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Abstract

Inclusion of pyrazinamide in the tuberculosis drug regimen in the 1970s allowed reduction of 

treatment duration from 12 to 6 months. Pyrazinamide has this remarkable effect in patients 

despite displaying poor potency against Mycobacterium tuberculosis in vitro. The 

pharmacological basis for the drug’s in vivo sterilizing activity has remained obscure and its 

bacterial target controversial. Recently it was shown that pyrazinamide penetrates necrotic caseous 

TB lung lesions and kills non-growing, drug tolerant bacilli. Furthermore, it was uncovered that 

the drug inhibits bacterial Coenzyme A biosynthesis. Pyrazinamide may block this pathway by 

triggering degradation of its target aspartate decarboxylase. The elucidation of the drug’s 

pharmacological and molecular mechanisms provides the basis for the rational discovery of the 

next generation pyrazinamide with improved in vitro potency while maintaining attractive 

pharmacological properties.
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The Pyrazinamide enigma and the importance of decoding it

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is now the 

largest infectious disease killer worldwide and a major cause of death for people living with 

Acquired Immunodeficiency Syndrome. In immune-competent populations, drug therapy 

and immunity join forces to win the lengthy war against Mtb. In HIV-positive individuals on 

the other hand, chemotherapy must fully sterilize all infection sites. With the rampant spread 

of drug resistance, and in order to shorten the 6 to 24 months long treatment regimens for 

drug-susceptible and multi-drug-resistant TB, there is an urgent medical need to develop 

more potent sterilizing drugs.

In 1952, the anti-TB activity of pyrazinamide (PZA) was discovered in animal models [1],i 

and was shortly thereafter confirmed in humansii. The drug displayed remarkable sterilizing 

activity in mouse tissues [2] and its inclusion in the regimen of drug-susceptible patients in 

the 1970s resulted in significant shortening of therapy duration from 12 to 6 months. The 

present-day ‘short-course’ regimen was finalized in the 1980s, comprising of an initial 2-

months intensive phase of isoniazid, rifampicin, PZA, and ethambutol, followed by a 4-

month treatment continuation phase of only isoniazid and rifampicin [3],iii. Owing to its 

relapse-preventing properties, PZA is also included in most new drug combinations that are 

in clinical and preclinical development for both drug sensitive and multidrug resistant TB [4, 

5].

The basis of PZA’s remarkable sterilizing activity in patients remains puzzling since this 

fragment-size drug (MW = 123 g/mol) exhibits poor in vitro potency (MIC = 30 to 100 μg/

mL), concentrations that are barely exceeded in plasma and lesions [6, 7]. PZA being a 

structural analog of niacin, a vitamin with anti-inflammatory properties [8], it was suggested 

that it may exert host-directed effects [9]. This was explored by Almeida et al., who 

hypothesized that if PZA has host-directed activity, this should be detectable in mice 

infected with PZA resistant Mtb. However, no such activity could be detected, pointing to a 

lack of significant host-directed activity [10].

In addition to the mysterious in vivo – in vitro disconnect of PZA activity, the antibacterial 

mechanism of action of the drug remained elusive for decades, despite intense research. 

PZA is a prodrug which is converted to its bioactive form pyrazinoic acid (POA) by the 

bacterial pyrazinamidase PncA as well as by host enzymes [11–15]. Several mechanisms of 

action of POA were proposed, only to be later questioned or disproven (see below). 

Understanding the drug’s pharmacological and molecular mechanisms is critical to 

rationally discover the next generation PZA with improved sterilizing activity. This opinion 

discusses major recent advances in this field. Pharmacological explanations for the unique 

sterilizing property of PZA have been proposed based on lesion-centric analyses in animal 

models, and a target has been identified based on genetic and biochemical evidence. At the 

same time, the modest on-target potency of PZA constitutes a clear limitation and points to 

an obvious area for improvement. Together, these findings provide the basis for a rational 

mechanism-based chemical optimization to discover more efficacious next generation PZA 

analogs.
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The pharmacological mechanisms underlying PZA’s sterilizing activity

A spectrum of lesion types exists in human pulmonary TB: cellular lesions comprising 

primarily immune cells, caseous (cheese-like) granulomas containing a necrotic core of 

bacterial and host cell debris, and cavities where lesions erode into major airways. In these 

lesions, Mtb can reside either intracellularly within various immune cells or extracellularly. 

Within these different compartments, the bacilli can either be growing or quiescent and non-

growing. Caseous lesions are believed to harbor mostly extracellular non-growing bacteria. 

