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Abstract

Schizophrenia is a debilitating psychiatric disorder with approximately 1% lifetime risk globally. 

Large-scale schizophrenia genetic studies have reported primarily on European ancestry samples, 

potentially missing important biological insights. Here, we report the largest study to date of East 

Asian participants (22,778 schizophrenia cases and 35,362 controls), identifying 21 genome-wide 

significant associations in 19 genetic loci. Common genetic variants that confer risk for 

schizophrenia have highly similar effects between East Asian and European ancestries (rg = 0.98 

± 0.03), indicating that the genetic basis of schizophrenia and its biology are broadly shared across 

populations. A fixed-effect meta-analysis including individuals from East Asian and European 

ancestries identified 208 significant associations in 176 genetic loci (53 novel). Trans-ancestry 

fine-mapping reduced the sets of candidate causal variants in 44 loci. Polygenic risk scores had 

reduced performance when transferred across ancestries, highlighting the importance of including 

sufficient samples of major ancestral groups to ensure their generalizability across populations.

Editorial summary:

Genome-wide meta-analysis with individuals of East Asian or European ancestry identifies 176 

loci associated with schizophrenia. Despite consistent genetic effects across populations, 

polygenic risk models trained in one population have reduced performance in the other population.
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Schizophrenia is an often disabling psychiatric disorder that occurs worldwide with a 

lifetime risk of about 1%1. It is well established that genetic factors contribute to the 

susceptibility of schizophrenia. Recently, 145 genetic loci have been associated with 

schizophrenia in samples of primarily European ancestry2,3 (EUR), but this still represents 

the tip of the iceberg with respect to common variant liability to the disorder: the highly 

polygenic nature of common variation underlying this disorder predicts that there are 

hundreds more loci to be discovered4.

Most genetic studies of schizophrenia have been performed in EUR samples, with relatively 

few studies in other populations5-8. This is a substantial deficiency for multiple reasons, 

particularly as it greatly limits the discovery of biological clues about schizophrenia. For 

some causal variants, ancestry-related heterogeneity yields varying allele frequency and 

linkage disequilibrium (LD) patterns such that associations that can be detected in one 

population may not be readily detected in others. Examples include a nonsense variant in 

TBC1D4, which confers muscle insulin resistance and increases risk for type 2 diabetes, 

common in Greenland but rare or absent in other populations9, several Asian-specific coding 

variants that influence blood lipids10, a variant highly protective against alcoholism that is 

common in Asian populations but uncommon elsewhere11, and two loci associated with 

major depression12 that are more common in the Chinese populations than EUR12,13 

(rs12415800: 45% versus 2%; rs35936514: 28% versus 6%).

Even if alleles have similar frequencies across populations, the effects of alleles on risk 

might be specific to certain populations if there are prominent but local contributions of 

clinical heterogeneity, gene-environment (GxE) or gene-gene (GxG) interactions. In 

addition, there have been debates about differences in prevalence, symptomatology, etiology, 

outcome, and course of illness across geographical regions14-19. Understanding the genetic 

architecture of schizophrenia across populations provides insights into whether any 

differences represent etiologic heterogeneity on the illness.

Finally, polygenic risk score (PRS) prediction is emerging as a useful tool for studying the 

effects of genetic liability, identifying more homogeneous phenotypes, and stratifying 

patients. However, previous studies have shown that prediction accuracy decays with 

increasing genetic divergence between the risk allele discovery and target datasets20,21. The 

risk predicted, measured as R2, was only 45% as accurate in EAS as in EUR individuals 

when computed from GWAS of Europeans22. These differences can be explained by 

ancestry-related differences in allele frequencies, LD, and other factors22. Importantly, the 

applicability of training data from EUR studies to those of non-European ancestry has not 

been fully assessed, leaving uncertainty as to the biological relevance of discoveries made in 

EUR samples for non-Europeans21.

Results

Schizophrenia genetic associations in East Asian populations.

To our knowledge, this is the first study to combine multiple samples with schizophrenia 

across East Asia (EAS) to systematically examine the genetic architecture of schizophrenia 

in individuals of EAS ancestry. We compiled 22,778 schizophrenia cases and 35,362 
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controls from 20 samples from East Asia (Supplementary Table 1). Individual-level 

genotypes were available from 16 sample collections (Supplementary Table 1), on which we 

performed quality control, imputation and association tests (Methods and Supplementary 

Table 2). Two sample collections (TAI-1 and TAI-2) were trio-based and pseudo-controls 

were used. Four sample collections made available summary statistics for 22K-31K selected 

variants (Methods) that had been analyzed in published studies7,8. Compared with the latest 

study using only Chinese individuals8, our study has about twice the sample size, and is 

much more diverse.

We used a two-stage study design (Supplementary Table 1a). Stage 1 included 13 sample 

collections for which we had individual genotype data (13,305 cases and 16,244 controls 

after quality control). Stage 2 incorporated the remaining 7 sample collections: full genotype 

data from 3 sample collections that arrived after the stage 1 data freeze, and summary 

statistics (for selected variants) from 4 sample collections (Supplementary Table 1). Meta-

analyses across stage 1 samples and across all EAS samples were conducted using a fixed-

effect model with inverse-variance weighting. QQ plots (Supplementary Fig. 1) showed no 

inflation of test statistics (indicating that ancestry effects have been well controlled) with λgc 

= 1.14, λ1000 = 1.01, and LD Score regression23 (LDSC) intercept = 1.0145 ± 0.011 using 

stage 1 samples.

