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Quantitative analysis reveals reciprocal regulations
underlying recovery dynamics of thymocytes and
thymic environment in mice
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Thymic crosstalk, a set of reciprocal regulations between thymocytes and the thymic
environment, is relevant for orchestrating appropriate thymocyte development as well as
thymic recovery from various exogenous insults. In this work, interactions shaping thymic
crosstalk and the resultant dynamics of thymocytes and thymic epithelial cells are inferred
based on quantitative analysis and modeling of the recovery dynamics induced by irradiation.
The analysis identifies regulatory interactions consistent with known molecular evidence and
reveals their dynamic roles in the recovery process. Moreover, the analysis also predicts, and
a subsequent experiment verifies, a previously unrecognized regulation of CD4+CD8+
double positive thymocytes which temporarily increases their proliferation rate upon the
decrease in their population size. Our model establishes a pivotal step towards the dynamic
understanding of thymic crosstalk as a regulatory network system.
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portion of T cells with appropriate repertoires!. However,

it is relatively sensitive to insults from stress, viral infection,
radiation, and other stimuli®3. While a thymus in a healthy
animal can be normally recovered from these damages, a rela-
tively prolonged process of thymic recovery may impair T-cell-
mediated immunity due to a reduced replenishment of naive T-
cell repertoire during the recovery period>4.

Sub-lethal dose radiation on mice has been utilized as an
experimental model of the thymic regeneration after insults>®.
Ionizing irradiation is also broadly used for hematopoietic
transplantation and cancer therapy’-®, and total body irradiation
causes acute thymic injury and slow recovery of thymopoiesis.
Several studies have shown that irradiation reduces cellularity, not
only of thymocytes but also of thymic epithelial cells (TECs),
which are major constituents of the thymic environment>%10.
Because thymopoiesis is supported by interactions between thy-
mocytes and TECs!!, understanding thymic recovery requires
characterization of the reciprocal regulations between thymocytes
and TECs.

Concomitantly, various techniques to trace, perturb, and
quantify cells involved in these events have enabled us to quan-
titatively characterize their dynamics!?2-1°. By combining math-
ematical models with such quantitative data, dynamic aspects
of thymopoiesis have been distilled into the form of detailed
kinetic information, e.g., rates of proliferation, death, and
differentiation1>16, Mehr et al.1” developed the first kinetic model
of thymocyte development using ordinary differential equa-
tions'®. Since this seminal work, kinetic models of the thymo-
poiesis have been progressively refined by considering detailed
cellularity and developmental states of the thymocytes, as well as
by incorporating different experimental conditions!®-23.

However, previous works have focused only on thymocytes.
Thymic development and thymic recovery are not thymocyte-
autonomous but rather are supported by the thymic environment.
In the last decade, we have accumulated molecular-biological
evidence that the thymic environment itself is homeostatically
maintained by thymic crosstalk, bidirectional interactions
between the thymocytes and the thymic environment!!,242>,
Among several cells comprising the thymic environment, cortical
and medullary thymic epithelial cells (cTECs and mTECs) play
integral roles in inducing and controlling proliferation, apoptosis,
and lineage commitments of thymocytes!!26-30, Thymocytes
also regulate TECs by modulating their maturation and
proliferations®31-33, Despite the evident relevance and impor-
tance of thymic crosstalk for the thymopoiesis and the thymic
recovery, kinetic aspects of the reciprocal regulations between the
thymocytes and the TECs have not yet been clarified.

In this work, we investigate the joint dynamics of thymocytes
and TECs by combining a mathematical model with a quantita-
tive measurement of the number of thymocytes and TECs during
recovery after irradiation. Recovery dynamics are reproduced by
our mathematical model, in which we identified reciprocal
interactions between thymocytes and TECs that are relevant for
recovery and consistent with thymic crosstalk. Furthermore, we
demonstrate that the model provides an explanation for the
mechanism of the dynamical change in population size. Parti-
cularly, our model predicts, and a subsequent experiment verifies,
a previously unrecognized regulation of CD4+CD8+ double-
positive (DP) thymocytes, which temporarily increases their
proliferation rate upon the decrease in their population size.

The thymus is an organ responsible for producing a large

Result
Quantification of recovery dynamics of thymocytes and TECs.
To quantitatively investigate the kinetic relationship between

thymocytes and TECs as well as the establishment of thymic
recovery, we artificially perturbed populations of thymocytes and
TECs in thymi by using sub-lethal 4.5 Gy irradiation, and mea-
sured the dynamic changes in their population sizes over 3 weeks
following irradiation (Fig. 1a and Table 1). Figure 1b summarizes
the changes in cell numbers, which were sorted based on con-
ventional markers of thymocytes (Fig. 1c and Supplementary
Fig. 1a) and TECs (Fig. 1d and Supplementary Fig. 1b). Figure 1b
shows that all types of investigated thymocytes and TECs
decreased exponentially at different rates immediately after the
irradiation. Then, both thymocytes and TECs started recovering
within 10 days at the longest; the CD4—CD8— double-negative
(DN) thymocytes and the cTECs began recovery within 5 days,
whereas the CD4+CD8— single-positive (SP) thymocytes and the
mTECs required longer intervals, reflecting the temporal order of
the thymocyte development from DN to CD4+ SP (SP4) cells
through interactions from cTECs to mTECs.