The response of these physiologically different bacterial populations to antibiotic treatment 

is proposed to be heterogeneous, with non-growing bacilli assumed to display phenotypic 

drug tolerance, i.e. they are not as readily killed by antibiotics [16]. We hypothesized that the 

two key elements in PZA’s clinical efficacy may be that the drug i) reaches the bacilli 

residing in all these different lesions and ii) is able to kill non-growing drug tolerant forms 

of the pathogen.

PZA penetrates well in all human lung lesion types, including difficult-to-penetrate 
caseous lesions.

Using MALDI mass spectrometry-based imaging of drug distribution in TB infected human 

lung tissue, we found that distribution of drugs into the various lesion types is drug and 

lesion type dependent. Most drugs do not penetrate all compartments in all lesions. In 

contrast, PZA distributes rapidly and homogenously into all lesions types, both cellular and 

caseous lesions, where larger and more hydrophobic drugs diffuse less effectively [17] (Fig. 

1A). Thus, PZA can reach pathogens residing within the various sites of infection within the 

lungs of TB patients.

PZA kills non-growing drug tolerant persister Mtb in ex vivo caseum.

To determine whether Mtb in caseum is indeed non-growing and drug tolerant, we 

developed an ex vivo assay with caseum isolated from Mtb-infected rabbits. Indeed, under 

these conditions, Mtb does not grow (Fig. 1B) and displays extreme drug tolerance to most 

drugs [18]. PZA was found to display bactericidal activity in caseum, albeit at rather high 

concentrations, suggesting that it not only reaches drug tolerant bacilli but also kills them 

[18] (Fig. 1C).

PZA reduces bacterial burden in all lesion types, including caseous lesions, in an animal 
model presenting the spectrum of human lesion types.

Despite these attractive pharmacokinetic and pharmacodynamic properties, efficacy studies 

in different mouse and guinea pig models have yielded contradicting results [19–21]. To 

resolve these conflicting data, we used the rabbit model of active TB, a disease model which 

recapitulates the major lung lesions observed in human TB [22]. With this model we 

confirmed that PZA not only penetrates all lesion types, including caseous necrotic 

compartments, but also reduces bacterial burden and sterilizes both cellular and necrotic 

lesions [7]. In-depth analyses of bacterial burden and cumulative burden at the lesion level 

revealed that the onset of bacterial killing by PZA is slow, suggesting that the rather weak in 
vitro and ex vivo activities of PZA indeed limit its efficacy in vivo at clinically approved 

dosage [7].
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Human pharmacokinetic – pharmacodynamic modeling confirms suboptimal target 
attainment in lesions.

Pharmacokinetic – pharmacodynamic modeling of PZA penetration in human lesions [17] 

was carried out to identify lesion types and lesion compartments where PZA achieves target 

concentrations and for what fraction of the dosing interval. The model revealed that PZA 

performed sub optimally in all lesion types due to its high MIC, with only a small fraction of 

the dosing interval above adequate concentrations, and a significant proportion of ‘at–risk’ 

patients (those achieving relevant concentrations for less than 4h) [23]. Given the common 

side effects of PZA due to hepatotoxicity, higher dosage is not a viable option.

Taken together, the recent pharmacological findings provide an explanation for the clinically 

observed sterilizing and treatment shortening effects of PZA: the drug penetrates all TB lung 

lesion compartments, including difficult-to-penetrate lesions, and kills non-growing 

persisters that reside in caseum. However, consistent with its poor in vitro potency, 

concentrations required to kill Mtb in caseum are high and achieved for a small fraction of 

the dosing interval, and onset of lesion sterilization in vivo is slow. The finding that efficacy 

is potency-limited, suggests a way forward for the discovery of next generation PZA: 

improving potency, while maintaining existing lesion penetration properties. Structure-

driven optimization of PZA requires elucidation of its molecular mechanism.

Molecular mechanisms underlying PZA’s sterilizing activity

Following early studies where PZA demonstrated improved potency in media adjusted to 

acidic pHiv, it became common belief that it is active only at acidic pH and that TB lung 

lesions are therefore acidicv. In this context, and since POA is a weak acid (pKa = 2.9), an 

ionophore model was proposed and became the most widely accepted hypothesis of PZA’s 

mechanism of action. POA, a carboxylic acid, shuttles protons from the extracellular acidic 

environment into the bacilli, causing collapse of membrane energetics and cytoplasmic 

acidification [24]. However, this model has been opposed by three lines of evidence. PZA 

and POA can inhibit growth of Mtb at neutral pH [13, 14, 25, 26], implying that acidic pH is 

not essential for antibacterial activity of the drug. TB lesions are not necessarily acidic, 

rather they present with a spectrum of pH from acidic to alkaline [7, 18, 19, 21, 27],vi. 