Combining stages 1 and 2, we found 21 genome-wide significant associations at 19 loci 

(Table 1, Fig. 1, Supplementary Table 3, and Supplementary Data Sets 1 and 2), an 

additional 14 associations over the most recent schizophrenia genetic study of Chinese 

ancestry8. Most associations were characterized by marked differences in allele frequencies 

between the EAS and EUR samples: for 15 of 21 loci, the index variants had a higher minor 

allele frequencies (MAF) in EAS than EUR. The higher allele frequency potentially confers 

better power to detect associations in EAS. For example, we identified a locus 

(Supplementary Data Sets 1) with the top association (rs374528934) having strong evidence 

in EAS (P = 5 × 10−11) but not in EUR using the stage 1 samples. rs374528934 has MAF of 

45% in EAS but only 0.7% in EUR. No other variant in this locus is significantly associated 

with schizophrenia in EUR. This locus contains CACNA2D2 (encoding the calcium channel 

α2δ-2 subunit) associated with childhood epilepsy24,25, and to which the anticonvulsant 

medication gabapentin binds, suggesting a path for further therapeutic investigation25. This 

finding also adds new evidence to the calcium signaling pathway suggested to be implicated 

in psychiatric disorders26,27.

Genetic effects are consistent across populations.

For causal variants, heterogeneity of genetic effects across populations could arise from 

clinical heterogeneity, differences in pathophysiology, environmental differences that change 

the genetic effects (GxE interaction), or interaction with other genetic factors that may differ 

in frequency across populations (GxG interaction). Heterogeneity in estimating genetic 

effect sizes may also be a consequence of differential correlation across genetic markers in a 

region, when investigating variants that are tagging the causal variant but do not exert any 

influence on the trait in question. Such heterogeneity does not reflect biological differences, 

but is rather statistical in nature. While it is assumed that biological pathways underlying 
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complex human disorders are generally consistent across populations, genetic heterogeneity 

has been observed in other genetically complex disorders28. The large EAS sample allowed 

us to systematically explore the heterogeneity of genetic effects influencing liability to 

schizophrenia across two major world populations.

Using LDSC23 and common variants (MAF > 5%) outside of the MHC region, we found 

that the SNP-heritability of schizophrenia is very similar in EAS (0.23 ± 0.03) and EUR 

(0.24 ± 0.02) (Methods and Supplementary Fig. 2a). Using the same set of variants, we 

found that the genetic correlation for schizophrenia between EAS and EUR was 

indistinguishable from 1 (rg = 0.98 ± 0.03) (using POPCORN29, a method designed for 

cross-ancestry comparisons). This finding indicates that the common variant genetic 

architecture of schizophrenia outside of the MHC region is highly consistent across EAS and 

EUR.

Genetic correlations between schizophrenia and 11 other psychiatric disorders and behavior 

traits also showed no significant differences when estimated within EUR and across EAS-

EUR (Supplementary Fig. 2b). In agreement with recent reports30-33, we observed 

significant positive genetic correlations for schizophrenia with bipolar disorder, major 

depressive disorder, anorexia nervosa, neuroticism, autism spectrum disorder, and 

educational attainment. We observed significant negative correlations with general 

intelligence, fluid intelligence score, prospective memory, and subjective well-being.

We used partitioned LDSC23 to look for heritability enrichment in diverse functional 

genomic annotations defined and used in previous publications34,35 (Methods and 

Supplementary Fig. 2c,d). Using EAS stage 1 samples, we observed significant enrichment 

(after Bonferroni correction) in regions conserved across 29 mammals (Conserved 

LindbladToh36). No other annotations were significantly enriched, and there were no 

significant differences between EUR-only and EAS-only enrichments (P = 0.16, two-sided 

paired t test).

We identified gene-sets that are enriched for schizophrenia genetic associations using 

MAGMA37 and gene-set definitions from a recent schizophrenia exome sequencing study38 

(Methods). Despite large differences in sample size and genetic background, the gene-sets 

implicated in EAS and EUR samples were highly consistent: we observed no significant 

differences between gene-set ranks using the EAS samples from the ranks using EUR 

samples (P = 0.72, Wilcoxon test, two-sided). In addition, 9 of the top 10 gene-sets 

identified using the EAS samples are also among the top 10 gene-sets identified using EUR 

samples (Supplementary Fig. 3).

A study of EUR individuals suggested that common schizophrenia alleles are under strong 

background selection3. We performed two analyses and found that the natural selection 

signatures, including positive and background selections, are consistent in schizophrenia-

associated loci across EAS and EUR populations. First, we compared the signatures in the 

top 100 associated loci in EAS to those in EUR. Among the selection signatures we 

calculated (Methods), none showed a significant difference across populations 

(Supplementary Fig. 4a, P > 0.05 for all panels, two-sided t test). We next asked whether the 

Lam et al. Page 4

Nat Genet. Author manuscript; available in PMC 2020 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



population differentiation drives schizophrenia variants to have different effects in different 

populations. Using 295 autosomal variants that are genome-wide significant in EAS, EUR or 

EAS-EUR combined samples, we did not observe a correlation (R2 = 0.003, Supplementary 

Fig. 4b) between the population differentiation (measured by Fst) and the heterogeneity of 

effect size (measured by log10P-value from the heterogeneity test across EAS and EUR).