Upon recovery, the population sizes of all but the SP cells
peaked around 15 days, and eventually returned to stationary
numbers, which were almost equivalent to or at least half of the
original population sizes before irradiation. Such overshooting
behaviors suggest that the numbers of thymocytes and TECs are
dynamically and mutually regulated via reciprocal interactions
(Table 1).

Mathematical model can reproduce recovery dynamics. To
infer regulatory interactions behind the dynamics, we constructed
a mathematical model for the population dynamics of the thy-
mocytes and the TECs using ordinary differential equations,
which explicitly include five cell types:

i € C = {DN,DP,SP4,cTEC, mTEC}. To account for the
acute influence of irradiation on the cells, the total number of
the cell type i at time ¢ (day), n®*(¢) is decomposed into two parts;
n¥(t) represents exponentially dying cells by the irradiation and
n(t) represents cells that survived or were newly generated after
irradiation. n}(f) is assumed to decrease exponentially at a
constant rate, w; (day~1), as n¥(t) = n!°(0)(1 — p;)e“, where p;
is the proportion of survived cells after irradiation; we modeled
the dynamics of n;(f) with ordinary differential equations.
Therefore, the total number of cell type i, #!°", which we observed
experimentally, is described as #n}°'(t) = n}(t) + n;(¢).

The temporal change in n,(t) is driven by the imbalance among
influx, proliferation, death, and outflux of the type i cells, each
of which depends on the numbers of other cells n(t):=
Mo (£), 1p (£), A5pa (£), Merc (£), Arec(£)]Ts where T denotes
transpose. While the influx may be independent of the number
of type i cells, the other should, in nature, depend on the number
of existing type i cells, n;(t). This allows us to generally represent
the ordinary differential equations for n,(t) as

PO (1) + n(e)m0),

where the influx should be non-negative, ¢,(n(t)) > 0, whereas
the marginalized rate of proliferation, death, and outflux, f;(n(t)),
can be either positive or negative. The actual value of f;(n(t)) is
determined by the balance among proliferation, cell death, and
outflux of type i cells. To obtain a minimal model with minimal
complexity, we assume that both ¢,(n(¢)) and f;(n(t)) are at most
linear with respect to n(tf) with possible constant time delays.
Therefore, our ordinary differential equation model as a whole
has, at most, quadratic nonlinearity. Considering reproducibility
of the recovery dynamics after the irradiation and consistency
with previously known molecular evidence, we obtained the

2 COMMUNICATIONS BIOLOGY | (2019)2:444 | https://doi.org/10.1038/s42003-019-0688-8 | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0688-8

ARTICLE

(b)

(@)
; Sub-lethal irradiation (450 rad)

Day1 Day4 Day49

e
!

Number of cells

7 weeks of age Sorting

i Cor Jcoed
Counting

LA

CD4-APC-Cy7

0430 3.
L7
CD8a-PE-Cy7

Control

UEA-1-APC

0 0 0 0
CD80-PE Gated on CD45 TER119"EpCAM*

Fig. 1 Recovery dynamics of thymocytes and TECs after sub-lethal irradiation. a A schematic diagram of the perturbation experiment. b The left panel
shows trajectories of the counts of thymocytes (DN: pink, DP: blue, SP4: light green) and TECs (cTEC: cyan, mTEC: brown) after irradiation. Points
correspond to the experimental cell counts, and the solid curves are linear interpolations of the average counts at each time point. The numbers of samples
at each time point are shown in Table 1. The right panel shows violin plots of the numbers of thymocytes and TECs without perturbation (n =15 for
thymocytes, n =16 for TECs). ¢ Typical flow cytometric profiles of the thymocytes after the sub-lethal dose radiation. Thymocytes were analyzed by
staining with anti-CD4 and anti-CD8a. Percentage of each fraction is shown in the panels. d Typical flow cytometric profiles of TECs after the sub-lethal
dose radiation. TECs (EpCAM+CD45~TER1197) were analyzed by staining with a combination of UEA-1 lectin and anti-CD80. Percentages of UEA-1T cells

(mTECs) and UEA-1- cells (cTECs) are shown in the panels.

whole model described as:

dnpy (¢
%() = ¢, + (8, — pynerpc()) npn (1),
dnpp (t
Ic)l};( J- 11 erec(B)npx (£)
n t
+ {92 (1 - %()) — yherpc(t — Tz)}”DP(t)7
2
d t
%C() =¢.+ <_6c + I‘c”DN(t))”cTEc(t)v
dngp, (t
%() = Uy pgnerpc(t — T2)1pp () — tyMrpc () nspa(t),
dn%]i(:(t) = ¢m + ¢m4nSP4(t)7

(1)

a diagrammatic representation of which is shown in Fig. 2a. Based
on this model with candidate parameter values as the initial
condition, we conducted a nonlinear least square estimation of
the whole parameter values in Eq. (1), {#°(0)},cc» {w;};cc» and

i

{pi};cc so that the whole model can reproduce all the
experimental data at once (Fig. 2b and Table 2). As shown in
Fig. 2b, our model, Eq. (1), nicely reproduced the experimentally
observed recovery, demonstrating that the interactions depicted
in Fig. 2a sufficiently account for the dynamics. Moreover, to
reevaluate the importance and statistical confidence of several
parameters, we statistically estimated the potential variability of
the estimated values by conducting a bootstrap parameter
estimation (Figs. 2c and 3, and Supplementary Table 1). As
shown in Fig. 3, most parameter values statistically fluctuate
around single peak, whereas a few parameters, e.g., the influx rate
of DN, ¢,, have multiple peaks in their estimates.

