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Abstract Expression of the transient receptor potential
ankyrin 1 (TRPA1) receptor has been demonstrated not
only in the dorsal root and trigeminal ganglia but also in
different brain regions (e.g., hippocampus, hypothalamus,
and cortex). However, data concerning their role in neuro-
degenerative and age-related diseases of the CNS is still
indistinct. The aim of our study was to investigate the
potential role of TRPAI in a mouse model of senile
dementia. For the investigation of changes during aging,
we used male young (3—4-month-old) and old (18-month-
old) wild-type (TRPA1**;WT) and TRPA1 receptor gene-
deleted (TRPA1 ") mice. Novel object recognition (NOR)
test as well as Y maze (YM), radial arm maze (RAM), and
Morris water maze (MWM) tests were used to assess the
decline of memory and learning skills. In the behavioral
studies, significant memory loss was detected in aged
TRPA1** mice with the NOR and RAM, but there was
no difference measured by YM and MWM tests regarding
the age and gene. TRPA1™~ showed significantly reduced
memory loss, which could be seen as higher discrimination
index in the NOR and less exploration time in the RAM.
Furthermore, young TRPA1~~ animals showed
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significantly less reference memory error in the RAM
and notably higher mobility in NOR, RAM, and YM
compared with the age-matched WTs. Our present work
has provided the first evidence that TRPA1 receptors
mediate deteriorating effects in the old age memory de-
cline. Understanding the underlying mechanisms could
open new perspectives in the pharmacotherapy of
dementia.
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Introduction

Transient receptor potential ankyrin 1 (TRPA1) is a
polymodal, non-selective cation channel, which belongs
to the TRP superfamily. It is widely expressed on neu-
ronal and non-neuronal cell types (Nilius et al. 2012).
The highest level of expression can be detected in the
nervous system—primarily in the dorsal root and tri-
geminal ganglia as well as in capsaicin-sensitive sensory
nerve endings (Zygmunt and Hogestdtt 2014). It plays a
crucial role in several physiological and pathophysio-
logical processes: pain sensation (Kadkova et al. 2017;
Hung and Tan 2018), inflammation (Koivisto et al.
2014; Choi and Di Nardo 2018), and cancer (Biich
et al. 2018).

TRPA1 has also been shown in the central nervous
system (CNS). It was detected in the hippocampus
(Koch et al. 2011), nucleus supraopticus of the hypo-
thalamus (Yokoyama et al. 2011), brain stem (Sun et al.
2009), and cortical neurons (Kheradpezhouh et al.
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2017). Furthermore, TRPA1 receptors are expressed in
astrocytes and play a role in the regulation of the intra-
cellular calcium level resulting in the release of media-
tors (Shigetomi et al. 2011, 2013; Takizawa et al. 2018).
Therefore, TRPA1 was recently intensively investigated
in different central nervous system pathologies, e.g.,
multiple sclerosis (Saghy et al. 2016; Bolcskei et al.
2018) and Alzheimer’s disease (Lee et al. 2016). Addi-
tionally, due to its expression on endothelial cells, oxy-
gen sensing, and calcium-regulating functions, TRPA1
has neuroprotective effects also in stroke (Pires and
Earley 2018; Guerra et al. 2018). Moreover, TRPAI
seems to be a key contributor of ischemic myelin dam-
age (Hamilton et al. 2016). These results strongly sug-
gest that TRPA1 influences the neuroinflammatory/
neurodegenerative alterations. However, results
concerning the age-related expression and functional
changes of TRPA1 are deficient. TRPA1 expression
continuously increases in the mouse brain after birth
but reaches a plateau in 2-3 weeks (Lee et al. 2017).
Data about alterations of the receptor count/density in
older animals are absolutely lacking. There is only one
paper that compares the function of TRPA1 in young (3-
month-old) and aged (24-month-old) mice. They have
found that TRPA1 is a key mediator of nociceptor
sensitization only in aged animals in an adjuvant-
induced arthritis model (Garrison and Stucky 2014).
The mechanism of senile memory loss is still unclear.
This type of dementia is usually moderate but it gradu-
ally leads to declined mental function, resulting in dis-
ability and loss of quality of life (Bowling et al. 2015).
There are several neurodegenerative processes involved
in senile dementia (Blalock et al. 2003). The most
important factors are inflammatory responses (Hauss-
Wegrzyniak et al. 2000; Andreasson et al. 2001;
Franceschi and Campisi 2014), oxidative stress
(Carney et al. 1991; Davies et al. 2017; Tan et al.
2018), mitochondrial dysfunction, and altered calcium
homeostasis (Alzheimer’s Association Calcium Hy-
pothesis Workgroup 2017; Miiller et al. 2018; Sure
et al. 2018). Investigation of the molecular background
of this type of memory loss as well as the assessment of
the effectiveness of different drug candidates is very
complicated in rodents. Dementia occurs as a complex
syndrome of cognitive, functional, and emotional alter-
ations in humans (Ferrucci et al. 2018; Cansino et al.
2018); only some symptoms are reproducible in animal
models (Mitchell et al. 2015; Wahl et al. 2017). Further-
more, the mortality, morbidity, and sensitivity to
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different interventions have much higher risk over
12 months in rodents (Snyder et al. 2016).