Importantly, unlike bona fide ionophores such as carbonyl cyanide m-chlorophenyl 

hydrazine, POA does not cause rapid collapse of membrane potential or cytoplasmic 

acidification in Mtb [25]. Thus, POA appears not to function as an ionophore in Mtb.

Based primarily on biochemical evidence, several discrete proteins were proposed to be 

targeted by POA (Table 1). POA was suggested to inhibit fatty acid synthesis via FAS-I [28] 

and trans-translation, a process that frees ribosomes stalled during translation, by binding to 

ribosomal protein S1 / RpsA [29, 30]. However, these suggested mechanisms have been put 

into question or directly contradicted (Table 1, [31, 32]). Thus, FAS-I and RpsA appear not 

to present significant targets for POA. Recently, GpsI, a probable guanosine pentaphosphate 

synthase, was shown to bind POA at high (mM) concentrations. A polymorphism in the 

corresponding gene was identified in two clinical isolates [33]. Whether GpsI is indeed 

involved in POA’s mechanism of action remains to be determined. A summary of the 

currently proposed mechanisms of action of PZA/POA with key evidence arguing against 
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these mechanisms is presented in Table 1. We also refer to recent review by Anthony and 

colleagues in which the authors discuss evidence for and against the various proposed 

mechanisms [34].

A validated approach to identify the mechanism of action of an antibacterial is to isolate 

spontaneous resistance mutants on solid medium. However, various attempts to isolate POA 

resistant Mtb mutants failed [28, 35]. Based on the prevailing ‘PZA requires acidic pH’ 

concept discussed above, acidic pH agar was used in these experiments. With the re-

discoveries that PZA/POA is also active at neutral pH and that TB lung lesions are not 

necessarily acidic, we hypothesized that the failure to isolate POA-resistant mutants was due 

to the acidic pH used in the selection media and that it may be possible to isolate POA 

resistant mutants on neutral pH agar.

Missense mutations in the Coenzyme A biosynthetic pathway gene panD encoding 
aspartate decarboxylase cause PZA resistance in vitro and in vivo.

Indeed, PZA/POA-resistant mycobacteria could be recovered on neutral pH agar [14, 34, 36, 

37]. Whole genome sequencing revealed missense mutations in the aspartate decarboxylase 

PanD involved in the biosynthesis of the essential cofactor Coenzyme A [36, 37]. The 

resistant mutant selection experiment was repeated in Mtb-infected mice treated with POA, 

which again delivered PZA/POA resistance mutations in panD, providing in vivo evidence 

for the relevance of the observed panD related resistance mechanism [38]. Interestingly, the 

frequency of panD polymorphisms in clinical isolates is very low ([39–41], see Table 2), the 

reason of which remains to be determined.

POA blocks bacterial Coenzyme A biosynthesis by binding to aspartate decarboxylase 
PanD.

Coenzyme A biosynthesis is essential in Mtb in vitro and in vivo [42, 43]. Thus, based on 

our genetic data, we hypothesized that POA may bind to PanD and inhibit the corresponding 

catalytic step in the Coenzyme A pathway (Fig. 2A, Key Figure). Resistance caused by 

missense mutations in PanD would then be due to lack of drug binding. Indeed, biophysical 

analyses showed that POA binds recombinant wild type PanD but not proteins containing 

POA resistance mutations [44]. Metabolomic analyses showed that POA treatment resulted 

in a collapse in concentrations of Coenzyme A biosynthetic metabolites downstream of the 

PanD catalyzed step, starting with beta-alanine, the product of PanD, and all the way to 

Coenzyme A, the end product of the pathway [36, 44]. Finally, exogenous supplementation 

of media with pantothenate, a Coenzyme A precursor downstream of PanD, phenocopied 

panD resistance [36, 37, 45]. Taken together, these results show that POA inhibits bacterial 

Coenzyme A biosynthesis by binding to PanD (Fig. 2A). Consistent with poor whole cell 

activities of PZA/POA, affinity of POA for PanD was in the μM range, suggesting room for 

improvement [44].

POA triggers degradation of its target aspartate decarboxylase PanD.

