cell lines or tissues relevant to the study in 
question.

Overall we find that (i) two of these genes, HNRNPK and PCBP1, seemed to be particularly robustly and 
stably expressed at reasonable levels in all cell lines studied, and (ii) a data-driven strategy based on the GC repre-
sents a useful and convenient method for normalisation in gene expression profiling and related studies.

Methods
The datasets used are described and referenced below. The data, in transcripts per million (TPM) units were 
downloaded from the EBI expression atlas as a .tsv file. As previously1, the Gini Index was calculated using the 
ineq package (Achim Zeileis (2014). ineq: Measuring Inequality, Concentration, and Poverty. R package version 
0.2–13. https://CRAN.R-project.org/package=ineq) in R (https://www.R-project.org/). These calculations were 
incorporated into KNIME via KNIME’s R integration R Snippet node. A spreadsheet giving the extracted analyses 
is provided as Supplementary Tables (Tables S7 and S8).

Cell lines and culture conditions.  A panel of 10 cell lines were grown in appropriate growth media: K562, 
PNT2 and T24 in RPMI-1640 (Sigma, Cat No. R7509), Panc1 and HEK293 in DMEM (Sigma, Cat No. D1145), 
SH-SY5Y in 1:1 mixture of DMEM/F12 (Gibco, Cat No. 21041025), J82 and RT-112 in EMEM (Gibco, Cat No. 
51200–038), 5637 in Hyclone McCoy’s (GE Healthcare, Cat No. SH30270.01) and PC3 in Ham’s F12 (Biowest, Cat 
No. L0135-500). All growth media were supplemented with 10% fetal bovine serum (Sigma, Cat No. f4135) and 
2 mM glutamine (Sigma, Cat No. G7513) without antibiotics. Cell cultures were maintained in T225 culture flasks 
(Star lab, CytoOne Cat No. CC7682-4225) kept in a 5% CO2 incubator at 37 °C until 70–80% confluent.

Figure 10.  UpSetR139 plot showing genes with a GC < 0.2 that are variously shared and unique across 
the PCAWG, HBM, GTEX and HPA tissue data sets. The data underpinning this plot can be found in 
Supplementary Table S4.

https://doi.org/10.1038/s41598-019-54288-7
https://eleven.readthedocs.io/en/latest/
https://eleven.readthedocs.io/en/latest/
http://www.gene-quantification.info
https://moma.dk/normfinder-software
https://CRAN.R-project.org/package=ineq
https://www.R-project.org/


1 4Scientific Reports |         (2019) 9:17960  | https://doi.org/10.1038/s41598-019-54288-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Cell line Tissue Disease Morphology Growth mode Media

K562 Blood Chronic Myeloid 
Leukemia Lymphoblast Suspension RPMI-1640

HEK293 Kidney
Immortalized cell line 
obtained by transfecting 
sheared adenovirus 5 DNA

Epithelial Adherent DMEM

Panc1 Pancreas Pancreatic carcinoma of 
ductal origin Epithelial Adherent DMEM

SH-SY5Y Neuroblastoma metastasis Neuroblast Adherent DMEM

T24 Bladder bladder carcinoma Epithelial Adherent McCoy’s 5A

J82 Bladder Transitional cell 
carcinoma Epithelial Adherent EMEM

RT-112 Bladder Carcinoma Epithelial Adherent RPMI-1640

5637 Bladder Grade II carcinoma Epithelial Adherent RPMI-1640

PC3 Prostate Grade IV adenocarcinoma Epithelial Adherent Ham’s F12

PNT2 Prostate Immortalized with SV40 Epithelial Adherent RPMI-1640

Table 5.  Details of human cell lines used for the assessment of expression of candidate reference genes by RT-
qPCR.

Figure 11.  The KNIME workflow described here to calculate descriptive statistics and the Gini coefficient from 
RT-qPCR data. This workflow can be adapted for use with large RNA-Seq Data sets.