TRPA1 channel is a “promiscuous’ receptor and can
be activated by several electrophilic ligands (free radi-
cals, inflammatory mediators, etc.) (Bandell et al. 2004;
Nilius et al. 2012; Storozhuk and Zholos 2018; Pozsgai
et al. 2019) which accumulate during aging. TRPAI
activation leads to increased intracellular calcium level
with cellular damage aggravating dementia in a genetic
mouse model of Alzheimer’s disease. Therefore, in the
present study, we aimed to investigate the old age mem-
ory decline without any pharmacological or genetic
manipulation. Another aim was to investigate the poten-
tial role of TRPA1 receptors in senile dementia in gene-
deleted mice.

Materials and methods
Ethics

All experimental procedures were performed according
to the 1998/XXVIII Act of the Hungarian Parliament on
Animal Protection, Consideration Decree of Scientific
Procedures of Animal Experiments (243/1988), Hun-
garian regulations (40/2013, II.14.), and Directive
2010/63/EU of the European Parliament. The studies
were approved by the Ethics Committee on Animal
Research of University of Pécs according to the Ethical
Codex of Animal Experiments and license was given
(license no. BA 02/2000-24/2016).

Animals

Experiments were carried out using TRPA1 receptor
gene-deficient mice (TRPA17"; KO) and their wild-
type counterparts (TRPA1™*; WT), respectively.
TRPA1™ and TRPA*™* mice were generated from
an original pair of heterozygous mice and obtained
from Prof. P. Geppetti (University of Florence, Italy).
Offspring were genotyped and homozygous mice
were selected for further breeding. The animals were
bred and kept in the vivarium of the Department of
Pharmacology and Pharmacotherapy of the Universi-
ty of Pécs at 24 °C and provided with standard rodent
food and water ad libitum. The animals were main-
tained under conditions of 12-h light/dark cycle and
were housed in groups of 3—5 in polycarbonate cages
(530-cm’® floor space, 14-cm height) on wood
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shavings bedding. The animals had a 60-min accli-
matization period prior to each experiment.

For the experiments, young (3—4-month-old) and old
(18-month-old) male TRPA1** and TRPA1 mice
were used. The number of animals was 6—12/group.