As a further test, we examined whether the effect size estimates from EUR differ from those 

from EAS. We performed a heterogeneity test (Cochran's Q) for the most significant variants 

in the 108 published schizophrenia-associated loci2. Among them, 7 variants showed 

significant heterogeneity after Bonferroni correction (Supplementary Table 4). Postulating 

that this might in part be driven by the inflation of EUR estimates as a result of the winner’s 

curse, we applied a correction for the winner’s curse39, after which none of the variants 

showed evidence for significant heterogeneity, and the P-values from the heterogeneity test 

follow a uniform distribution (P = 0.10, Kolmogorov–Smirnov test, two-tailed).

Lastly, we evaluated the heterogeneity of schizophrenia genetic effects within EAS samples. 

None of the EAS associations showed significant heterogeneity across EAS samples 

(Supplementary Table 3). Using their principal components (PC), we further grouped the 

samples into the Northeast Asian, Southeast Asian and Indonesian subpopulations 

(Methods). We then performed a heterogeneity test (Cochran's Q) and found no significant 

heterogeneity among the three subpopulations (Supplementary Fig. 5).

Schizophrenia genetic associations from the meta-analysis of EAS and EUR.

As the genetic effects observed in EAS are largely consistent with those observed in EUR, 

we performed a meta-analysis including the EUR and EAS samples (stages 1 and 2) using a 

fixed-effect model with inverse-variance weighting40. The EUR + EAS samples in this 

analysis (56,418 cases and 78,818 controls) included all samples of EUR ancestry (33,640 

cases and 43,456 controls) from the previous publication2 with the exclusion of three 

samples of EAS ancestry and the deCODE samples (1,513 cases and 66,236 controls), 

which only had summary statistics for selected variants. The three EAS samples (IMH-1, 

HNK-1 and JPN-1) excluded from EUR samples were included in our EAS stage 1.

We identified 208 independent (both in EAS and EUR) variants associated with 

schizophrenia across 176 genetic loci (Fig. 2 and Supplementary Tables 5 and 6), among 

which 53 loci were novel (not reported in refs. 2,3,7,8). Of the 108 schizophrenia-associated 

loci reported in the previous EUR study2, 89 remained significant in this study 

(Supplementary Table 4). Using simulations with a correction for winner’s curse39, we 

found that this is consistent with an expected over-estimation of the effect sizes due to the 

winner's curse in the previous study, rather than implying the 19 loci no longer significant in 

this study were false-positives (Supplementary Note). In addition, the deCODE samples 

(1,513 cases and 66,236 controls) were not included in the present study, causing the power 

for loci that had low MAF in EAS to drop.

Population diversity improves fine-mapping.

Causal variants in complex genetic disorders are defined as those that mechanistically 

contribute to the disorders, but this does not imply that the variant in isolation is likely to 

Lam et al. Page 5

Nat Genet. Author manuscript; available in PMC 2020 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



result in the disorder41,42. Due to LD, disease-associated loci from genome-wide association 

studies usually implicate genomic regions containing many associated variants. A number of 

approaches allow for the associated variants to be refined to a smaller set of the most 

plausible (or credible) candidate causal variants43-46. Loci implicated in psychiatric 

disorders usually have small effect sizes and as a result have generally poor performance 

using such approaches2,3.

Diversity in genetic background across populations can be used to improve fine-mapping 

resolution47. Here we demonstrate that resolution can be improved by exploiting differences 

in the patterns of LD between causal (directly associated) and LD (indirectly) associated 

variants. Based on the premise that genetic effects are highly consistent across populations, 

the causal variants will have consistent effects across populations, whereas non-causal 

variants can have inconsistent effects due to population-specific LD patterns. We therefore 

expect causal variants to have greater statistical significance and less heterogeneity in trans-

ancestry meta-analysis compared to other alleles that are indirectly associated via LD 

(Supplementary Fig. 6). Using an algorithm based on this expectation (Methods), we fine-

mapped 59 schizophrenia associations that reached genome-wide significance in the EUR 

and stage 1 EAS combined meta-analysis, had MAF > 0.01 in both EAS and EUR, and for 

which we had >95% coverage of common variants (MAF > 1%) with imputation INFO > 

0.6 (Supplementary Table 7). The MHC region was excluded from the fine-mapping analysis 

due to its long range LD. Stage 2 EAS samples were excluded because not all had full 

genome coverage, which confounds the fine-mapping outcome (Methods).