Figure 12.  Gini coefficient and median expression levels of candidate reference genes assessed by RT-qPCR. 
Left panel shows all genes considered in this study, with right panel showing genes with GC < 0.2. Colour 
coding: green, GeneGini reference genes; red, both GeneGini and Caracausi reference genes; yellow, GeneGini 
and Eisenberg and Levanon; orange, Lee, yellow; black, Vandesompele; purple, Zhang and Kriegova.
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Gene Name Uniprot
Gini (HPA  
Cell Lines)

GeneGini (GG)/GeNorm 
(V), Eisenberg & 
Levanon (EL), Lee (L), 
Caracausi (C), Zhang & 
Kriegova (ZK) S/A/O Reference

ACTB P60709 0.26 V O 66

B2M P61769 0.44 V O 66

BTF3 P20290 0.15 GG O 1

C2orf49 Q9I8G4 0.14 GG O 1

CHTOP Q9Y3Y2 0.14 GG O 1

CLINT1 Q14677 0.14 GG O 1

CNOT2 Q9NZN8 0.14 GG O 1

CNOT4 O95628 0.13 GG O 1

GAPDH P04406 0.27 V O 66

GGNBP2 Q5SV77 0.15 GG O 1

GORASP2 Q9H8Y8 0.15 GG O 1

HMBS P08397 0.26 V O 66

HNRNPK P04637 0.14 GG O 1

HPRT1 P00492 0.31 V O 66

IK Q13123 0.13 GG O 1

INTS14 Q96SY0 0.14 GG O 1

KAT5 Q92993 0.13 GG O 1

MDH1 P40925 0.15 GG O 1

NACA Q13765 0.15 GG O 1

NXF1 Q9UBU9 0.12 GG O 1

PARK7 Q99497 0.14 GG O 1

PCBP1 Q15365 0.14 GG O 1

PCBP2 Q15366 0.14 GG O 1

RBM45 Q8IUH3 0.12 GG O 1

RNF123 Q5XPI4 0.15 GG O 1

RPL13A P40429 0.21 V O 66

RPL32 P62910 0.22 ZK O 126,127

RPL41 P62945 0.15 GGC O 1,65

RPRD2 Q5VT52 0.14 GG O 1

SDHA P31040 0.29 V O 66

SF3B2 Q13435 0.11 GG O 1

SNW1 Q13573 0.13 GG O 1

SRP19 P09132 0.14 GG O 1

SUPT7L O94864 0.13 GG O 1

TRNT1 Q96Q11 0.15 GG O 1

TXNL1 O43396 0.14 GG O 1

UBE2Q1 Q7Z7E8 0.14 GG O 1

UBR2 Q8IWV8 0.14 GG O 1

UXT Q9UBK9 0.13 GG O 1

VPS29 Q9UBQ0 0.15 GGEL O 1,49

Table 6.  Candidate reference genes used to assess expression stability experimentally by RT-qPCR. Included 
are gene name and UniProt ID, Gini coefficient as calculated using the HPA cell-line data set. S/A/O refers to 
SLC, ABC or Other respectively.
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Harvesting Cells for RNA Extraction.  Cells from adherent cell lines were harvested by removing growth 
media and washing twice with 5 mL of pre-warmed phosphate buffered saline (PBS) (Sigma, Cat No. D8537), 
then incubated in 3 mL of 0.025% trypsin-EDTA solution (Sigma Cat No. T4049) for 2–5 min at 37 °C. At the 
end of incubation cells were resuspended in 5–7 mL of respective media when cells appeared detached to dilute 
trypsin treatment. The cell suspension was transferred to 15 mL centrifuge tubes and immediately centrifuged 
at 300 × g for 5 min. Suspended cell lines were centrifuged directly from cultures in 50 mL centrifuge tubes and 
washed with PBS as above. The cell pellets were resuspended in 10–15 mL media and cell count and viability 
was determined using a Nexcellom Cellometer Auto 1000 Cell Viability Counter (Nexcellom Bioscience) set 
for Trypan Blue membrane exclusion method. Cells with >95% viability were used for downstream total RNA 
extraction.

RNA Extraction.  Total RNA was extracted from 2–5 × 106 cells using the Qiagen RNeasy Mini Kit (Cat No. 
74104) and DNAse treated using Turbo DNA-free kit (Invitrogen, Cat No. AM1907) according to the manufac-
turer’s instructions. Briefly, 1 X DNA buffer was added to the extracted RNA prior to adding 2U (1 µL) of DNAse 
enzyme. The reaction mixture was incubated at 37 °C for 30 min and inactivated for 2 min at room temperature 
using DNAse inactivating reagent. The mixture was centrifuged at 10,000 × g for 1.5 min and the RNA from 
the supernatant was transferred to a clean tube. The RNA concentration was determined using a NanoDrop® 
ND-1000 spectrophotometer and further validated using an Agilent 2100 bio-analyser coupled with 2100 Expert 
software system. Only RNA samples with an RIN (RNA Integrity Number) between 9–10 were selected for cDNA 
synthesis.