When we set out to characterize the biochemical inhibition of the PanD-catalyzed reaction 

(the conversion of aspartate to beta-alanine) by POA, we were surprised to find that POA is 

not a bona fide inhibitor of PanD’s enzymatic activity [46]. If POA does not inhibit the 

Gopal et al. Page 5

Trends Pharmacol Sci. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity of the aspartate decarboxylase, how does binding of POA to the enzyme affect this 

enzymatic step in coenzyme A synthesis inside the bacterium? We had previously isolated, 

both in vitro and in vivo, POA resistant mutants in ClpC1, a component of Mtb’s 

caseinolytic protease complex [38, 47, 48]. ClpC1 is an unfoldase that recognizes proteins 

containing various C-terminal tags and delivers these proteins for degradation to the ClpP 

protease [49, 50]. The ClpC1-ClpP complex is involved in proteome house-keeping and 

regulation of the protein level of certain proteins [50]. Protein overexpression experiments 

suggested that ClpC1 mutations confer resistance to POA by an indirect mechanism [48]. 

Interestingly, the resistance level conferred by ClpC1 mutations was the same as the 

resistance level conferred by mutations in PanD. Could there be a link between aspartate 

decarboxylase and ClpC1? Analyses employing Mtb reporter strains revealed that PanD 

contains a C-terminal degradation tag and is a substrate of the ClpC1-ClpP protease, which 

regulates PanD levels post-translationally [46] (Fig. 2B). POA treatment studies with Mtb 

reporter strains further showed that POA binding to PanD accelerates degradation of PanD, 

possibly via the activity of ClpC1-ClpP [6]. Thus, rather than inhibiting the biochemical 

activity of its target (the usual on-target mechanism of drugs), POA triggers degradation of 

PanD (Fig. 2B).

Taken together, mechanism of action studies support that POA may act as a bacterial target 

‘degrader’, a new event-driven pharmacology paradigm in the field of anti-infectives. POA 

may promote a derailing sequence of events that result in uncontrolled degradation of an 

essential enzyme, PanD, by Mtb’s ClpC1-ClpP protein degradation machinery. It is 

interesting to mention that targeted protein degradation has gained momentum in recent 

years as a conceptually novel drug discovery approach. PROTACs, heterobifunctional 

molecules, which contain binding moieties for the protein of interest and for E3 ligase, make 

use of the human proteasome system to specifically degrade tagged proteins [51]. Our 

mechanistic findings with a clinically used drug validate drug-induced target degradation as 

a new approach in drug discovery.

Concluding remarks

Thanks to recent discoveries, PZA-associated enigmas are becoming less enigmatic. POA, 

the bioactive component of PZA, binds to aspartate decarboxylase PanD and triggers its 

degradation by the bacterium, thus blocking biosynthesis of the essential Coenzyme A. 

These data demonstrate druggability of this cofactor pathway via PanD and its vulnerability 

in vitro and in vivo [42, 43]. It is interesting to note that the intrabacterial PanD protein level 

is extremely low, which may contribute to making this enzymatic step exquisitely vulnerable 

for chemotherapeutic intervention [46]. Furthermore, PanD presents an attractive target for 

antibacterial discovery as it catalyzes the first committed step in the pathway and has been 

shown to be tightly regulated in E. coli by a negative feedback mechanism [52].

POA displays weak (μM) binding affinity to PanD, providing an explanation for the poor 

MIC [44, 46]. This is compensated, but only to some extent, by excellent lesion penetration 

properties, and cidal activity against non-growing drug tolerant persister Mtb residing in 

caseous lesions, consistent with the slow onset of its sterilizing activity [7].
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Despite the advances in understanding the pharmacological and molecular mechanisms 

behind the sterilizing activity of pyrazinamide a range of questions remain (see “Outstanding 

Questions”).

Collectively, our findings, together with the corresponding pharmacological, microbiological 

and biophysical tools, provide the basis for the rational discovery of more potent PZA 

analogs. Will it be possible to develop high affinity PanD degraders while maintaining the 

physico-chemical properties critical for effective lesion penetration? Lead optimization 

programs will answer this question. If PZA’s excellent lesion penetration properties can be 

maintained during optimization, this could deliver a next-generation PZA with improved 

efficacy.

To enable structure-based lead optimization the exact interactions of POA with PanD protein 

need to be elucidated. POA binds to PanD and appears to trigger its degradation by the 

caseinolytic protease ClpC1-ClpP, presumably by exposing PanD’s C-terminal protease 

recognition sequence. How does POA bind its target and what are the conformational 

changes induced by this binding? Biophysical analyses will answer these questions.