DN thymocytes and cTECs form a negative feedback. Our
estimated model indicates that DN thymocytes and ¢cTECs form a
negative feedback. DN cells marginally work to increase the
number of cTECs because y. in Eq. (1) is positive, whereas cTECs
effectively inhibit the increase in DN cells because —y; in Eq. (1)
is negative (Fig. 2a). This negative feedback is the source of the
overshooting behaviors in the recovery dynamics, and can
account for slower onset of cTECs recovery, which lagged a few
days behind DN cells.
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Table 1 The numbers of samples at each time point after irradiation.

Days after irradiation 0 1 4 7 9 n 12 13 14 15 17 19 49
Number of samples (thymocytes) 4 6 3 3 3 3 2 3 3 3 3 6 3
Number of samples (TECs) 4 6 3 6 3 3 2 3 6 3 3 6 3
(a) ®
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Fig. 2 Schematic diagram and trajectories of the mathematical model inferred from the quantitative data. a A schematic diagram of the intercellular
interactions inferred from the experimental data and represented by Eq. (1). b Trajectories of the numbers of thymocytes and TECs obtained by simulating
Eq. (1) with the optimally fitted parameter set. The curves represent simulated trajectories, and the points represent the same experimental data as Fig. 1b.
Cell types are designated by the color codes which are defined in a. ¢ Trajectories obtained by the bootstrap parameter estimation. Trajectories in different
panels with the same color correspond to a simulation with a parameter set estimated from a bootstrapped sample. The trajectories of 100 randomly
selected samples are shown in the panels. The points represent the same experimental data as Fig. 1b.

These interactions inferred from the quantitative recovery data
are also consistent with previously identified molecular evidence.
On one hand, the positive interaction from DN thymocytes to
cTECs may be interpreted as induction of cTEC proliferation by
DN cells, evidenced by the fact that the number of mature cTECs
decreases if DN differentiation is blocked at early stages31:34. On
the other hand, our model suggests that cTECs work to decrease
the number of DN cells. This negative interaction is a marginal
effect of induced cell death, induced differentiation from the DN
to the DP stages, and inhibition of DN proliferation by cTECs.
This negative regulation of DN cells by cTECs is consistent with
the lineage commitment of DN cells to the DP stage mediated by
cTECs in Notchl-Delta-like4-dependent manner?’-28, It should
be noted, however, that our model does not exclude other
possibilities of additional molecular interactions, as long as their
marginal influences are consistent with the diagram in Fig. 2a.

To further analyze the consistency of our model with the
underlying dynamics of DN subpopulations (DN1, DN2, DN3,
and DN4), we additionally quantified the dynamics of these
populations after irradiation (Supplementary Fig. 4). We also
modified Eq. (1) (denoted here as a coarse-grained model) to
include DN subpopulations (denoted as a detailed model and
shown in Methods), the parameter values of which were similarly
estimated. As demonstrated in Fig. 4a, b, the detailed model
reproduces the dynamics of the DN subpopulations (Fig. 4a) with

only small deviation from the coarse-grained model in which DN
subpopulations are lumped together (Fig. 4b). We should
mention that our estimates of DN1 and DN2 subpopulations
can be overestimates because an additional cell surface marker,
CD117, is required to exclude non-T-lineage fractions®. This
overestimate, however, has little effect on the inferred dynamics
of the total DN population (Fig. 4b), because the major fraction of
DN cells consists of DN3 and DN4 cells. The estimated parameter
values were also consistent with those of the coarse-grained
model except for the DN1 influx rate ¢, estimate, which was
much smaller than that of coarse-grained model. Because the
peak other than that around the optimal value in the bootstrap
estimate of ¢; was at the lower bound of its estimation range
(Fig. 3), a value smaller than the lower bound may also reproduce
the same recovery dynamics. To verify whether the estimate of ¢,
in the detailed model is also consistent with the coarse-grained
model, we simulated coarse-grained model by replacing the value
of ¢; in the model with the estimate from the detailed model. As
shown in Fig. 4b, the trajectories were almost unaffected by this
replacement. Moreover, from the biological viewpoint that the
number of the influx DN progenitors is quite small>®, this value of
¢, is also reasonable. Altogether, analysis of the detailed model
revealed that the smaller value of ¢;, which cannot be selected
only from the analysis of the coarse-grained model, is more
relevant.
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Table 2 A comparison of the estimated kinetic rates with those from previous studies.