Reverse Transcription and cDNA Synthesis.  1 µg of RNA was reverse transcribed into cDNA. Briefly, 
a 20 µL reaction was setup by adding 1 µL each of oligodT (50 µM, Invitrogen, cat No. 18418020) and dNTP mix 
(10 mM, Invitrogen, Cat No. 18427-013) followed by adding an appropriate volume for 1 µg of RNA. Nuclease 
free water (Ambion, Cat No. AM9937) was then added to make the volume up to 13 µL and incubated at 65 °C 
for 5 min then cooled on ice for 1 min. To initiate transcription 4 µL of 5 X first strand buffer (Invitrogen, Cat No. 
1889832) and 1 µL each of 0.1 M DTT (Invitrogen, Cat No. 1907572), RNaseOUT™ (Invitrogen, Recombinant 
RNase Inhibitor, Cat No. 1905432) and SuperScript™ III RT (200 units/µL, Invitrogen, Cat No. 1685475) reverse 
transcriptase enzyme were added, mixed gently then incubated at 50 °C for 60 min followed by inactivation at 
70 °C for 15 min. The cDNA was diluted 1:100 to be used in RT-qPCR experiment.

Validation of gene expression by geNorm.  A set of candidate reference genes (40; top 32 genes from 
genes ordered by GC and expression value from94, plus 8 of the most commonly used from the literature includ-
ing seven from66). RNAseq data were selected for validation of stable gene expression using geNorm66. First, a 
typical qPCR protocol was prepared from a master mix for each gene to be tested per cell line in triplicate. This 
consisted of 10 µL/well made by adding 0.8 µL of nuclease free water (Ambion), 5 µL of LC480 SYBR Green I 
Master (2 X conc. Roche, Product No. 04887352001), 0.1 µL each of forward and reverse primers (20 µM) (for 
primer and amplicon sequences see Supplementary Table S9) and 4 µL of 1:100 diluted cDNA in a 384 well qPCR 
plate (Starlab Cat. No. E1042-9909-C). The no template controls (NTC) for each gene were produced by replacing 
cDNA with 4 µL of nuclease free water. Thermal cycling conditions used were: one cycle of 95 °C for 10 min fol-
lowed by 40 cycles of 95 °C for 10 sec and 60 °C for 30 sec. qPCR was performed using Roche LightCycler LC480 
qPCR platform. The fluorescence signals were measured in real time during amplification cycle (Cq) and also 
during temperature transition for melt curve analysis.

The mean Cq values were converted into relative values for a gene across all cell lines using ΔCq method138. 
Briefly, the lowest Cq value in a panel of cell lines for a gene was subtracted from all the values in that panel using 

Figure 13.  Robustness of the Gini coefficient in assessed experimentally by RT-qPCR using a small subset of 
proposed reference genes. Left panel shows Gini coefficient vs % RSD for all genes considered in this study, 
with right panel showing the same with genes with a GC < 0.2 and % RSD <10. Line of best linear fit shown is 
y = 0.002 + 0.004 × (r2 = 0.988). Shape coding as in Fig. 12.
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the equation: = −R 2 C C( )qsample qcontrol , where Cqsample
 is the mean Cq value obtained for a gene in each of the cell lines 

and Cqcontrol
is the lowest Cq value in that panel. The relative values for each gene in a panel were then obtained by 

applying = −ΔR 2 Cq. These relative values were applied in geNorm Visual Basic applet for Microsoft Excel®66 that 
determines the most stable reference genes from a set of genes in a given panel of cell lines.

Validation of gene expression using the Gini coefficient.  To the raw RT-qPCR data a Cq value (which 
is inversely proportional to expression level) cut-off of 32 was set, above which no expression is observed. The 
Cq values of genes in cell lines were subsequently converted to a relative expression level (Cq cut off/Cq value of 
gene). Descriptive statistics of the expression of each gene in individual cell lines were then calculated. As a final 
step, the median expression value of each gene in individual cell lines was used to calculate descriptive statistics, 
including the GC, of gene expression across these cell lines. Figure 11 illustrates a KNIME workflow128–130 for 
this purpose. The raw data and descriptive statistics extracted are provided in Supplementary Tables S5 and S6 
respectively, and the KMNIME analysis workflow in Supplementary File 1.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information Files). The original datasets used are referenced throughout and are summarised in Table 2.
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