Novel object recognition test (NOR)

For the assessment of the recognition memory, we used
the well-known paradigm of the novel object recogni-
tion test (Morellini 2013). The examination lasted for
3 days. On the first, habituation day, animals could
freely explore the 45 x 45 %30 cm wooden box for a
5-min-long period, which can be considered as a simple
open field test. In this regard, spontaneous locomotor
activity can be detected and characterized by distance
moved, velocity, time spent in the center, and entries to
the central zone. On the second experimental day, mice
were allowed to examine the two identical objects for
5 min. On the third day (24 h after the second trial), the
animals could choose from one familiar and one novel
object which has similar size but different shape and
color. Mice explored the objects for 5 min. Behavior of
animals was recorded and analyzed with Ethovision
XT11 software (Noldus Information Technology, Neth-
erlands). The obtained data were calculated and repre-
sented as follows: distance moved, time spent with
moving, velocity (Ist, 2nd, 3rd days); location prefer-
ence = (time exploring the right identical object/total
exploration time) x 100 (2nd day); recognition index =
(time exploring the novel object/total exploration time)
x 100 and discrimination index = difference in time
exploring the novel and familiar objects/total explora-
tion time, exploration time of the familiar and novel
objects (3rd day).

Radial arm maze test (RAM)

For the measurement of short- and long-term memory
alterations, the radial arm maze test is a widely used,
suitable method (Levin 1988). Three-day-long habitua-
tion and learning period was used before the test trial.
During this time, mice have to learn where they can find
the food pellets (Dustless Precision Pellets® 45 mg,
Sucrose; BioServ, USA) placed into 4 previously cho-
sen arms of the eight-arm radial maze (arms 5 x 35 cm,
central platform diameter 5 cm). The trials lasted for
5 min or until the animals have found all the four food
pellets, whichever came first. The learning ability was

assessed on the 4th day of the experiment. Exploratory
behavior was recorded and analyzed with Ethovision
XT11 software (Noldus Information Technology, Neth-
erlands). Data were calculated and represented as fol-
lows: working memory errors = entries into the baited
arms that had already been visited during the same trial,
referring to the short-term memory, and reference mem-
ory error = entries into empty arms, showing the status
of long-term memory, velocity, and average exploration
time = time spent in collecting all the pellets in the
maze/total number of arm entries (Li et al. 2011; Zhang
et al. 2000).

Y maze test (YM)

For the assessment of spatial memory, Y maze test was
used (D’Souza et al. 2015; Hughes 2004). Only one 5-
min-long trial was performed in the equipment (three
35-cm-long % 5-cm-wide arms, stated as A, B, and C
arms) and the spontaneous alternation (correct alternat-
ing behavior (ABC, ACB, BAC, BCA, CAB, CBA)/the
number of arm entries minus two); distance moved,
velocity, and total number of arm entries were deter-
mined on the basis of the video tracked by Ethovision
XT11 software (Noldus Information Technology,
Netherlands).

Morris water maze test (MWM)

Morris water maze test is also widely used for both basic
research and drug developmental purposes (D’Hooge
and De Deyn 2001). It was originally developed for rats
(Morris 1981), but later it was adapted to mice. In our
hands, the following protocol was used: a circular pool
was filled with water to hide the platform placed always
at the same point of the pool. Visual clues were placed
above the pool on the wall to help the orientation.
Conditioning lasted for 3 days; each day, each animal
performed 4 swimming sessions started from 4 different
points of the pool (northeast (NE), southeast (SE),
southwest (SW), and northwest (NW)). On the fourth
day of the study, all mice had to perform the same 4
swimming sessions, and the time to find the platform
(escape latency) was calculated as the mean of the 4
trials (Zhang et al. 2012). Swimming time was recorded
and analyzed with Ethovision XT11 software (Noldus
Information Technology, Netherlands).

@ Springer



646

GeroScience (2019) 41:643-654

Heat maps

Different colors indicated by the heat maps show the
average activity of the animal groups. It shows how and
where the animals spent time during the tests. Cold
colors (black, blue, and green) mean low activity. Warm
colors (yellow, red) indicate high activity of the mice in
different parts of the experimental area.

Statistical analysis

Data in all experiments were expressed as mean + SEM.
Data are analyzed by two-way ANOVA followed by
Fischer’s posttest. In case of location preference, one
sample ¢ test in comparison with 50% was used. In every
case, p < 0.05 was considered significant. All statistical
analyses were performed using Statistica software.