Proportion of DP to SP4 in DP export (%) 10
SP4 apparent export rate (day~")

Term Value Cl Previous study

Inflow rate to DN [cells day='] (estimated by the coarse- 33x104 [3.3x103, 6.6 x104] 2.0x10% (19), 1.3 x 104 (43)

grained model)

Inflow rate to DN (cells day—") 6.61x10"  N/A 10" - 2x102 (36), 4.9 x 10! (20)

(estimated by the detailed model)

DN apparent proliferation rate (day=") 13x1071 [=2.2x1072,33%x1017 23x1071(19), 6.2x10-4 (43)
3.6 x1071 (20)

DN differentiation rate (day=") 1.4x10~-1 [57%x1076,35%x10"1] 2.4x10-1(19), 2.8 x10-2 (43)
3.4 %1071 (29), 45x10-" (42)

DN residence time (hour) 1.7x102  [6.9x10", 4.3 x106] 4.2 x102 (19), 3.5x102 (20)

DP apparent proliferation rate (day~") 1.0x10-17 [58x1072 25x10-"7  15x10-2 (19), —=3.7x10~" (?")
—1.6 %1071 (42), —9.0x 1073 (43)

DP differentiation rate to SP4 (day~") 11%x10717  [6.0%x1072,25x101]  21x10-2 (19),1.2x10-2 (1)
3.0x1072 (42), 9.9 x1072 (43)

DP residence time (hour) 23x102  [9.5x10, 4.0 x102] 9.4x10" (19), 7.6 x 10T (1), 1.2 x 102 (22)

52x1071

6.0 (1), 0.016 (21, 8.1 (42), 65 (43)
2.0x1072 (19), 9.0x 102 (1)
1.4 %1071 (42), 1.7 x 10~ (43)

[4.9, 30]
[2.7x1077,1.2x100]

Inflow rate to DN thymocytes: ¢,

DN apparent proliferation rate: 8, — g, (1= ry)nfrec

DN differentiation rate: u;rnfrec

DN residence time: 24 /(u;rN}rec)

DP apparent proliferation rate: 6,(1 — njp/K,) — (1= Fag) o Miyec
DP differentiation rate to SP4: r,,p,n¥ec

DP residence time: 24/(r4u,n¥ec)

Proportion of DP to SP4 in DP export: ry4

SP4 apparent export rate: y,n* ¢

(CI: confidence interval) The value of each term is estimated in our model by the following equations of the parameters evaluated at the steady state n}

We note that our point estimate of the DP residence time 230 h may be an overestimate, although the previous estimates overlap the statistically confident range of the values obtained by our bootstrap
analysis. This is because the residence time was estimated only from the output flux rate, due to the fact that the apoptosis rate cannot be estimated in our model

DP recovery by temporal increase in proliferation rate. The
kinetic component characteristic to the DP dynamics is its much
faster recovery compared to DN cells (Fig. 1b), which strongly
suggests that the DP recovery is achieved by self-proliferation
rather than by the influx from the DN population. However,
evidence about the self-proliferation ability and speed of DP cells
is inconsistent and may depend on strains’®3’; some studies
showed that DP cells proliferate little?2-3® while others have
suggested that DP cells can proliferate faster than other types of
thymocytes37-3°, Our model coordinates these properties with
auto-inhibitory regulation of the DP proliferation, represented by
the logistic term 6,(1 — npp(t)/K,) in Eq. (1), which can realize
fast proliferation during the recovery period and slowdown at the
steady state. Nevertheless, such auto-inhibitory regulation in DP
proliferation has not yet been reported.

To experimentally verify this prediction by our model, we
estimated the fraction of proliferating DP cells under the same
condition as in Fig. la by staining the DP population with
proliferation marker Ki67 (Fig. 4c). We observed that the fraction
of the proliferating DP cells transiently increased and peaked at
day 7 after irradiation, coinciding perfectly with the timing of
exponential increase in DP cells during recovery. Self-
proliferation ceased when the number of the DP cells recovered
to the normal population size before the irradiation. This result
strongly supports that the proliferation rate of DP cells is
inhibited by total population size to maintain homeostasis.
Further, this autoregulatory mechanism is consistent with the
previous observations that DP cells proliferate little when their
numbers are at the steady state3®,

While the autoregulatory proliferation of DP cells is necessary
for reproducing fast recovery, it cannot solely account for the
overshooting behavior of DP cells, which suggests that other cells
regulate DP cells. Supported by well-established evidence that
cTECs engage in positive selection of DP cells, our model includes
a negative influence of cTECs to DP cells with a time delay, which
can nicely reproduce the overshoot of DP cell count. This

negative interaction with a time delay can be interpreted as the
marginal effect of an induced apoptosis of DP cells with non-
functional T cell receptors (TCRs) and the differentiation of DP
cells into SP cells upon apoptosis rescue. The existence of the time
delay may be interpreted by the sequential and multiple
interactions of DP cells with cTECs that are required for positive
selection.

Our model estimates that the stable rate of DP cells to
differentiate into CD4 SP cells, 444, nc, ranges from 6.0 x 1072
to 2.5x 1071 (day~!), overlapping the range of the previous
estimates of 1.2x 1072 to 9.9x 1072 (day~!) (Table 2). The
estimated value of r,4 varied from 4.9% to 30%, within the range
of the previous estimates that 0.02-65% of DP cells survive and
differentiate into CD4 SP via positive and negative selections
(Table 2). This result supports the interpretation that r,, is the
fraction of rescued DP cells that differentiated into CD4 SP, and
the remaining fraction 1 — rp4 of DP cells undergoes apoptosis.
However, we should note that an apoptosis rate cannot be directly
estimated solely by population size dynamics. This may be the
major reason why the estimated fraction of the rescued DP cells
varies in our and previous studies.