Results from this EAS-EUR trans-ancestry approach improved upon those using only EUR, 

with 44 out of 59 loci mapped to a smaller number of candidate causal variants 

(Supplementary Table 7). For example, a locus on chromosome 1 (238.8-239.4 Mb), which 

initially contained 7 potentially causal variants based on a published fine-mapping method43 

and EUR samples only, was resolved to a single variant, rs11587347, with 97.6% probability 

(Fig. 3a). This variant showed strong association in both populations, while the other 6 

variants are equally associated in EUR but not in EAS (Fig. 3b,c). Over all associations, the 

median size of the 95% credible set, defined as the minimum list of variants that were >95% 

likely to contain the causal variant, dropped from 49 to 30, and the number of associations 

mapped to ≤5 variants increased from 2 to 7 (Fig. 3d). The number of associations mapped 

to a single variant with greater than 50% probability increased from 5 to 8, and median size 

of the genomic regions the associations mapped decreased from 154 kb to 94 kb.

Transferability of genetics across populations.

For genome-wide significant loci that individually explain >0.05% of the variance in 

schizophrenia liability in either ancestry, we compared the variance explained across EAS 

and EUR. Variance was approximated as 2f(1 – f)log(OR)2/(π2/3) (ref. 48) (Supplementary 

Fig. 7). Although these variants most often have comparable odds ratio across populations, 

their allele frequencies can differ. Variance explained, combining the effect size (OR) and 

prevalence of the risk allele (f), can be regarded as an approximate measure of the 

importance of a causal variant in a population. In our analysis, most of the trans-ancestry 

differences in variance explained is explained by allele frequency differences. One of the 
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implications of this observation, as suggested in recent studies21,49,50, is that even if the risk 

alleles and effect sizes are primarily shared across populations, the disease predictive power 

of individual alleles, and of composite measures of those risk alleles such as PRS, may not 

be equivalent across populations.

Here we evaluate this empirically. We assessed how much variation in schizophrenia risk can 

be explained in EAS using both EAS stage 1 and EUR training data. Using a standard 

clumping approach, we first computed PRS using a leave-one-out meta-analysis approach 

with EAS summary statistics (Methods), which explained ~3% of schizophrenia risk using 

genome-wide variants on the liability scale (R2 = 0.029 at P = 0.5). In contrast, when EUR 

summary statistics were used to calculate PRS in the EAS samples, a maximum of only ~2% 

of schizophrenia risk was explained (R2 = 0.022 at P = 0.1) despite a greater than 3-fold 

larger EUR effective sample size (Fig. 4 and Supplementary Fig. 8). The variance explained 

across various P-value thresholds provides a proxy for the signal-to-noise ratio, which 

differs by training population—relative to the EUR training data, variants from the EAS 

training data with more permissive P-values improve the EAS prediction accuracy. These 

results indicate that larger EAS studies will be needed to explain similar case/control 

variance as currently explained in EUR individuals. Further, although individual loci 

typically have the same direction and similar magnitude across populations, aggregating 

variants that differentially tag causal loci across populations for genetic risk prediction 

results in considerable variability in prediction accuracy.

Discussion

To date, most large-scale psychiatric genetics studies have been based on samples of 

primarily EUR ancestry6. To increase global coverage, we compiled the largest non-

European psychiatric genetics cohort to date and leveraged its size and diversity to provide 

new insights into the genetic architecture of schizophrenia. This study includes all available 

major genotyped schizophrenia samples of East Asia ancestry, and presents analyses that 

have not previously been performed with sufficient power in psychiatric genetics. Although 

the first schizophrenia genetic associations from two much smaller studies of Chinese 

ancestry51,52 were not genome-wide significant in the present EAS analysis, several loci 

from their subsequent better powered studies7,8 reached genome-wide significance. 

Consistent with a study using EUR samples3, we note that this is consistent with the 

expected inflation of effect size from small studies rather than suggesting loci in previous 

studies are false positives.

When a single population is used to identify the disease-associated loci, the discovery is 

skewed towards disease-associated variants that have greater allele frequency in that 

population (Supplementary Fig. 9). When multiple populations are used, disease-associated 

variants are equally represented across the allele frequency spectrum in these populations 

(Supplementary Fig. 9). This demonstrates that including global samples improves power to 

find disease associations for which the power varies across populations. In this study, for 

example, more EUR than EAS samples would be required to detect around half of the new 

loci, as the MAF is higher in EAS than in EUR in these loci.
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For traits like body mass index and autoimmune diseases, we observed heterogeneity across 

populations in genetic effects28,53, which may point to interactions between genetic 

associations and environment factors and/or other genetic loci. In contrast, for 

schizophrenia, we did not find significant heterogeneity across EAS and EUR ancestries. 

Analyses of genetic heritability, genetic correlation, gene-set enrichment and natural 

selection signatures converge on the conclusion that the schizophrenia biology is 

substantially shared across EAS and EUR ancestries (with MHC as a potential exception, 

discussed later). This remarkable genetic correlation (rg = 0.98) demonstrates that 

schizophrenia risk alleles operate consistently across different ethnic and cultural 

backgrounds, at least across EAS and EUR ancestries. Given that the main putative 

environmental risk factors (migration, urbanicity and substance misuse) differ across 

populations, this finding also suggests any specific genetic liability to schizophrenia acting 

via these routes is minimal.

We note that a direct comparison of the effect sizes estimated in EAS with those estimated in 

EUR has reduced accuracy as we do not know the exact schizophrenia causal variants. This 

is further complicated by inflation in effect size estimates due to the winner’s curse, which 

are of different magnitudes due to the sample size. Increasing the sample size, especially in 

those of non-European ancestries, will reduce the bias and enable a better isolation of causal 

variants, leading to a more precise comparison of the genetic effect size across populations.

The major histocompatibility complex (MHC) hosts the strongest schizophrenia association 

in EUR54. In this study, we did not find a significant schizophrenia association in MHC in 

EAS. An earlier EUR study55 mapped the MHC associations to a set of variants (in LD) at 

both distal ends of the extended MHC (lead variant: rs13194504) and the complement 

component 4 (C4). None of these associations was significant in EAS in this study, which is 

consistent with previous studies of the Chinese ancestry7,8,51,52. This, however, does not 

necessarily suggest population heterogeneity in their pathophysiological effect, as we 

attribute the disappearance of MHC signals partially to low frequencies. rs13194504 has 

MAF < 1% in EAS compared with 9% in EUR, and the C4-BS allele is extremely 

uncommon in samples from China and Korea56,57. Another reason may be the EUR-specific 

LD. In EUR, multiple protective alleles that contribute to the MHC associations are all on 

the same haplotype across about 6 Mb, due to an extremely long and EUR-specific 

haplotype that generates LD patterns at 5-Mb scale. This may also be the reason that 

association signals span so many Mb of genome, and the aggregate association signal (at 

variants that are in partial LD to multiple signals) is stronger than the signals at the 

individual associations.

Two recent studies using much smaller samples with individuals of Chinese ancestries7,8 

reported variants in MHC significantly associated with schizophrenia (rs115070292 and 

rs111782145, respectively). The two studies did not replicate each other’s findings as the 

reported risk alleles are in very weak LD (r2 = 0.07) and are not in LD with the EUR MHC 

associations. rs115070292, from Yu et al.7, is more frequent in EAS (12%) than in EUR 

(2%) with P = 10−9 using 4,384 cases and 5,770 controls of Chinese ancestry. This variant 

was not significantly associated in our study (P = 0.44) even though some samples from that 

earlier study were included in the current study (BJM-1, 1,312 cases and 1,987 controls). 
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The OR estimated from these shared samples marginally differs from that estimated using 

all EAS samples (P = 0.018), and this association showed marginally significant 

heterogeneity across all EAS samples (P = 0.039). Similarly, we did not replicate the 

association at rs111782145 from Li et al.8 (P = 0.47), again despite sample overlap (2,555 

cases and 3,952 controls).

The lack of replication across all these studies reflects the complexity of the MHC region 

and the limited power for the MHC signals in EAS. As demonstrated in previous studies of 

complex disorders, it is still possible that when sample size increases for the EAS, genome-

wide association within the MHC region could emerge. A study designed for the MHC 

region, such as in ref. 55, will be necessary to delineate the contribution of MHC to 

schizophrenia in EAS individuals.

Genetic associations usually implicate a large genomic region and thus it can be challenging 

to map their molecular functions. We designed a novel algorithm to leverage the population 

diversity to fine-map schizophrenia associations to precise sets of variants. Using this 

algorithm, we reduced the number of candidate variants associated with schizophrenia and 

facilitated the functional interpretation of these associations. Our algorithm only maps the 

primary association signals in a locus because the power to fine-map signals beyond that, 

especially in the EAS samples, is still limited at the current sample size for schizophrenia. 

We also made an assumption that there is only one causal variant driving the primary 

association signal. In the scenario that there is a haplotypic effect driven by multiple variants 

in strong LD, our approach will split the posterior probability among these variants. We 

expect the causal variants to have non-trivial probability so that they will still be reported in 

the credible set for future studies. Imputation quality plays a key role in fine-mapping as the 

power to map the causal variant decreases if it is poorly imputed. We restricted our study to 

genetic associations that have MAF > 1% in both EAS and EUR populations to ensure the 

imputation quality. For these associations, we found no major change in the size of the 

credible sets when the EUR samples were imputed using the more powerful Haplotype 

Reference Consortium (HRC) panel58. However, the HRC reference panel, with its much 

larger sample size and better characterization of low frequency and rare variants, could 

improve fine-mapping resolution for variants with MAF ≤ 1%59.

Finally, this large-scale EAS sample allowed us to empirically evaluate the congruence of 

the genetic basis of schizophrenia between EAS and EUR. In spite of a cross-population 

common variant genetic correlation being highly consistent, we found that polygenic risk 

models trained in one population have reduced performance in the other population due to 

different allele frequency distributions and LD structures. This highlights the importance of 

including all major ancestral groups in genomic studies both as a strategy to improve power 

to find disease associations and to ensure the findings have maximum relevance for all 

populations.
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METHODS

Overview of samples

EAS samples, full-genome.—Genome-wide genotype data was obtained from 16 

samples from East Asia (Supplementary Table 1). Two of these samples (TAI-1 and TAI-2) 

had parent-offspring trios and were processed as case/pseudo-controls. DSM-IV was used 

for diagnosing all schizophrenia cases in these samples, except for the trios (TAI-1 and 

TAI-2), for which DIGS was used. All samples were processed according to quality control 

(QC) procedures reported in ref. 2, with details reported in following sections. After QC, 

genotypes were phased and imputed against the 1000 Genomes Project Phase 3 reference 

panel6. Principal component analysis (PCA) was conducted across samples via imputed best 

guess genotypes to identify and remove overlapping samples across datasets, cryptic related 

samples and population outliers. Eight PCs that were associated to case-control status were 

included in univariate logistic regression to control for the population stratification in each 

sample.

EAS samples, selected variants.—Summary statistics were obtained for a set of 

variants from four EAS samples (BJM-2, BJM-3, BJM-4, BIX-5) that had been analyzed in 

published studies7,8. The summary statistics included odds ratio, standard error, reference 

and tested alleles for variants that have P < 10−5 in either stage 1 or the meta-analysis 

combining stage 1 and EUR samples. Between 22,156 and 31,626 variants were available 

after the exclusion of strand ambiguous60 variants (Supplementary Table 2).

EUR samples.—Genotypes for EUR schizophrenia patients and controls were obtained 

from the Psychiatric Genomics Consortium as reported in ref. 2. All samples of EUR 

ancestry were included in this study except for the deCODE samples (1,513 cases and 

66,236 controls). We also note that three sample collections of EAS ancestry reported in ref. 

2 were not included in the EUR samples in our analysis but were included in the EAS 

samples (IMH-1, HNK-1 and JPN-1). The same procedures used in processing EAS samples 

were applied to the EUR samples.

EAS subpopulations.—To investigate the heterogeneity of schizophrenia genetics effects 

within EAS, we grouped the samples based on their principal components. Other than 

Indonesians (UWA-1), which fall into their own subpopulation, samples were grouped into 

Northeast Asian subpopulation if their average PC2 was significantly greater than 0 (BIX-2, 

BJM-1, XJU-1, JPN-1, KOR-1) and into Southeast Asian subpopulation if their average PC2 

was significantly less than 0 (TAI-1, TAI-2, IMH-1, IMH-2, HNK-1, BIX-3). The remaining 

samples (UMC-1, SIX-1, BIX-1, BIX-4) were not included in subpopulations. The 

heterogeneity test (Cochran’s Q) across subpopulations, calculated pairwise and in three-

way, was conducted using the RICOPILI pipeline61.

Quality control

Quality control procedures were carried out as part of the RICOPILI pipeline61 (https://

sites.google.com/a/broadinstitute.org/ricopili/home) with the following steps and 

parameters: (1) excluding variants with call rate below 95%; (2) excluding subjects with call 
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rate below 98%; (3) excluding monomorphic variants; (4) excluding subjects with inbred 

coefficient above 0.2 and below −0.2; (5) excluding subjects with mismatch in reported sex 

and chromosome X computed sex; (6) excluding variants with missing rate differences 

greater than 2% between cases and controls; (7) subsequent to step 6, excluding variants 

with call rate below 98%; and (8) excluding variants in violation of Hardy-Weinberg 

equilibrium (P < 10−6 for controls or P < 10−10 for cases). Numbers of variants or subjects 

removed in each step are reported in Supplementary Table 2.

Phasing and imputation

All datasets were phased using SHAPEIT62 and IMPUTE263 using regular steps and 

parameters. Additional processing for trios (TAI-1 and TAI-2) was carried out such that 

case/pseudo-controls were identified and imputed. All samples were imputed to the 1000 

Genomes Project Phase 3 reference panel64 (2,504 subjects, including 504 EAS subjects). 

Imputation procedures resulted in dosage files and best guess genotypes in PLINK65 binary 

format. The former was used for subsequent association analysis, and the latter was used in 

the PCA and PRS analyses.

Sample overlaps, population outliers and population stratification

We used Eigenstrat66 to calculate the principal components for all the samples using the best 

guess genotypes from imputation (Supplementary Fig. 10b). We computed the identity-by-

descent matrix to identify intra- and inter- dataset sample overlaps. Samples with pi-hat > 

0.2 were extracted, followed by Fisher-Yates shuffle on all samples. The number of times 

with which each sample was related to another sample was tracked, and samples that were 

related to more than 25 samples were removed. When deciding which samples to retain, 

trios were preferred, followed by cases, and thereafter a random sample for each related pair 

was removed, resulting in removal of 704 individuals.

To identify population outliers, k-means clustering was conducted using the first 20 PCs 

from PCA and covariates representing each of the 13 stage 1 samples. Guided by results of 

k-means clustering and visual inspection of PCA plots, 46 individuals were identified as 

outliers and were excluded. Further population-level inspection was carried out by merging 

the 1000 Genomes Project Phase 1 reference samples with stage 1 samples and conducting 

PCA (Supplementary Fig. 10a). Using similar approaches reported above, no further 

samples were excluded as population outliers.

Eight PCs that were associated with case/control status with P < 0.2 were used as covariates 

for association analysis in each sample (PCs 1, 4, 5, 6, 8, 9, 15, and 19). QQ plots 

(Supplementary Fig. 1) showed that the population structure has been well controlled.

Association analysis and meta-analysis

Association analysis was carried out for each sample using PLINK65 and genotype dosage 

from imputation. Only variants having imputation INFO ≥ 0.6 and MAF ≥ 1% were 

included in the analysis. We performed logistic regression with PCs identified in the prior 

subsection as covariates to control for population stratification within each study. Fixed-

effect meta-analysis67, weighted by inverse-variance, was then used to combine association 
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results across samples. Meta-analysis for European samples were conducted in the same 

matter. In order to find independent schizophrenia associations in both EUR and EAS 

populations (Supplementary Table 5), we performed LD clumping twice using the 1000 

Genomes Project Phase 3 EUR and EAS reference panels, respectively (with default 

parameters in RICOPILI).

Chromosome X analysis

Chromosome X genotypes were processed separately from autosomal variants. Quality 

control was conducted separately for males and females, using similar quality control 

parameters as above. Cases and pseudo-controls were built out of the trios. Phasing and 

imputation were then performed on males and females separately for each sample, followed 

by logistic regression with the same PCs, and meta-analysis combining samples (same 

parameters as the autosomal analyses). Results were generated for EAS stage 1 samples and 

EUR-EAS combined samples (excluding BIX-1, BIX-2 and BIX-3). EAS stage 2, BIX-1, 

BIX-2 and BIX-3 samples do not have chromosome X data and were therefore not analyzed.

Genetic correlation and heritability

Schizophrenia heritabilities in the observed scale for samples of EUR and EAS ancestry 

were estimated from their summary statistics using LDSC23. We converted the heritabilities 

in the observed scale to liability scale assuming the schizophrenia population prevalence at 

1%. The LD scores were pre-computed from the 1000 Genomes Project Phase 3 reference 

panel in EUR and EAS respectively (https://github.com/bulik/ldsc). Only autosomal variants 

having MAF greater than 5% in their respective population were included in the analysis, 

and variants in the MHC region were not included due to the long-range LD.

We computed the genetic correlations between schizophrenia and other traits within EUR 

and across EUR and EAS. EUR and EAS (stage 1 only) summary statistics for autosomal 

variants from this study were used as schizophrenia genetic association inputs for their 

respective populations. Traits tested included schizophrenia2, bipolar68, major depression69, 

anorexia nervosa70, neuroticism & subjective well-being (SWB)71, autism spectrum disorder 

(PGC 2015 release, available at http://www.med.unc.edu/pgc), attention deficit hyperactivity 

disorder (with samples of non-European ancestry removed, available at http://

www.med.unc.edu/pgc)72, education attainment73, general intelligence74, fluid intelligence 

score and prospective memory result (using individuals from UK Biobank; http://

www.nealelab.is/uk-biobank). Only variants having MAF greater than 5% were available 

and included. Variants in the MHC region were excluded from the analysis. Genetic 

correlations within EUR were computed using LDSC with LD scores pre-computed on the 

1000 Genomes Project Phase 3 reference panel (503 EUR subjects). Genetic correlations 

across EUR and EAS were computed using POPCORN29. POPCORN uses a Bayesian 

approach which assumes that genotypes are drawn separately from each population and 

effect sizes follow the infinitesimal model. The inflation of z scores could then be modelled 

and a weighted likelihood function which was maximized to find heritability and genetic 

correlation. Genetic correlations in POPCORN were computed in the “genetic effect” mode, 

which estimates the correlation based on the LD covariance scores and effect sizes from 

summary statistics.
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Partitioned heritability

Partitioned LDSC34 was conducted to look for heritability enrichment in diverse annotations 

using EAS (stage 1) and EUR autosomal variants (summary statistics), respectively. LD 

scores for each annotation were computed using a combination of PLINK65 and LDSC23 

using the 1000 Genomes Project EAS and EUR subjects, respectively. We used baseline 

annotations34 and additional annotations including chromatin accessibility in brain dorso-

lateral prefrontal cortex through the Assay for Transposase-Accessible Chromatin using 

sequencing peaks (ATAC Bryois)35, conserved regions located in “ATAC Bryois” (ATAC 

Bryois & Conserved LindbladToh)35, and introgressed regions from Neanderthal 

(Neanderthal Vernot)75. Variants can be included in multiple annotations. Multi-allelic 

variants were removed.

Gene-set analysis

We performed gene and gene-set based tests using MAGMA37. Genome-wide summary 

statistics for autosomal variants from EAS, EUR and EAS+EUR meta-analyses were used in 

this analysis. Variant-to-gene annotation was performed using RefSeq NCBI37.3 with a 

window of 5 kb upstream and 1.5 kb downstream. LD was taken from 1000 Genomes 

Project EAS, EUR and EUR-EAS panels, respectively. The gene-based P-values were 

computed using F-test and multivariate linear model, and competitive tests were used for 

gene-set analysis. Seventy gene-sets were selected and tested in this study (Supplementary 

Table 8), including those from the Molecular Signatures Database76, related to psychiatric 

diseases38,77,78 and from ‘gwaspipeline’(https://github.com/freeseek/gwaspipeline/blob/

master/makegenes.sh). Gene-sets were ranked for EUR, EAS and EAS+EUR analyses, 

respectively. The top-ranking gene-sets were compared across analyses to identify common 

schizophrenia pathways. Additionally, Wilcoxon sign rank tests was conducted to compare 

the ranking of gene-sets between the EUR and EAS datasets.

Natural selection analysis

We used the CHB and CEU panels from the 1000 Genomes Project Phase 3 to investigate 

the natural selection signatures in schizophrenia-associated loci for EAS and EUR 

populations, respectively. We used the following selection signatures, with their sensitivity 

to timeframes discussed in ref 3. Integrated Haplotype Score (iHS): iHS captures the 

haplotype homozygosity at a given variant. We calculated iHS using the R rehh package79. 

Genetic distance between variants was determined using HapMap phase II genetic map. 

Ancestral and derived alleles were obtained from the 1000 Genome project, which inferred 

the ancestral state using six primates on the EPO (Enredo-Pecan-Ortheus) pipeline. Only 

biallelic variants that have MAF ≥ 5% were included in the analysis. Cross Population 
Extended Haplotype Homozygosity (XPEHH)80: XPEHH detects variants under selection in 

one population but not the other. We used CEU as the reference panel when calculating 

XPEHH for CHB and vice versa. Fixation index (Fst): Fst measures the population 

differentiation due to genetic structure. We estimated Fst using the Weir and Cockerham 

approach81, which is robust to sample size effects. Absolute derived allele frequency 
difference (∣ΔDAF∣): ∣ΔDAF∣ measures population differentiation between CHB and CEU 

populations. Composite of Multiple signals (CMS)82-85: CMS combines iHS, XPEHH, Fst 
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and ∣ΔDAF∣. As a result, CMS potentially has better power to detect the selection signature. 

For each variant, CMS = ∏i = 1
n pi, in which pi is the rank of the variant using method i, 

sorted by increasing P-values, divided by the total number of variants. B statistic: B statistic 

measures the background selection. We calculated the B statistic as in ref. 84.

Trans-ethnicity fine-mapping

For a disease-associated genetic locus, fine-mapping defines a “credible set” of variants that 

contains the causal variant with certain probability (e.g., 99% or 95%). Bayesian fine-

mapping approaches2,43,86,87 have been widely used for studies of a single ancestry. Here, 

we extended a Bayesian fine-mapping approach85 (Defining credible sets, Methods) to 

studies of more than one ancestry. Intuitively, the extension was achieved through a prior 

calculated from the heterogeneity across ancestries, such that variants that have different 

odds ratio across populations will have a smaller prior probability to be the causal variant.

As in several previous studies2,86, we restricted our fine-mapping analysis to the primary 

association signal in each locus. This is done by taking P variants that are in LD with the 

lead variant (the variant having the most significant P-value) with r2 > 0.1 in EUR or EAS. 

Assume D represents the data including the genotype matrix X for the P variants and disease 

Y for N individuals, and β represents a collection of model parameters. We define the 

model, denoted by A, as the causal status for the P variants in locus: A ≡ {aj}, in which aj is 

the causal status for variant j. aj = 1 if the variant j is causal, and aj = 0 if it is not. For the 

primary association signal and under the presumption that the causal variant is the same 

across all ancestries, one and only one of the P variants is causal: ∑jaj = 1. For convenience, 

we define Aj as the model in which only variant j is causal, and A0 as the model in which no 

variant is causal (null model). The probability of model Aj (where variant j is the only causal 

variant in the locus) given the data (D) can be calculated using Bayes’s rule:

Pr(A j ∣ D) = Pr(D ∣ A j)
Pr(A j)
Pr(D) .

With the steepest descent approximation, the assumption of a flat prior on the model 

parameters (β), and the assumption of one causal variant per locus (equation 2 in ref. 86), 

Pr(Aj∣D) can be approximated as:

Pr(A j ∣ D) ≈ Pr(D ∣ A j, β j)N
−1 ∕ 2Pr(A j)

Pr(D) , (1)

in which N is the sample size. We denote χ j
2 as the χ2 test statistic for variant j, which can be 

calculated from the P-value from the meta-analysis combining EAS and EUR samples. 

Using equation 3 in ref. 86, we have:

Pr(D ∣ A j, β j) ≈ exp
x j

2

2 Pr(D ∣ A0, β0) . (2)
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Pr(Aj) is the prior probability that variant j is causal. We have shown that schizophrenia 

causal variants have consistent genetic effect across populations. Therefore, we model the 

prior probability as a function of the heterogeneity measured in I2:

Pr(A j) = 1 − IJ
2 . (3)

Using equations 2 and 3, Pr(Aj∣D) in equation 1 can be calculated as

Pr(A j ∣ D) ≈ exp
x j
2

2 (1 − I j
2) N−1 ∕ 2

Pr(D) Pr(D ∣ A0, β0)

We only use stage 1 samples in fine-mapping so the variants have the same sample size 

(assuming all variants have good imputation quality). Therefore, N−1/2, Pr(D) and 

Pr(D ∣ A0, β0) can be regarded as constants,

Pr(A j ∣ D) ∝ exp
x j
2

2 (1 − I j
2) .

The normalized causal probability for variant j is then

Pr(A j) = Pr(A j ∣ D) ∕ ∑
k

Pr(Ak ∣ D)

And the 95% credible set of variants is defined as the smallest set of variants, S, such that

∑A j ∈ S p(A j) ