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Abstract Preclinical studies provide strong evidence
that age-related impairment of neurovascular coupling
(NVC) plays a causal role in the pathogenesis of vascu-
lar cognitive impairment (VCI). NVC is a critical ho-
meostatic mechanism in the brain, responsible for ad-
justment of local cerebral blood flow to the energetic

needs of the active neuronal tissue. Recent progress in
geroscience has led to the identification of critical cel-
lular and molecular mechanisms involved in
neurovascular aging, identifying these pathways as tar-
gets for intervention. In order to translate the preclinical
findings to humans, there is a need to assess NVC in
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geriatric patients as an endpoint in clinical studies.
Functional near-infrared spectroscopy (fNIRS) is a
non-invasive neuroimaging technique that enables the
investigation of local changes in cerebral blood flow,
quantifying task-related changes in oxygenated and de-
oxygenated hemoglobin concentrations. In the present
overview, the basic principles of fNIRS are introduced
and the application of this technique to assess NVC in
older adults with implications for the design of studies
on the mechanistic underpinnings of VCI is discussed.

Keywords Aging .Neurovascular coupling . Functional
near-infrared spectroscopy. fNIRS . Vascular cognitive
impairment anddementia .VCI .VCID .Cognitiveaging

Introduction

Global population is rapidly aging, and it is now predicted
that over 30% of western world will be over the age of 65
by 2050. In these older adults, vascular cognitive impair-
ment (VCI) and dementia are the leading causes of disabil-
ity and a critical contributing factor to decreased quality of
life. Accumulating evidence over the past decade suggests
that functional and structural impairment of cerebral micro-
circulation significantly contributes to age-related cognitive
decline (Toth et al. 2017). Among the microvascular mech-
anisms involved in the pathogenesis ofVCI, the importance
of age-related impairment of a key cerebral homeostatic
mechanism, neurovascular coupling (NVC), has received
much attention in the past decade (Faraco et al. 2016;
Girouard and Iadecola 2006; Gorelick et al. 2011; Hamel
et al. 2016; Iadecola 2004; Nicolakakis and Hamel 2011;
Papadopoulos et al. 2016; Park et al. 2007; Park et al. 2014;
Tarantini et al. 2017b; Tarantini et al. 2017c; Tarantini et al.
2019; Tarantini et al. 2018a; Tarantini et al. 2018b;
Tarantini et al. 2017d; Tong et al. 2012; Toth et al.
2014a). NVC is impaired in animal models of aging and
accelerated vascular aging (Tarantini et al. 2017c). Selective
experimental disruption of NVC results in cognitive im-
pairment in rodent models, demonstrating a causal role for
impaired NVC in cognitive decline (Tarantini et al. 2015b;
Tarantini et al. 2017d). Further, preclinical studies provide
direct evidence that restoration ofNVCby pharmacological
interventions is associated with cognitive benefit
(Papadopoulos et al. 2016; Tarantini et al. 2019; Tarantini
et al. 2018b; Tong et al. 2012). In order to translate these
preclinical findings to humans, NVC should be measured
as an endpoint in clinical studies. The standard method of

NVC assessment in humans is functional magnetic reso-
nance imaging (fMRI). fMRI is widely used in neuropsy-
chological studies, however, it has also major limitations
such as the need of immobilization of the patient, the need
of highly trained personnel, and high operating costs. Thus,
there is an urgent need to adapt easy-to-use, affordable, and
convenient methodologies to assess NVC in geriatric pa-
tients in an outpatient setting with good sensitivity and
repeatability.

Since the development of functional near-infrared spec-
troscopy (fNIRS) in the mid-80s, the usage of this method
to assess changes in cerebral blood flow (CBF) during
neuronal activation has been increasing gradually. Because
of its safety, affordability, portability, and high temporal
resolution, fNIRS has potential for widespread implemen-
tation in geroscience research. fNIRS is particularly suited
for geriatric patients and combined cognitive/NVC studies
involving interactivity. Many excellent studies have been
published on improving fNIRS technology, developing and
refining data analysis methods, and confirming the validity
of the fNIRS-based methods by reproducing the results
obtained via other imaging techniques (e.g., fMRI)
(Strangman et al. 2002a, 2002b). As fNIRS technology
has matured significantly in the past decade, routine mea-
surement of NVC in older humans became feasible.

In this review, a brief overview on the physiology of
NVC and the effects of aging on NVC are provided. The
role of neurovascular impairment in cognitive decline is
considered and the usage of fNIRS-based methods to
investigate age-related changes in NVC to identify pa-
tients at risk is discussed. The basic principles of fNIRS
are introduced and the benefits and the potential limita-
tions of application of this technique to assess NVC in
older adults are highlighted. The review is organized
into four sections: (1) Neurovascular coupling: age-
related changes and role in cognitive decline. (2) Mea-
suring neurovascular coupling in human subjects: from
fMRI to fNIRS and (3) perspectives.

Neurovascular coupling: physiological mechanisms,
age-related changes, and their role in cognitive
decline

Physiology of neurovascular coupling

Although the brain accounts for only 2% of the total
body mass, it is responsible for 20% of the total oxygen
and energy consumption, which makes it the most
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metabolically active organ in the human body (Tarantini
et al. 2017c). During neuronal activation, there is a
sudden increase in nutrient and oxygen demand. As
the brain does not have significant energy and oxygen
reserves, normal brain function depends on an uninter-
rupted supply of nutrients and oxygen via the cerebral
microcirculation. Thus, moment-to-moment adjustment
of CBF to neuronal activity via NVC (also known as
Bfunctional hyperemia^) has an essential role in main-
tenance of normal brain function (Tarantini et al. 2017c).
NVC is responsible for increased oxygen and nutrient
delivery to the activated brain regions, the efficient
wash-out of toxic metabolites and maintenance of an
optimal humoral microenvironment within the cerebral
tissue (Fig. 1a). NVC depends on a coordinated interac-
tion among active neurons, astrocytes, smooth muscle
cells, and endothelial cells, which results in prompt
dilation of cerebral resistance arterioles with a concom-
itant significant increase in local cerebral blood flow to
the active brain regions (Tarantini et al. 2017a). The
rapid influx of oxygenated hemoglobin (HbO) and
washout of deoxyhemoglobin (HbR) during NVC pro-
cesses enables the real-time visualization of functional
hyperemia in vivo using fMRI and fNIRS (see below).

Age-related changes in neurovascular coupling: role
in age-related cognitive decline

There is growing evidence that NVC responses are
impaired both in older adults (Fabiani et al. 2013;
Lipecz et al. 2019; Stefanova et al. 2013; Topcuoglu
et al. 2009; Yang et al. 2017; Zaletel et al. 2005), aged
laboratory animals (Park et al. 2007; Tarantini et al.
2019; Tarantini et al. 2018b; Toth et al. 2014b), and
animal models of accelerated vascular aging (Toth et al.
2014b), which associate with a significant decline in
cognitive function (Sorond et al. 2013a; Sorond et al.
2011). Important in this regard is that pharmacological
induction of NVC dysfunction in young mice mimics
several aspects of age-related cognitive impairment
(Tarantini et al. 2015a; Tarantini et al. 2017d), suggest-
ing that age-related NVC impairment and cognitive
decline are causally linked. Indeed, recent studies dem-
onstrate that therapeutic interventions, which improve
microvascular function in aging, have the capacity to
rescue NVC responses and thereby improve cognition
(Tarantini et al. 2017c; Tarantini et al. 2019; Tarantini
et al. 2018b; Toth et al. 2017; Toth et al. 2014b).

Measuring neurovascular coupling in human
subjects: from fMRI to fNIRS

Among currently used methods to measure NVC in
humans, many studies have utilized functional magnetic
resonance imaging (fMRI) approach to evaluate func-
tional hyperemia as a proxy measure for neuronal acti-
vation. fMRI approach uses the diamagnetic and para-
magnetic qualities of HbO and HbR to calculate brain
concentration of HbR using a T2* relaxation magnetic
resonance signal (Ogawa et al. 1990). This so-called
blood-oxygen-level-dependent (BOLD) signal in-
creases with the decrease of HbR concentration, which
is commonly interpreted to occur as a result of increased
washout of HbR due to local increase in CBF. However,
recent studies suggest that fMRI alone may not provide
a definitive explanation for the BOLD signal in older
adults (Wright and Wise 2018). Arterial spin labeling
fMRI (ASL-fMRI) allowing measurement of cerebral
blood flow (CBF), showed lower resting CBF in older
adults (Restom et al. 2007). Considering inverse corre-
lation between resting CBF and the BOLD signal
change (Cohen et al. 2002; Stefanovic et al. 2006) and
accounting for the lower resting CBF in older adults,
fMRI data suggest a significant vascular component
behind the age-related differences in BOLD signal
(Zebrowitz et al. 2016). However, due to the complexity
of the BOLD signal, there may be several age-related
changes that may potentially lead to misinterpretation of
the results. In addition, research studies that utilize the
fMRI approach for assessment of NVC may often be
underpowered due to the high costs associated with the
use of equipment. The fMRI approach also imposes
additional restrictions due to the prolonged duration of
the procedure and limits the choice of methods of neu-
ronal stimulation to those that can be performed in
essentially immobilized subject.