DP and CD4 SP thymocytes incoherently regulate mTEC
recovery. Compared with other thymocytes and TECs, CD4 SP
cells recovered much slower, with less pronounced overshooting
(Fig. 1b). This slow recovery of CD4 SP cells is consistent with
their lack of proliferation capacity!®37, which leads to prolonged
recovery. The CD4 SP dynamics can be reproduced by assuming
no proliferation and mTEC-dependent death and outflux
—uynyrec(t), which may represent the negative selection of SP
cells by mTECs (Fig. 2a).

In contrast, the mTEC recovery was initiated almost
concurrently with that of ¢cTEC (Fig. 1b). While interactions
with CD4 SP cells have been proven essential for the maturation
of mTECs*0, the prolonged CD4 SP recovery is insufficient for
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Figs. 2 and 3, respectively.

reproducing earlier onset of mTEC recovery. Our model
incorporates an auto-inhibitory regulation of mTEC proliferation
(1 — e (t) /K., ) and its negative regulation by DP cells with
a time delay —y,, npp(t — 7,,) as in Eq. (1). The auto-inhibitory
regulation is necessary because without it, we obtained biologi-
cally inconsistent parameter values in mTEC dynamics (Fig. 5a,
e). The negative regulation by DP cells is also responsible for
mTEC overshooting. Preceding experimental investigations®#!
support these mechanisms. Metzger et al. reported that the
percentage of Ki67hi mTECs increases only after the depletion of
mTECs*!, suggesting auto-inhibitory regulation. Based on a
depletion experiment of DP cells, Dudakov et al. suggested that
DP cells negatively regulated TEC proliferation in an IL22-
dependent manner®. However, the DP-dependent regulation was
not the sole interaction that could explain the early onset of
mTEC recovery. We also found that a DN-dependent regulation
could reproduce it (Fig. 5b, f). However, this possibility was
excluded in our model because we lack molecular evidence
supporting the long-range interaction from DN cells to mTECs,
which reside in spatially segregated areas of a thymus.

Along with regulated proliferation, our model assumes
reciprocal regulations between mTECs and CD4 SP cells to
account for evidence that mTEC maturation is also related to
CD4 SP cells. According to Williams et al.33, mTECs express
ligands CD80 and CD86 and a receptor, CD40; the corresponding
ligand and receptor of CD4 SP cells are mainly CD28 and CD40L.
A knockout of CD80, CD86, and CD40 was shown to decrease
the number of mTECs and double the number of CD4 SP cells.
We substituted smaller values of 4 and ¢,,4 than the estimated

values into our model to reproduce the experiment in ref. 33 by
assuming that the knockout of CD80, CD86, and CD40
corresponds to this substitution. The result qualitatively repro-
duced the knockout mutant result in ref. 33; the stable number of
CD4 SP cells doubled whereas the number of mTECs was
decreased, as shown in Fig. 4d.

Discussion

From quantitative time-series data of thymocytes and TECs
recoveries after sub-lethal X-ray irradiation, we constructed a
mathematical model for the recovery dynamics of thymocytes
and TECs. The model reproduces the transient dynamics of the
cell population sizes fairly well, and most of the interactions
identified by the modeling are consistent with known molecular
evidence.

Since previous modeling works on quantitative characteriza-
tions of thymocyte development focused only on thymocyte
dynamics, our work, which additionally includes both the
dynamics of and the interactions with TECs, can be viewed as an
extension of those works!719-21:4243 We validated that the
estimated parameter values of thymocytes in our model are
mostly consistent with those estimated in previous works
(Table 2). Few parameter value mismatches may also be attrib-
uted to differences in the experimental setting and conditions.
However, it should be noted that we compared the apparent
proliferation rates of our model to previous estimates, which are
the marginal rates of population size change owing to the
imbalance between proliferation and apoptosis because pure rates
of proliferation or apoptosis cannot be estimated from our model.
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Fig. 4 Detailed analysis of the proposed mathematical model Eq. (1). a Dynamics of DN subpopulations obtained experimentally with the corresponding
fitted trajectories of the detailed model. DNT1: pink, DN2: blue, DN3: light green, DN4: green. b A comparison of the trajectories obtained by the detailed
model (dotted line) with those of the coarse-grained model for high (solid line) and low (broken line) DN influx rates. The solid and broken lines are almost
perfectly overlapped in this panel. The colors represent cell types; DN: pink, DP: blue, cTEC: cyan. ¢ Validation of the model prediction by a proliferation
assay of DP cells. Percentages of Ki67-positive DP cells are obtained at O, 4, 11, 13,17, and 19 days after irradiation. Points represent experimental cell
counts, and shaded lines represent linear interpolations of the average counts (n=3 at each time point). d In silico evaluation of the impact from the
disturbed crosstalk between SP4 thymocytes (light green) and mTECs (brown). Thick solid curves are simulated trajectories of SP4 thymocytes and
mTECs with parameter values mimicking the experimental condition in ref. 33, y, = 5.0 x 10~6 and ¢, = O. The thin broken curves are those obtained with

the optimal parameter values used in Fig. 2b for comparison.