Although strong evidence suggests that PanD is a major target via which POA exerts its anti-

mycobacterial activity, it cannot be excluded that POA has additional molecular mechanisms 

of action [45]. Furthermore, it is possible that POA is metabolized by Mtb to generate 

additional bacterio-toxic derivatives [53]. Considering that POA is a small, fragment-sized 

drug, and thus likely a promiscuous binder and substrate [6], it is conceivable and even 

likely that POA applies polypharmacology and modulates several Mtb targets. There are 

several hints that polypharmacology properties of PZA/POA may indeed contribute to the 

drug’s whole cell activity. For instance, low level loss-of-function POA-resistant mutants 

were identified in the biosynthetic pathway that produces phthiocerol dimycocerosates 

located in the cell wall (see Table 2 for a summary of currently reported Mtb mutations 

proposed to be associated with PZA/POA resistance). Whether POA targets this and other 

processes directly or indirectly remains to be determined. It was also shown that PZA exerts 

antibacterial activity against a panD loss-of-function auxotrophic mutant Mtb that was 

supplemented with pantetheine [45]. Further metabolomic, genetic and biochemical work 

may reveal additional, PanD-independent mechanisms of action of POA. How much - if 

anything - possible additional mechanisms may contribute to the whole cell anti-Mtb activity 

of the drug is an open question that can be answered by the generation and profiling of a - 

yet to be discovered – high affinity PanD degrader.

Perhaps the biggest remaining puzzle around the mechanism of action / resistance of PZA is 

that resistant mutations in panD can be readily isolated in vitro and in vivo from Mtb-

infected mice. However, panD polymorphisms associated with PZA resistance are rare in 

clinical isolates of Mtb. Why is the frequency of panD mutations low in isolates derived 

from human sputum? Infection studies with mice showed that PZA resistant PanD mutations 

do not affect fitness of Mtb in mouse lungs [38]. However, the pathology of mouse TB 

differs substantially from human TB. Do POA resistant PanD mutants display fitness costs 

in specific human lesions not present in mouse TB, such as cavities from which sputum Mtb 
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is derived? Studies of POA resistant PanD mutant Mtb in animal models that recapitulate 

human lesion types will answer these questions.

PZA is the first anti-bacterial to act as a selective target degrader, a novel drug discovery 

paradigm currently exploited in lead finding programs against human targets. The first 

human target degraders were - similar to PZA - discovered unintentionally: it turned out that 

some drugs ‘accidentally’ promote degradation of their target by the human cellular 

proteolytic machinery upon binding to their target. Methods were developed to target 

specific human proteins of interest for degradation, thus enabling the rational discovery of 

target degraders. The application of targeted protein degradation has so far been limited to 

human cells. Increasing anti-bacterial resistance makes the discovery of novel antibiotics 

more urgent than ever. Can target degradation as a general approach also be developed for 

the discovery of new antibiotics?
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Highlights

• PZA is able to penetrate all TB lung lesion types, including necrotic caseous 

granulomas, where it kills non-growing drug tolerant Mtb, explaining the 

drug’s sterilizing activity in vivo.

• POA, the bioactive component of the prodrug PZA, inhibits bacterial 

synthesis of Coenzyme A by binding to aspartate decarboxylase PanD and 

blocking this enzymatic step.

• Rather than inhibiting PanD’s catalytic activity, we propose that binding of 

POA triggers the degradation of its target by the bacterial caseinolytic 

protease.

• The hypothesis that PZA’s bioactive component acts as a target degrader 

supports selective target degradation as a novel antibacterial drug discovery 

approach.

• Identification of the pharmacological and molecular mechanisms of PZA’s 

activity provide the basis for the rational discovery of the next generation 

PZA with improved in vitro potency while maintaining the drug’s attractive 

lesion penetration properties.
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Outstanding questions

• Will it be possible to develop high affinity PanD degraders while maintaining 

the physico-chemical properties critical for effective lesion penetration?

• How does POA exactly bind PanD and what are the conformational changes 

induced by this binding?

• Are there targets of POA other than PanD?

• Does Mtb produce additional bacterio-toxic PZA or POA metabolites?

• Why is the frequency of PZA resistance due to panD mutations low in clinical 

isolates?

• Can methods be developed to target specific bacterial proteins of interest for 

degradation, thus applying target degradation as a novel approach to anti-

bacterial drug discovery?
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Figure 1. 
Pharmacological basis of PZA’s sterilizing activity. (A) MALDI mass spectrometry ion 

maps of PZA and clofazimine, showing that PZA effectively penetrates the cellular and 

necrotic compartments of TB lesions, at concentrations identical to those achieved in 

plasma, in contrast to clofazimine which diffuses poorly into non-vascularized caseum. The 

left panel shows hematoxylin & eosin staining of the adjacent tissue section revealing the 

underlying lesion architecture and histology. The necrotic or caseous core of the lesion is 

highlighted in white or black contour lines. (B) Mtb bacilli do not replicate in ex vivo 
caseum for the 7-day duration of the cidal assay. Bacterial burden is shown as black circles, 

and cumulative burden measured as chromosome equivalent is shown as empty circles, 

indicating that the observed no-net growth is true no-growth rather than the result of 

balanced death and growth. (C) PZA kills non-growing drug tolerant persister Mtb present in 

necrotic caseous lesion material ex vivo. Clofazimine is shown as an example of a drug that 

is not active against caseum Mtb. Experimental details are described in.
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Figure 2, Key Figure. 
Proposed antibacterial mechanism of action of PZA. (A) PZA, once converted into POA by 

the bacterial amidase PncA, blocks synthesis of the essential cofactor Coenzyme A at the 

aspartate decarboxylase PanD-catalyzed step. (B) PanD level is post-translationally 

regulated by the caseinolytic protease complex ClpC1-ClpP and binding of POA to PanD 

triggers increased degradation of the protein. Upper part: PanD (blue circle) contains a C-

terminal protease degradation tag. The tag is recognized by ClpC1 (light orange) which 

unfolds PanD for degradation by the ClpP protease (dark orange). Lower part: Binding of 

POA to PanD causes conformational changes resulting in increased exposure of the 

degradation tag and hence increased degradation of PanD by ClpC1-ClpP.
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Table 1.

Proposed mechanisms of action of POA against M. tuberculosis

Model Proposed mechanism References 
supporting 
model

Key evidence opposing model References 
opposing 
model

1. POA acts as an 
ionophore

POA acts as a 
protonophore and shuttles 
protons from an acidic 
environment to the 
cytoplasm resulting in 
cytoplasm acidification 
and collapse of membrane 
potential

[24],vii • POA does not induce acidification of 
cytoplasm or collapse of membrane 
potential

• POA inhibits Mtb growth at a 
neutral pH

[13, 14, 25, 
26, 36]

2. POA targets fatty 
acid synthase FAS-I

POA inhibits synthesis of 
fatty acids via inhibition of 
fatty acid synthase I

[28] • POA does not inhibit activity of 
FAS-I in vitro

• No in vitro or in vivo isolated PZA-
resistant mutants contain mutations 
in FAS-I

[31, 36, 38, 
44]

3. POA targets 
ribosomal protein 
S1 / RpsA

POA inhibits trans-
translation via binding to 
the ribosomal protein S1 / 
RpsA

[29, 30] • POA does not inhibit 
transtranslation in vitro

• POA does not bind RpsA

• RpsA polymorphisms apparently 
associated with POA resistance do 
not cause resistance against POA

• Overexpression of rspA does not 
cause resistance

• No in vitro or in vivo isolated PZA-
resistant mutants contain mutations 
in RpsA.

[32, 36, 38, 
44]

4. POA targets 
guanosine 
pentaphosphate 
synthase GpsI

POA inhibits GpsI 
involved in nucleic acid 
and ppGpp metabolism

[33] • No in vitro or in vivo isolated PZA-
resistant mutants contain mutations 
in GpsI

[36, 38]

Note: POA binds to GpsI 
only at extremely high 
concentrations (mM)

5. POA targets 
Quinolinic acid 
phosphoribosyl 
transferase 
(QAPRTase)

POA, a structural analog 
of Quinolinic acid, inhibits 
the catalytic activity of 
QAPRTase and thus, de 
novo NAD biosynthesis

[54] • POA treatment did not cause 
decrease in metabolites downstream 
of QAPRTase

• No in vitro or in vivo isolated PZA-
resistant mutants contain mutations 
in QAPRTase

[36, 38, 44]

6. POA targets 
aspartate 
decarboxylase PanD

Inhibition of bacterial 
Coenzyme A biosynthesis 
by POA- induced 
degradation of PanD via 
ClpC1-ClpP.

[36–39, 44, 
45, 47, 48]

• Conditional susceptibility of an Mtb 
ΔpanCD strain to PZA

[45]
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