In the past two decades, functional near-infrared
spectroscopy (fNIRS) has emerged as a promising tool
to detect NVC in human subjects, first mainly used as a
proxy measure for neuronal activation. In this context,
fNIRS has been used in several studies related to autism
(Zhang and Roeyers 2019), pediatric studies (Bortfeld
2019), and psychiatry (Ehlis et al. 2014; Grazioli et al.
2019). In the present review, we discuss the potential use
of fNIRS-based methods to study NVC responses in
translational geroscience research. Similar to the fMRI
BOLD signal, the signal measured by fNIRS is depen-
dent on the changes of hemoglobin (Hb) concentration
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in the cortex. First, we discuss the biophysical principles
of fNIRS and describe the methods to assess cerebral
blood flow using fNIRS. Some of the technical aspects
to separate the cerebral hemodynamic signal from phys-
iological fluctuations in the signal and the potential
limitations of the methods are also discussed. Finally,
we provide a detailed overview on the benefits of
fNIRS-based methods to assess NVC in an outpatient

setting and describe future directions of studies using
this technique in VCI research.

Biophysical principles of fNIRS

Biological tissues are relatively transparent to light
in a part of near-infrared (NIR) window (800–2500
nm), allowing usage of NIR light in physiological

a

b

Fig. 1 fNIRS imaging of neurovascular coupling responses in
cortical regions in humans. a fNIRS uses near-infrared light to
assess neurovascular coupling evoked increases in blood flow by
measuring changes in the concentration of oxygenated (HbO) and
deoxygenated (HbR) hemoglobin in the brain region immediately
below the optodes at baseline and during neuronal activation. HbO
and HbR are the main chromophores absorbing near-infrared light

and they exhibit distinct absorption spectra. b The surface of the
head is irradiated with a combination of near-infrared wavelengths
of light generated by the light source (BSource^). Photons
returning to the surface of the head after traveling a banana-
shaped path (in red) in the tissues are captured by the photodetector
(BDetector^) on the scalp. The number and array of the light source
and photodetector on the head vary between studies
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measurements. It is indispensable for functional
brain imaging studies that NIR light can readily
penetrate superficial layers (scalp and skull) to-
wards the brain cortex (Jobsis 1977). In fact, only
the wavelength range of 650–950 nm is particular-
ly suitable for studying the in vivo optical proper-
ties, given that the majority of photons are
absorbed by hemoglobin below 650 nm and by
water above 950 nm. HbO and HbR are the chro-
mophores (NIR-absorbers) of main physiological
interest since their in vivo dynamics have the
greatest impact on the measured signals (compared
to cytochromes also absorbing NIR light but in a
practically constant manner). The aim of NIRS is
to measure the relative or absolute concentration of
chromophores (Jobsis 1977) that is explicitly relat-
ed to detected NIR light attenuation.

Photon paths are usually very complex in a turbid
medium which justifies to model it in line with the
theory of photon diffusion (Arridge 1999). This is a
special case of a model described by radiative transport
equation (Chandrasekhar 1960) assuming μs> > μa,
where μs is the scattering coefficient and μa is the
absorption coefficient. This elastic collision between a
NIR-photon and a particle of the illuminated tissue
results in an average angle change of 20–30° (Cheong
et al. 1990). The consequent anisotropy is incorporated
in the definition of the commonly used reduced-
scattering coefficient, μs′ (Torricelli et al. 2001), which
is inversely proportional to the average distance be-
tween two collisions. The aforementioned interaction
gave rise to a number of quantification problems related
to time-varying scattering loss or heterogeneities in the
tissue (partial volume effect) (Obrig and Villringer
2003). Importantly, the considerable scattering of tissues
is mainly due to biological membranes and lipid bilayers
with an uneven spatial distribution (Cope 1991). More-
over, its degree is influenced by cell volume changes
due to slow redistribution of intracranial fluid volumes
and accompanying neuronal action potentials (Obrig
and Villringer 2003). Nevertheless, scattering phenom-
ena enabled topographic measurement geometries,
where the NIR light sources and detectors are arranged
in a grid separated by a distance d. Provided that an adult
head is sampled with 2.5 cm < d < 6 cm, a predictable
amount of detected photons pass through a Bbanana-
shaped^ volume (Bunce et al. 2006) restricted to the
brain cortex (Fig. 1b). NIR photons are hardly able to
penetrate the white matter as they are reflected back

from its boundary. Denoting the corresponding optical
pathlength by L, its relation to d is simply L = d ∙DPF,
where DPF is differential pathlength factor accounting
for the additional path due to scattering (Cope et al.
1988). Of note, the DPF may change with age due to
the structural changes of tissue the photons pass through
(Scholkmann and Wolf 2013).

The continuous wave NIRS (cwNIRS) method
uses multi-wavelength light source with a constant
intensity and measures the average decrease in it
to quantify attenuation (Jobsis 1977; Scholkmann
et al. 2014). In this case, only absorption changes
can be measured assuming a constant scattering
loss. The relative concentration of HbO and HbR,
and their sum, total hemoglobin (HbT), could be
assessed with the aid of Beer-Lambert law modi-
fied for highly scattering medium (Cope et al.
1988; Kocsis et al. 2006). Its differential form is
written as:

ΔA ¼ LΔμa ð1Þ
from where Δμa can be expressed:

αHbO λ1ð Þ αHbR λ1ð Þ
αHbO λ2ð Þ αHbR λ2ð Þ

� �
ΔcHbO
ΔcHbR

� �
¼ Δμa λ1ð Þ

Δμa λ2ð Þ
� �

: ð2Þ

By rearranging (2), concentration changes are obtain-
ed if:

ΔcHbO
ΔcHbR

� �
¼ αHbO λ1ð Þ αHbR λ1ð Þ

αHbO λ2ð Þ αHbR λ2ð Þ
� �−1

∙ ΔA λ1ð Þ=L
ΔA λ2ð Þ=L

� �
:

ð3Þ
Another important issue is the biological source

of the detected signal, the changes of which are
assumed to origin from the brain cortex. The con-
tribution of extracerebral tissue to NIRS records is
a recognized limitation of non-invasive optical
studies of the brain. Various methods have been
proposed to address this problem (Hueber et al.
1999; Suzuki et al. 1999). Generally, a better
sampling of the brain can be achieved if the sep-
aration (d) is increased. However, this reduces the
number of detected photons due to increased L,
and it is still not able to distinguish the intracere-
bral component. The principle of spatially resolved
spectroscopy is that detectors with small d mainly
capture hemodynamics from shallower regions
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(skin, skull, cerebrospinal fluid) (Suzuki et al.
1999), while the origin of signals measured by
detectors further from their corresponding light
sources is mainly cerebrocortical (Franceschini
et al. 1998). Hence, it is reasonable to assume that
if extracerebral change of optical properties influ-
ence both records, it can be removed by using the
signal coming from a less distant detector.

Cerebral blood flow measurement using fNIRS

Although cwNIRS provides excellent means to mon-
itor changes in hemodynamics in the brain cortex, it is
not capable of measuring absolute (baseline) Hb con-
centration, only the amplitude of the change in Hb
concentration. Thus, relative change of cerebral blood
flow (rCBF) cannot be measured directly. This draw-
back is also relevant in fNIRS studies since the locally
increased blood flow elicited by neural activity via
NVC is represented by and limited to the change of
HbO and HbR concentration in the imaged compart-
ment. Since this functional hyperemia is a hallmark of
the local hemodynamic response, it may provide an
important tool to identify cerebrovascular pathophys-
iological processes. Therefore, it is important to ex-
tend near-infrared optical imaging to enable cerebral
perfusion measurements. Several dynamic models
have been proposed to addre s s th i s i s sue
(Huneau et al. 2015) Buxton et al. devised a model
specifically applicable to NIRS data, that treats the
regional vascular compartment as a lumped represen-
tation of the vessels in the probed brain cortex (Buxton
et al. 1998). It has been widely used to interpret he-
modynamic changes accompanying brain activation
captured either by functional magnetic resonance im-
aging (fMRI) or fNIRS (Cui et al. 2010; Mildner et al.
2001; Mukli et al. 2018). The term Bballoon model^
was coined to describe the viscoelastic behavior pre-
dicted by the underlying equations of the model:

q˙ tð Þ ¼ f in tð Þ
τ0

E tð Þ
E0

−
q tð Þ
v tð Þ

� �
þ 1

τ v
f in tð Þ−v1

α

h i q tð Þ
v tð Þ ð4Þ

v˙ tð Þ ¼ 1

τv
f in tð Þ−v1

α

h i
ð5Þ

p˙ tð Þ ¼ 1

τv
f in tð Þ−v1

α

h i p tð Þ
v tð Þ : ð6Þ

where q, v, and p denote HbR, blood volume, and
HbT, respectively. In simulation studies, certain assump-
tions are necessary about the shape of fin(t), for example,
modeling it with a gamma-variate function. This re-
duces the number of unknown variables rendering the
differential equation system (4–6) solvable. It follows
that if in vivo data is available about hemoglobin con-
centration dynamics and its relation to flow changes are
also examined in silico, inferences can be made about
fin(t). Owing to the lumped nature and possibly violated
assumptions of the balloon model (and others), tools
enabling a more direct assessment of relative CBF are
preferable. In contrast to cwNIRS, frequency-domain
multi-distance NIRS (FDMD-NIRS) utilizes light
sources that are capable of emitting amplitude-
modulated light beams, which also allow measurement
of absolute Hb concentration and tissue oxygen satura-
tion (SO2) (Gatto et al. 2006). However, latter method is
associated with higher costs and less compact
instrumentation.

Separation of the cerebral hemodynamic signal
from physiological fluctuations in the signal

Changes in measured HbO and HbR signals due to
increases in local CBF evoked by neuronal stimulation
can be affected by physiological events related to the
cardiac cycle, breathing, and blood pressure fluctua-
tions. There are many methods extant to eliminate such
interference, which may arise from the superficial tissue
layers (scalp, skull) and also the brain itself. Frequency-
based algorithms (e.g., bandpass filtering, low-pass fil-
tering, moving averaging) have been developed to elim-
inate high-frequency instrument noise and low-
frequency drift (Izzetoglu et al. 2005). These approaches
can effectively remove interference caused by oscilla-
tions related to the cardiac cycle, but usually fail to
remove physiological noise signals related to breathing
and blood pressure variation. Importantly, physiological
noise exhibits broad spatial distribution, while changes
in the HbO and HbR signals due to neural activity are
localized (e.g., unilaterally in the motor/somatosensory
cortex during finger tapping). An increasing number of
algorithms have been developed for noise reduction in
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fNIRS studies that take advantage of these characteris-
tics (Saager and Berger 2008; Saager and Berger 2005;
Saager et al. 2011; Zhang et al. 2005). An important
emerging approach is to use signals from a channel with
a very short distance between the emitter and detector as
a reference (Prince et al. 2003). Ideally, such noise
reduction techniques should also be applied to real-
time processing (Abdelnour and Huppert 2009).

Matching fNIRS signal to neuronal activity
during cognitive stimulation

Using fNIRS approach allows to evaluate hemodynamic
NVC responses in human brain during neural stimula-
tion. Commonly accepted methods of neural stimulation
include performing a cognitive task (e.g., N-back test or
similar paradigms) (Sorond et al. 2013b), visual stimu-
lation (Stickland et al. 2019), auditory stimulation
(Hendrikx et al. 2019; Schei et al. 2012), or motor tasks
such as finger-tapping (Siero et al. 2013), all of which
can easily be adapted for studying NVC with fNIRS. In
addition, the fNIRS approach allows simultaneous as-
sessment of EEG signal, which provides important in-
formation on synchronization of hemodynamic changes
with neural activity in corresponding brain regions.

Figure 2 demonstrates the relationship between neu-
ral activity related to a cognitive stimulus and the con-
sequential hemodynamic changes. Data obtained from a
26-year-old individual (female, right-handed)
performing a 3-back cognitive task were analyzed. The
participant was randomly selected from a freely avail-
able data repository (Shin et al. 2018) and asked to
perform the N-back cognitive task. During the N-back
test, participants are required to respond to a sequence of
changing letters on the monitor screen by clicking the
mouse button upon recognizing the requested pattern (0-
back: response was requested when the symbol BX^was
presented; 2-back: response was requested when a pre-
sented number repeated itself 2 numbers back, e.g., 2-x-
2-x; 3-back: response was requested when the number
repeated itself 3 numbers back, e.g., 2-x-x-2). Each N-
back trial took 40 s with 20-s rest period between trials.
The greatest hemodynamic response was observed in
the prefrontal cortex during 3-back test when compared
to 2-back and 1-back tests. Correlation between EEG
and fNIRS signals was assessed in the ranges of 5–14
Hz and 0.01–0.1 Hz (Fig. 2). These data demonstrate
rapid hemodynamic responses upon administration of

the cognitive task that positively and strongly correlated
with the start of neuronal activity measured with EEG.

Application of fNIRS to study neurovascular
dysfunction in older adults

There is an acute need to establish easy-to-use fNIRS-
based methods that could be used in older individuals to
assess age-related changes in cerebromicrovascular
function by measuring NVC and to use these methods
to evaluate treatment effects in clinical investigations.
Therefore, a major goal is to develop methods that allow
the assessment of the cerebromicrovascular responses
independent of changes in neuronal activation. One
important challenge is that age-related changes in be-
havioral performance are associated with changes in
neural patterns of activation. Specifically, older partici-
pants were shown to exhibit more generalized less spe-
cific cerebral activation in response to cognitive tasks
and the recruitment of additional frontal regions that are
not activated in younger adults (DiGirolamo et al. 2001;
Gold et al. 2010; Milham et al. 2002; Sleimen-Malkoun
et al. 2014). Thus, identifying the right cognitive chal-
lenge is essential for studies attempting to compare
NVC in younger and older individuals with the goal to
draw conclusions about cerebromicrovascular health.

The sequential finger-opposition/tapping tasks are
useful methods to elicit quasi-similar neuronal activa-
tion in the primary motor cortex, which is associated
with a well-quantifiable fNIRS cortical signal. Several
studies demonstrated that NVC elicited by the finger
tapping task is consistent over several days (Kashou
et al. 2016). Finger tapping task usually produces re-
peatable fNIRS signals, which are quite reliable for the
best optode channel. This is a fine, delicate movement,
thus motion artifacts due to head movement are usually
not an issue.

To demonstrate the applicability of the fNIRS ap-
proach to assess NVC in older individuals we present
our findings obtained in relative healthy older adults
using the finger taping task. The data were obtained in
a cohort of n = 11 young (32 ± 1.8 years of age, n = 7
males, all participants right-handed) and n = 13 aged (76
± 2.17 years of age, n = 9 males, all participants right-
handed) healthy individuals. Participant selection was
taken from an on-going clinical study on healthy aging
at the University of Oklahoma Health Sciences Center.
All participants provided informed consent prior to par-
ticipation in the study. Tomeasure fNIRS signal we used
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the NIRScout platform (NIRx Medical Technologies
LLC, NY, USA). We positioned a 128-port Easycap
headcap covering the area of the international 10-10
system on the subject’s head. The sagittal line between
Fpz and Iz ports on the cap was aligned with the sagittal
plane of the head, and the optode in the Fpz port was
positioned along this line. The cap was set up with
custom spacers that limit the variability of distance
between optodes, providing an average source-detector
distance of 3 cm. The placement of optodes covered the
prefrontal cortex and medial motor cortex extending to
the areas of C5 or C6 laterally (Fig. 3a). Measurements
were taken in a quiet and darkened room. Each partic-
ipant was asked to remain silent and as still as possible,
aside from the hand movement tasks.

All participants were asked to perform amotor task in
the form of finger tapping. In brief, upon the auditory
command, participants were instructed to tap with the
left or right index finger for a duration of 10 s. Left and
right finger tapping tasks were alternated with 15-s rest
intervals between the tasks. Analysis was performed
using NIRSLab software (NIRx Medical Technologies
LLC, NY, USA). Saturated channel data and channels
with high variable noise (> 7.5% coefficient of varia-
tion) were excluded from further analysis. A bandpass

filter of 0.05 to 0.2 Hzwas applied to filter physiological
noise. Measured optical densities were converted to
change of hemoglobin concentration using the Beer-
Lambert law (Baker et al. 2014). Differential Pathlength
Factor (DPF) was adjusted for age with an equation
previously suggested (Scholkmann and Wolf 2013).
Block averages were then calculated for each channel
for each stimulus, and channel means were then aver-
aged for the region of interest for both groups. Concen-
tration changes are relative to the signal recorded 5 to 1
sec prior to start of finger tapping trials. Same, filtered
HbO data was used during general linear modeling
(GLM) analysis, and canonical hemodynamic response
function (hrf) was used as a basis function. During
group-level analysis, a t-contrast was used to compare
evoked hemodynamic responses of the two groups.

The finger-tapping task is known to be associated
with neuronal activation and consequential functional
hyperemia predominantly in the primary motor cortex,
the supplementary motor area, the pre-motor area, and
often the prefrontal cortex. A significant advantage of
using this task is that changes in HbO and HbR
reflecting NVC responses can be compared in the chan-
nels covering the well-defined anatomical areas known
to be involved in performing the task.

a b

Fig. 2 Relationship between bandpass-filtered electroencephalo-
graphic (EEG) and near-infrared spectroscopy (NIRS) signals in
the prefrontal cortex during N-back task session. The channel
position was FP2 for EEG and AFp8 for NIRS. a The EEG signal
(amplitude) was filtered between 5 and 14 Hz using a zero-phase
4th order Butterworth filter in order to preserve only higher fre-
quency brain waves related to synchronization and associated with
neurovascular coupling (Talukdar et al. 2015). The corresponding
oxyhemoglobin (HbO), deoxyhemoglobin (HbR) and total hemo-
globin (HbT = HbO + HbR, all are concentrations) time series
were obtained by filtering (zero-phase 3rd order Butterworth)
NIRS-signals in the 0.02–0.4 Hz frequency band which did not

contain high-frequency systemic signals (due to cardiac pulsation,
etc.). b Shows the same EEG- and hemodynamic response elicited
by cognitive stimulus as in a, but representing the low-frequency
oscillations (LFO). Accordingly, all signals were bandpass-filtered
with the corresponding lower (0.02 Hz) and higher cutoff frequen-
cy (0.1 Hz). Before the task started (indicated by dark-grey arrow)
the subject had been instructed to prepare (orange bar) for 3-back
task. The accompanying increase in EEG is followed by an in-
crease in HbOwith a 3-s delay (black bar, from EEG-peak to HbO-
peak). All data shown were obtained from a 26-year-old right-
handed female, further details of the measurement can be found in
the paper describing the dataset (Shin et al. 2018)
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The summary data presented in Fig. 3 demonstrate
that aging is associated with prominent changes in both
the amplitude and the time course of NVC related he-
modynamic responses. NVC was similar in the right
motor cortex during the left finger tapping task in both
groups (Fig. 3b). In contrast, the aged group showed a
significantly greater activation in the contralateral motor
cortex and the prefrontal cortex. When observing NVC
as block averages (Fig. 3c–f), we found that the early
peak of the HbO signal upon starting the motor task was
virtually absent in older adults (Fig. 3c). Interestingly,
when observing the HbO signals over the ipsilateral
motor cortex (Fig. 3d), we found that the evoked re-
sponse is indeed similar to the canonical hrf in the aged
group, however, the amplitude is lower than in the
contralateral motor cortex.

The amplitude of HbR signal reflecting blood wash-
out effectivity was also smaller and the response (if any)
was delayed in older adults as compared to younger
participants (Fig. 3e). Provided that NVC is spatially
heterogenous (Devonshire et al. 2012), amplitudes of
evoked NVC may be different depending on the stimu-
lation and the activated corresponding brain region.
Recent studies comparing signals from frequency-
domain multi-distance NIRS to BOLD fMRI signals
provide additional evidence (Fabiani et al. 2014) that
in older adults NVC is impaired.

It is common in fNIRS studies (Hirth et al. 1997;
Kashou et al. 2016; Obrig and Villringer 1997) to ob-
serve two peaks in the HbO response curve (Fig. 3c).
Often the first HbO response begins a few seconds prior
to the start of the stimulus itself, a phenomenon which
has been attributed to mental preparation for the motor
task (Kashou et al. 2016). In support of this concept,
earlier studies discovered a slow negative electroen-
cephalography activity (termed Bereitschaftspotential
or readiness potential) that precede self-initiated move-
ment for up to 2 s and reflects increased neural activity
related to readiness, preparation, and execution of
movement (Kornhuber and Deecke 1965). Its amplitude
correlates positively with movement complexity and its
two components demonstrate the hierarchy of the motor
system, with the activation of the supplementary motor
area preceding the activation of the primary motor cor-
tex (Drenckhahn et al. 2015). These EEG findings ac-
c o r d w i t h t h e r e s u l t s o f w h o l e - s c a l p
magnetoencephalographic studies (Erdler et al. 2000).
The early phase of the HbO signal detected in the fNIRS
study likely corresponds to these neuronal activities.

Interestingly, we have observed in our pilot cohort that
this pre-stimulation increase in HbO was more manifest
in healthy young individuals, whereas it was virtually
absent in the older participants in the present study (Fig.
3a).

As double peaks were not evident in the HbR re-
sponse upon finger tapping stimulus, HbR signal may
be more suitable for studies on cerebromicrovascular
aging. Importantly, amplitude features of the HbR sig-
nals differ between the different motor areas
(Drenckhahn et al. 2015). HbR signal could also be used
during GLM analysis, however, the basis function may
need to be adjusted to the expected waveform. Most
fNIRS studies report statistics based on HbO signal due
to the better signal-to-noise ratio, however, HbR signal
would essentially be created by the same phenomenon
as the BOLD signal captured during an fMRI approach
(Strangman et al. 2002a, 2002b). Due to the limited
spatial resolution of fNIRS, in our studies we decided
to compare amplitude features of the Hb signals in the
channels covering the medial motor cortex (Fig. 3c–f)
and calculated the average change of concentration
within all 10 channels covering each side.

There are several potential caveats that the re-
searchers working with fNIRS studies should be aware
of. Interpreting fNIRS signals, the exact anatomical
location of the optodes in relation to the supplementary
motor area and primary motor cortex, data processing
and algorithm of analysis, determination of movement
onset, the mode of initiation (self-paced or externally
cued) of the finger tapping task (Drenckhahn et al.
2015), and the duration of the stimulus should be con-
sidered carefully. Utilization of a digitizer device that
records placement of optodes on the head could improve
localization of the recorded signal on the brain. Howev-
er, spatial resolution of fNIRSwill not allow localization
as accurately as fMRI would. While performing fMRI
examinations an anatomical scan is also performed,
which can also help identify structural abnormalities
contributing to an altered hemodynamic response. On
the contrary, fNIRS does not provide anatomical infor-
mation, so study participants should be carefully
screened prior to inclusion in an fNIRS study. Despite
the limitations, fNIRS provides a good alternative for
NVC examination for assessments that require the par-
ticipant to be freely moving, or when NVC is measured
in a non-hospital setting. Combining fNIRS with other
methods, e.g., Transcranial Doppler sonography (TCD)
or ASL-fMRI may also provide a good measure of
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baseline CBF (when not using FDMD-fNIRS), and
would also help interpret the extent of the changes in
Hb concentration.

There are also potential external confounding factors
that should be also considered. For example, there is an
evidence that both hair thickness and hair color may
affect the fNIRS signals (Kashou et al. 2016), although
this may not represent a critical problem in longitudinal
study designs.

Perspectives

The advantages of fNIRS for invest igat ing
neurovascular function in older adults in an outpatient
setting include (i) fewer physical restrictions and limita-
tions, (ii) portability, (iii) repeatability, (iv) large selec-
tion of stimulation paradigms to elicit neuronal activity
including cognitive tasks, (v) ability to perform
neurovascular coupling assessments while moving,
(vi) relatively inexpensive instrumentation, (vii) excel-
lent temporal resolution. In addition, fNIRS measure-
ments can be easily combined with simultaneous assess-
ment of other physiological parameters (e.g., gait, cog-
nition, EEG).

We propose that in translational geroscience research
fNIRS technology-based measurement of NVC will be
particularly useful to assess the effect of various cardio-
vascular risk factors on the cerebral microcirculation in
older adults. Importantly, fNIRS-based NVC measure-
ments can be adapted to longitudinally measure the

effect of anti-aging therapeutic approaches and/or life-
style interventions on the cerebral microcirculation dur-
ing the course of treatment. The use of fNIRS would
potentially allow us to evaluate the effects of medica-
tions that were reported to improve the outcomes of age-
related diseases, such as metformin in diabetes mellitus
(Barzilai et al. 2016) and to repurpose them as drugs that
preserve cognitive function in aging. Application of
fNIRS-based NVC measurements in self-controlled ob-
servational study designs, such as the case-crossover
design and the self-controlled case series, is particularly
promising. fNIRS may also be a useful tool to test the
underlying causes of treatment-associated deteriorations
of cognitive function as it is with chemotherapy
(Carlson et al. 2018) and whole-brain irradiation
(Ungvari et al. 2017; Warrington et al. 2013), which
will provide a tool for a development of better and safer
medications to tackle these complications in aging.

There are also many exciting and demanding chal-
lenges ahead. Although there is a growing number of
studies correlating fNIRS- and fMRI-based measure-
ments, for translational geroscience studies it will be
highly advantageous to correlate NVC parameters mea-
sured by fNIRSwith other physiological parameters that
reflect microvascular and/or neurovascular health (e.g.,
CBF and NVC data measured by transcranial Doppler
(TCD) sonography (Sorond et al. 2011; Sorond et al.
2008) or dynamic retinal vessel analysis (DVA) (Lipecz
et al. 2019). We expect that a comprehensive
cerebromicrovascular health index encompassing
fNIRS-based NVC, TCD-based NVC and CBF, and
DVA-based retinal NVC data can be constructed
(Berni et al. 2011). We have recently demonstrated the
potential of such an approach, showing that even a
peripheral vascular health index used as a surrogate
marker of age-related, generalized vascular dysfunction
can reliably predict cognitive decline in older adults
(Csipo et al. 2019). We expect that a comprehensive
cerebromicrovascular health assessment, which encom-
passes measurements with fNIRS, TCD, and DVA, will
be even more reliable and sensitive to predict brain
health and cognitive performance, identifying older in-
dividuals at risk for vascular cognitive impairment.
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