To reveal dynamical change in apoptosis rates, we must develop a
new approach that combines our reciprocal regulation model
with experimental methods that can directly quantify thymocyte
proliferation, apoptosis, and differentiation!%#4, Further, the
parameters of TECs are the first to be estimated by modeling, and
should be verified by independent research. Particularly, damage
caused by irradiation can affect the thymic tissue structure, which
may result in a systematic bias when counting TECs#>46, While
this systematic bias is effectively absorbed in our model by
parameters scaling, this potential scaling must be considered
when we compare our TEC parameter value estimates with
others. Moreover, to assess this problem more carefully, we must
develop a new image analysis method that can accurately detect
and count cells in 3D tissue images obtained by advanced imaging
and tissue clearing®7-8,

Thymic crosstalk includes various signaling pathways, indicating
complex regulations behind the population size control of thymo-
cytes and TECs. Because of this complexity, our model may contain
missing interactions or possibly different regulations, some of which
were tested during our model identification process. Such possibi-
lities cannot be excluded by the limited amount of data alone;
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therefore, we employed previously obtained molecular-biological
evidence and quantitative estimates to evaluate the possible models.

For example, cTECs rescue DP thymocytes from apoptosis via
positive selection, which leads to increase in the DP population
size. Concurrently, positive selection also induces differentiation
of thymocytes from the DP stage to the SP stage, causing DP
population size to decrease. These contradicting interactions
introduce the possibility that cTECs increase the DP thymocyte
population size, rather than decreasing it as assumed in our
model. We examined this possibility by introducing the increas-
ing effect of the DP population size by cTECs and concluded that
the decreasing effect assumed by our model is more valid because
the model with the increasing effect resulted in much higher
parameter values than expected based on the previous works
(Fig. 5¢, g).

We also investigated a model in which DP thymocytes con-
tribute to the recovery of both mTECs and cTECs®. We found
that the estimated parameter for the interaction from DP cells to
cTECs was almost 0 (Fig. 5d, h), which does not support a major
contribution of DP cells to ¢TECs recovery under our experi-
mental condition.
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mTECs. The model in b includes an interaction from DN cells to mTECs influx
promote DP cell proliferation, rather than inducing DP cell differentiation or ce

instead of the inhibition from DP cells. The model in ¢ assumes that cTECs
Il death. The model in d includes an inhibitory regulation of cTECs from DP

cells similar to that of mTECs. e, f, g and h show corresponding trajectories of the models in a, b, ¢, and d.

Our model can explain the mechanisms by which specific
dynamics appear in recovery dynamics and their potential bio-
logical functions; overshoots of DN thymocytes and ¢TECs may
originate from negative feedback between them and may con-
tribute to prompt recovery from various perturbations affecting

thymocyte and TEC numbers. Similarly, the disinhibition of DP
proliferation upon DP population size decrease facilitates the
swift recovery of DP cells, which could not be achieved solely by
the influx of DN cells, as they have a much smaller population
size than DP cells. Our model provides an integrative view of
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thymic crosstalk as a regulatory network and serves as a starting
point for comprehensively understanding homeostasis in thymic
development.

However, our model still has room for future improvement by
accommodating more detailed information on the cellularity of
the thymic resident cells, such as B cells, dendritic cells, and
thymic endothelial cells. These cells may have different roles in
the dynamic regulation of thymic homeostasis than thymocytes
and TECs, although we did not explicitly include them by pre-
suming that their effects to the number of thymocytes or TECs
are relatively small or constant, which was implicitly modeled by
the constant parameters in our model. Actually, BMP4 produc-
tion by endothelial cells after irradiation, which can contribute to
TECs recovery, was reported constant when normalized by the
size of thymus*®. Explicitly incorporating these cells may be
crucial to extending our model to other experimental settings as
well as for deriving a more integrative and comprehensive model
of thymic development and homeostasis. Among others, the
repertoires of thymocytes are particularly relevant. TECs are
responsible for controlling the number of thymocytes as well as
for selecting thymocytes with appropriate repertoires. An
upcoming challenge may be integratively modeling and analyzing
thymic homeostasis, both in cell numbers and repertoires by
combining quantitative measurement and high-throughput
sequencing?.

Methods

Ethics statement. Animals used in the present study were maintained in accor-
dance with the “Guiding Principles for Care and Use of Animals in the Field of
Physiological Science” set by the Physiological Society of Japan. All animal
experiments were approved by the Animal Research Committees of RIKEN.

X-ray irradiation and flow cytometory with mice. Balb/cA mice were purchased
from CLEA Japan. Female mice (7 weeks old) received X-ray radiation (4.5 Gy). At
each sampling point after irradiation, the mice were sacrificed and their thymi were
used for a flow cytometric analysis. Each thymus was cut and gently agitated in 2
ml of RPMI-1640 (Sigma-Aldrich, St. Louis, MO, USA) to release thymocytes for
the flow cytometric analysis. The days of measurement and the number of sampled
mice are shown in Fig. 1a. The remaining thymic tissue was digested using Liberase
in RPMI1640 (Wako) at 37 °C for 30 min. The thymic stroma-rich fraction was
analyzed by flow cytometry to detect TEC populations. For flow cytometric
staining, cells were pre-treated with anti-CD16 and CD32 (Biolegend) for 20 min
and subsequently stained with fluorescence-labeled antibodies in phosphate buf-
fered saline containing 3% fetal bovine serum. The stained cells were analyzed
using Canto II (BD). The total thymic cell numbers were determined by the sum of
cells in the thymic stroma-rich fraction and the thymocyte fraction. TECs were
defined as CD45-TER119-EpCAM+ cells. mTECs and cTECs were separated with
UEA-1 staining. For DN thymocyte staining, the lineage negative cell fraction was
separated by staining with CD25 and CD44 antibodies. Since the DN population
contains other minor cell populations such as dendritic cells, the number of cells
from these fractions was subtracted from the number of DN cells in the mathe-
matical modeling based on the average percentage of these cells (16.6%) in the DN
fraction under steady conditions (Supplementary Fig. 1a). PECy7-anti-CD4 (clone
RAM4-4, used as x200 dilution), FITC-anti-CD4 (clone RAM4-4, x200 dilution),
APCCy7-anti-CD8 (clone 53-6.7, x200), APCCy7-anti-CD45 (clone 30 F-11,
x200), APCCy7-anti-TER119 (clone TER-119, x200), FITC-anti-EpCAM (BioLe-
gend, clone G8.8, x400), PE-anti-CD80(clone 16-10A1, x400), Biotin-anti-mouse
Ly-6G/Ly-6C(Gr-1) (x400), Biotin anti-mouse/human CD45R/B220 (x400), Biotin
anti-mouse TER-119/Erythroid cells (clone TER-119, x400), Biotin conjugated
anti-mouse CD11b (x400), PE anti-mouse/human CD44 (clone IM7, x400), APC
anti-mouse CD25 (clonePC61, x400), Streptavidin PE-Cyanine7 (x400), and
Streptavidin-PECy7 (x400) were purchased from Biolegnd. UEA-biotin (x400) was
from Vector laboratories (Burlingame, CA).

Estimation of the fraction of proliferating DP cells. Thymocytes were pre-
treated with anti-CD16 and CD32 (Biolegend) and subsequently stained with anti-
CD4 and anti-CD8 antibodies in phosphate buffered saline containing 3% FBS. The
cells were fixed and permeabilized with Foxp3/Transcription Factor Staining Buffer
Set (eBioscience) according to the manufacturer’s protocol. After fixation and
permeabilization, the cells were stained with a PE-labeled anti-Ki67 antibody
(Biolegend) and subsequently analyzed by Canto II (BD).

Statistics and reproducibility. For each experimental condition, we measured the
numbers of thymocytes and TECs from at least two mice, independently. The
variations of parameter values for the mathematical model were analyzed by the
bootstrap method described in the section “Confidence interval by bootstrap”.

Mathematical modeling of thymocyte and TEC dynamics. We assume that the
total number of the type i cells, n{!, is the sum of cells dying by irradiation n¥ and
survived or newly generated cells n;:

n'(t) = n}(t) + n,(t),i € C := {DN, DP, SP4, cTEC, mTEC},

where C is the set of the cell types.
We describe the decrease in the irradiated cells by an exponential decay, which
assumes that cells die at a constant rate w; after irradiation:
_ —w;t
n(t) = n¥(0)e .

In the model, n{*(0) represents the initial population size of type i cells and p; is

assumed to be the fraction of survived cells at t < 0 as

tot
n(t) ={ ni‘ [(0)7 F<0 )
ptnio (0)~ t=0
(¢ 7{ 0, <0
O - g, t=0

Given these initial conditions, the model of Eq. (1) was implemented on
MATLAB (R2018a; The MathWorks, Natick, MA) and was numerically simulated
by ‘dde23’ function or on Mathematica (version 11.2; Wolfram research,
Champaign, Illinois) and simulated by ‘NDSolve’ function.

Parameter estimation. In the parameter estimation, w;, n{®(0), p;, and all para-

meters appearing in Eq. (1) were simultaneously estimated. Parameters were
estimated by minimizing the sum of the squares of difference between the loga-
rithms of the observed data and simulated values of the model. Because the orders
of the parameters are different, and this caused difficulty in the minimization, we
decomposed the parameters as 6 = 6 0 8,,, where . is a coefficient vector to
estimate, 0, is a constant vector of a power of 10, and o denotes elementwise
multiplication. For the observed time points t* = [t,,---,¢,] and the corre-
sponding data points Ni(t;) for all i € C, the estimated parameter set 0 was obtained
by solving

~ “ 2

0, =arg min Z Z [ln(n?‘“(tj7 6.08,)) — In(N;(t))

< j=1 ieC

) :6C 06,.

To solve this minimization, we used the ‘Isqnolin’ function in MATLAB
Optimization Toolbox in which parameters were estimated by Trust Region
Reflective method. The initial parameter values in the estimation were given, so
that the result converges to moderate values considering the results of related
previous works. The searching range of each parameter, except for p;, r;, and 724,
was set between 10 and 0.1 times the initial value. Since p;, r;, and r,4 represent
fractions, their searching ranges were set between 0 and 1. The symbols,

descriptions, and estimated values of the parameters are listed in Supplementary
Table 1.

Confidence interval by bootstrap. We calculated the confidence intervals of the
estimated parameter values by a bootstrap method>!.

First, for type i cells, we modeled the statistical variation of the data points using
a Gaussian random variable ¢; ~ A (0, ¢?) with mean 0 and variance o? as

In(N,()) = In(n'(£,0)) + &;.

i

We estimated o? by the sample variance as
. 1 & 12
a2 = mz;[lnNi(tj) —Inn(t,0).
=

We obtained the kth bootstrapped sample of the time point ¢, Nib *(t;) by using a
random number &f; ~ N(0,57) as
InN/* (tj) =In n;‘“(tj,é) + ef-“j‘
The kth bootstrapped parameter set 6% was obtained by solving the same
optimization problem of the previous section by replacing the data with the kth

bootstrapped sample Nil7 “(t) as

m
A . b
0 = argmin > > lIn(n(5,8))  In(N/" (1))}
=1 iecC
The total number of the bootstrapped samples generated was B = 1000. The
two-sided & x 100% confidence interval of the Ith parameter was calculated as
[91(8(170‘)/ 2, 91(3”/ 2)], where é,m is the xth smallest value of the Ith parameter
obtained from the bootstrapped samples. We used a = 0.95. The confidence
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interval of each parameter is shown in Supplementary Table 1. A pairwise scatter
plot of the bootstrap estimates is shown in Supplementary Fig. 3. The trajectories of
cells obtained from 100 samples of the bootstrap parameter sets are shown in
Fig. 2c.

Detailed model of DN thymocytes. We additionally measured dynamic changes
in the population sizes of DN1, DN2, DN3, and DN4 cells after irradiation.

To estimate the DN subpopulation dynamics in the original data (Fig. 1b), we
utilized the DN subpopulations data as follows. First, we calculated the average
proportions of the DN subpopulations at each time point. Subsequently, assuming
that the dynamics of the DN subpopulation proportions were the same as the
original data, we multiplied the number of DN cells from the original data with the
calculated DN subpopulation proportions at each time point. At time points where
we did not have corresponding DN subpopulation data (days 12 and 14), we used
the average proportions of neighboring time points (days 11 and 13 for day 12, and
days 13 and 15 for day 14).

Employing the obtained estimates of the DN subpopulation dynamics, we
estimated the parameter values of the following detailed model of DN1, DN2, DN3,
DN4, DP, and ¢TEC:

dn
% =¢, + (8ox1 — #pni e () pni (1),
dnpy
thN = fpnio1 Merec (D)npni—i (1) + (6DN1 + tpnitierec () roni (t),
dn

fpp (t)
d?P = rpnabpnaterec (H)npna (t) + {92 <1 - Dlg > — taferpc(t — Tz)}nDP(t)v
2

dn, -
d—;EC =¢.+ (7ac + ;AucTF.C,]nDNj(t)) nerpe(t),

j=

fori =2,3,4.

The parameter estimation procedure was the same as for the coarse-grained
model. Because the detailed model has parameters common to the coarse-grained
model, ¢; and the model parameters of DP and cTECs, except for rpyy, fipyy> and
terpc,» We first fixed those parameter values to the estimates from the coarse-
grained model and estimated the remaining parameter values. However, the
detailed model with the estimated parameter values did not reproduce the DN1
dynamics (Supplementary Fig. 5). To obtain the parameter values capable of
reproducing the dynamics of all cell types, we estimated parameter values including
¢, while other common parameter values were fixed (Fig. 4a and Supplementary
Table. 2).

Possible model (1): no self-suppression of mTEC. We constructed a model of
mTEC without self-suppression (Fig. 5a, e) that had fewer parameters than the
proposed model (Fig. 2a, b):

dn,,
% = G + Punattspa(t) — (Vinpp (F — Tin) + ) irec (£)-
This model is less appropriate than the proposed one because the estimated
value of the coefficient y,,,njp + ¢y, is so large that the mTECs die within a
few hours.

Possible model (2): regulation by DN to mTEC. We constructed the following
model of mTECs with direct regulation by DN cells because the temporal peaks of
their population sizes coincided in the data (Fig. 5b, f):

dnyrec
a Paan DN (1) + Praa5pa (£) — i Mmrrc (£)-
We rejected this model because we have no evidence of direct interaction
between DN thymocytes and mTECs, which are located in different regions of a
thymus.

Possible model (3): increase of DP by cTEC. We constructed a model of the DP
cells in which ¢cTECs promote the increase in the DP population size by assuming
that cTECs either induce DP proliferation or rescue DP thymocytes from apoptosis
in positive selection (Fig. 5¢, g):
dn tipp(t)
d]ip = i rinepc(H)npx () + rynpp(t) (1 - %) + thyerpc () npp (1)
2

This model was determined inappropriate because the estimated values of the
coefficients r,(1 — nj)p /K, )and p,n’pgc were so large that self-replication and
apoptosis occurred within a few hours.

Possible model (4): regulation by DP to cTEC. We constructed a model of
cTECs with a regulation by DP thymocytes (Fig. 5d, h) because the depletion of DP
thymocytes was reported to induce recovery both of mTECs and cTECs>:

dn e
% = ¢+ (=6 + pcnpn(t) — yerpp(t — 7)) nerpc (1)-

We found that the assumed effect of DP cells on cTECs was negligible because
the substitution of 0 to y, did not change the dynamics after the parameter
estimation. Thus, we did not adopt this additional interaction.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Source data of thymocyte and TEC population sizes are available as Supplementary
Data 1. All other relevant data, if any, are available from the authors.

Code availability
The utilized computer code and parameters of the models are available at https://github.
com/Q-bio-at-1IS/Kaneko2019CommBiol.
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