Results

Significantly attenuated memory loss was detected
in old TRPA1™" animals by the NOR compared
with the TRPA1*"* respective controls

On the first day of the novel object recognition (NOR)
test, when the animals can move around freely in the
box, young TRPA1™~ showed significantly higher mo-
bility state. Young TRPA1** mice moved 787.50 +
92.37 cm with a velocity of 3.39+0.23 cm/s, while
these values in the case of the TRPA1™"~ animals were
1511.00 + 184.80 cm and 5.71 £0.68 cm/s, respectively
(Fig. 1a, d). Velocity of old gene-deleted animals was
also higher (5.33+0.39 cm/s) than that of the WT
counterparts (3.07 + 0.39 cm/s). Time spent in the center
zone was not significantly different in the different
groups and did not markedly alter with the age, but the
entries in the center zone (TRPA1Y* 7.33 +1.56,
TRPA1™™ 16.44+2.80) showed the higher mobility
state of the TRPA1™~ animals again (Fig. le, f). Heat
maps of the animals visualize the differences observed
on the first day of the NOR. In case of both old and
young TRPA1™ mice, the density maps show more
colorful areas and the center zone is also covered by
blue color which cannot be detected in the case of the
respective WTs (Fig. 1g—j).

On the second day, all animal groups showed no or
minimal preference to one of the identical objects, so
there was no significant location preference in any of the
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groups (Fig. 2a). The velocity was significantly higher
in young TRPA1™”" animals compared with the WT
counterparts also on the 2nd and 3rd days of the exper-
iment (Fig. 1b, c).

In old TRPA1"* mice, the frequency of visiting the
novel object (1.37+£0.42) and the discrimination index
(—0.44 +0.25) was significantly deteriorated compared
with the young TRPA1** animals (3.20+0.51 and
0.31£0.10; Fig. 2b, d). In the gene-deleted animals,
this memory loss cannot be detected; young and old
TRPA1™" showed similar performance during the test
trial (Fig. 2b—d). In comparison with old TRPA1** and
TRPA1™ mice, the NOR memory test has shown that
both the discrimination (0.17+0.05) and recognition
indexes (55.08 +3.95) of the TRPA1™~ group are sig-
nificantly higher than those of the WTs (Fig. 2b, ¢). Heat
maps (Fig. 2g-j) show the preference of the novel (right)
object in every group except for the old TRPA1**. The
most frequently visited place was very close to the novel
object (top right corner) in the young groups.

Young animals showed significantly better reference
memory compared with the old animals, and attenuated
memory loss was detected in old TRPA1 KO mice
compared with the WT controls in the RAM

The radial arm maze (RAM) test showed that old
TRPA1** and TRPA1~ mice need longer time for
exploration than the young animals. Additionally, old
TRPA1™" animals spend significantly less time (343.50
+60.17 s) with collecting the pellets than the old
TRPA1™* (545.00 + 47.45) mice (Fig. 3¢). Furthermore,
old TRPA1*"* mice find significantly less rewards (2.50
+0.42) compared with the young WT counterparts
(3.70£0.21), which decline cannot be observed in the
case of the gene-deleted animals (Fig. 3d). The velocity
was significantly higher in the young TRPA1™" group
compared with the WTs and remarkably decreased in
aged TRPA1™" animals (Fig. 3e).

The reference memory error is significantly higher in
the old groups (TRPA1™* 4.50+0.22; TRPA1 " 4.50
+0.29) compared with their young counterparts
(TRPA1**2.67+0.33; TRPA1 1.40 +0.24). Further-
more, it was remarkably lower in young TRPA1™~ mice
than in WTs (Fig. 3b). The working memory error is
significantly higher in old animals (TRPA1** 2.40+
0.40; TRPA1™" 1.50+0.22) compared with the young
groups (TRPA1"* 0.67+0.29; TRPA1~ 0.25+0.16),
and it is lower in both young and old TRPA1™" animals
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Fig. 1 Age-dependent changes of the performance in the open
field test (OFT)/1st day of novel object recognition (NOR) task in
TRPA1** and TRPA1™~ young and old mice. Spontaneous loco-
motor activity was determined as velocity (a) and distance moved
(d) as well as entries to the center zone (e). Anxiety level was
assessed by the time spent in the center zone (f). Velocity was
determined also on the 2nd (b) and 3rd (¢) days of the NOR test.
Data are presented as the mean £ SEM (n=6-10) and were

compared with their WTs, although it is not statistically
significant (Fig. 3a). Heat maps clearly demonstrate that
the young animals visited markedly less arm and made
less errors compared with the old mice (Fig. 3f-i).

Neither age nor TRPA1 gene deletion influenced the Y
maze and Morris water maze test performance

Spontaneous alternation measured in the Y maze
was very similar in all investigated groups, ap-
proximately 67% (Fig. 4a). Furthermore, despite
the higher mobility of the young TRPA1™~ group
(1218.00+86.60 cm, 3.832+0.5022 cm/s;
Fig. 4c, d), which tendency was similar to the

analyzed by two-way ANOVA followed by Fischer’s posttest
(*p <0.05, **p <0.01). Demonstrative heat map pictures of the
locomotor activity of TRPA1** young (g) and old (i) as well as
TRPA1™" young (h) and old (j) mice on the 1st day of the NOR
test. Blue color represents the less visited parts of the experimental
area; red color represents the most frequently visited parts of the
experimental area

NOR test, the number of arm entries was very
similar in all groups, approximately 16 (Fig. 4b).

Escape latency measured in the Morris water maze
test did not show any significant difference neither
between the old (TRPA1** 28.15+3.19; TRPA1 ™~
28.47+4.04) and young groups (TRPA1™* 31.69+
3.04; TRPA1™™ 27.78 +2.70) nor between WT and
gene-deleted animals (Fig. 4e).

Discussion

The present study has provided the first evidence
that TRPAT1 receptors are involved in senile memory
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Fig. 2 Age-dependent changes of the performance in the novel
object recognition (NOR) task in TRPA1** and TRPA1™~ young
and old mice. On the 2nd day of the test, time spent with exploring
the two identical objects was demonstrated as location preference
(a). Memory function was determined on the 3rd (test) day as
discrimination index (b), recognition index (c), frequency of vis-
iting the objects (d), and time spent with exploring the familiar (e)
and novel (f) objects. Data are presented as the mean + SEM (n =

loss of mice. We were able to assess memory decline
with the NOR and RAM tests, while the spontane-
ous alternation in Y maze (YM) and the escape
latency in Morris water maze (MWM) tests did not
demonstrate the age-related downtrend of learning
ability in our model.

TRPA1 is widely expressed throughout the body. It is
localized in the peripheral, as well as the central nervous
systems. There is strong evidence that TRPA1 plays a
crucial role in pain transmission (Koivisto et al. 2018)
and neuroimmune interactions (Lopez-Requena et al.
2017). Therefore, it could be a potential drug target for
several pain-related, respiratory, and vascular disorders
(Nishida et al. 2015). However, studies of the last de-
cade focused more and more to the CNS expressions
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6—10) and were analyzed by two-way ANOVA followed by
Fischer’s posttest (¥p <0.05). In the case of location preference,
one sample ¢ test in comparison with 50% was used. Heat map
pictures of the performance of TRPA1** young (g) and old (i) as
well as TRPA1™~ young (h) and old (j) mice on the 3rd day of the
NOR test. Blue color represents the less visited parts of the
experimental area; red color represents the most frequently visited
parts of the experimental area

and functions of TRPAI1. There is an increasing evi-
dence that TRPA1 can be found in the brain; both
neuronal (cortex, hypothalamus, and hippocampus)
and non-neuronal (astrocytes, Schwann cells, and endo-
thelial cells) cell types express the receptor (Meents
et al. 2019). Although our knowledge about TRPA1
functions in the CNS is limited (Saghy et al. 2016; Lee
et al. 2017; Shigetomi et al. 2013; Lee et al. 2016), due
to its polymodal nature, TRPAI is very likely to be
involved in numerous brain pathologies. A wide range
of ligands, irritants, or stimulants can activate or sensi-
tize the receptor (Nilius et al. 2012; Pozsgai et al. 2019;
Chen and Hackos 2015). Furthermore, the consequence
of TRPA1 activation can also be linked to CNS process-
es, because these receptors are highly permeable to
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Fig. 3 Age-dependent changes of the performance in the radial
arm maze (RAM) task in TRPA1** and TRPA1™~ young and old
mice. Memory function was determined as working memory error
(a), reference memory error (b), average exploration time (c¢), and
rewards found (d). Velocity of the animals (e) was also assessed
during the measurement. Data are presented as the mean + SEM
(n=6-10) and were analyzed by two-way ANOVA followed by

calcium ions influencing calcium homeostasis of neu-
rons and the glial cells (Hamilton et al. 2016).

Up to now, only few data have been published
concerning the learning skills of TRPA1 gene-
deleted animals. Memory functions of old
(18 months) mice lacking TRPA1 have never been
investigated, and only one recent paper describes
behavioral and learning characteristics of young
(8-week-old) TRPA1 knockout animals (Lee et al.
2017). In contrast to our results, they did not find
any significant difference of motility in open field
test. However, despite the variant protocol used in
the NOR test, they also found that the discrimina-
tion index was higher in young mice lacking
TRPA1 and the animals spent more time in the
novel object zone. In our study, the same tendency
could also be detected in old animals: aged WT

young

TRPA1"* old

Fischer’s posttest (*» < 0.05, **p < 0.01, ***p < 0.001). Heat map
pictures of the performance of TRPA1"* young (f) and old (h) as
well as TRPA1™~ young (g) and old (i) mice on the 4th day of the
RAM test. Blue color represents the less visited parts of the
experimental area; red color represents the most frequently visited
parts of the experimental area. Arms 1, 2, 5, and 7 were rewarded

mice showed marked memory loss and this alter-
ation was significantly attenuated, nearly dimin-
ished in TRPA1~~ animals. Both discrimination
and recognition indexes, as well as the frequency
of visiting the objects, were higher in knockouts. In
the present study, the RAM test also indicated
remarkable difference between the young WT and
TRPA1 KO groups concerning memory function.
Reference memory error was significantly lower in
young animals lacking TRPA1 compared with the
WTs. Furthermore, old WT animals needed signif-
icantly more time to find the rewards in the maze
than TRPA1 knockouts, and only old WT animals
found significantly less rewards compared with the
young counterparts. These results clearly confirm
the results obtained from a genetic model of
Alzheimer's disecase. TRPA1 depletion leads to
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Fig. 4 Age-dependent changes of the performance in the Y maze
(YM) and Morris water maze (MWM) tasks in TRPA1*"* and
TRPA1™" young and old mice. Memory function was determined
as spontaneous alternation (a), locomotor activity as number of

significantly reduced memory loss in both models
(Lee et al. 2016).

There are several various processes which can lead to
age-related diseases. Due to the heterogeneity of the
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arm entries (b), distance moved (¢), and velocity (d) in YM. In the
MWM, memory function was assessed as escape latency (e). Data
are presented as the mean + SEM (n = 6-10) and were analyzed by
two-way ANOVA followed by Fischer’s posttest (*p < 0.05)

pathomechanisms, several mediators (pituitary adenyl-
ate cyclase-activating polypeptide, brain-derived neuro-
trophic factor, corticotropin-releasing factor, etc.) have
recently been identified to be involved in the
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development of different disorders of aged animals/
humans (Reglodi et al. 2018; Ungvari et al. 2017;
Vedovelli et al. 2017; Fang et al. 2017; Tenk et al.
2017; Ashpole et al. 2017). Altered inflammatory re-
sponses and upregulation of genes encoding inflamma-
tory mediators (Blalock et al. 2003; Hauss-Wegrzyniak
et al. 2000; Andreasson et al. 2001; Franceschi and
Campisi 2014), as well as cumulating oxidative stress
and the oxidative damage of proteins (Carney et al.
1991; Davies et al. 2017; Tan et al. 2018), are well-
known, important contributors to dementia. Similarly,
altered mitochondrial function and calcium homeosta-
sis, which are essentially responsible for the normal
function of the brain cells (Alzheimer’s Association
Calcium Hypothesis Workgroup 2017; Miiller et al.
2018; Sure et al. 2018), can result in cell death and
memory decline.

Our results fairly show that the lack of TRPA1 leads
to significant attenuated memory loss in aged mice,
suggesting that TRPA1 plays a crucial debating role in
old age memory decline. According to the microarray
data of the Human Brain Transcriptome Database and
the Allen Brain Atlas, the TRPA1 expression in the
human and murine brains is quite low, but it can be
clearly detected. Its expression shows relatively high
values in the temporal, prefrontal, primary auditory,
and primary visual cortices and in the hippocampal area.
Expression levels in the human brain do not change with
age (Kang et al. 2011; Barrett et al. 2013; Hawrylycz
et al. 2012). Although the underlying mechanisms are
still unknown and need further investigations, several
mediators involved in memory loss are known
activators/sensitizers of TRPA1. We suggest that neuro-
inflammation and oxidative stress developing with age,
together with increased vulnerability for oxidative stress
in higher age (Carney et al. 1991), could lead to over-
activation of the TRPA1 receptors. The increased Ca**
influx to the cytoplasm, which alone, or together with
potentiating the effects of other cation channels, like
NMDA receptors, results in Ca®* dysregulation of the
cells leading to cell degeneration or cell death.

Another important aim of the study was to character-
ize the model. Aging of the animals leads to a much less
robust memory loss than measured in other chemically
or genetically induced dementia models. Therefore, it is
difficult to find the most appropriate memory loss—
sensitive behavioral tests. The NOR test is one of the
most well-known methods for assessing memory func-
tion. Although the low exploration time should be

considered a limitation of the NOR test, we demonstrat-
ed a significant decline of memory function in 18-
month-old WT animals. Adequacy of the NOR test
was also demonstrated in other accepted, oxidative
stress (D-galactose, doxorubicin)—evoked animal
models (Kaviani et al. 2017; Keeney et al. 2018). Radial
arm water maze is a more widely applied test in aging/
dementia studies compared with the RAM test (Buhusi
et al. 2017; Sudduth et al. 2013); however, there are
some data describing that dietary intake of natural toxins
(Karlsson et al. 2009) or aging (Marighetto et al. 2008)
can decrease learning ability measured by RAM test. It
was absolutely a suitable method for the presentation of
senile memory loss in the present study. Both working
and reference memory errors increased significantly in
aged mice compared with their younger counterparts.
The exploration time was also longer in older animals,
and old WT mice found significantly less rewards than
young animals. In the present study, Y and Morris water
maze tests did not show any difference between the
young and old groups. The literature is also divergent
in this question; the results are contradictory (Morgan
et al. 2018; Hattori et al. 2016).

Nevertheless, dementia treatment is absolutely unsat-
isfactory: in most cases, only the mild cognitive decline
can be corrected. Although several recommendations
(including physical activity and diet) and programs (re-
ality orientation training or cognitive stimulation thera-
py) are offered for patients with dementia in order to
increase quality of life, there are no effective drugs on
the market against severe memory loss. Since the
TRPA1 receptor seems to be a key regulator of memory
functions in younger and older ages in animal studies,
receptor antagonists could open new perspectives in the
pharmacotherapy of the senile dementia.
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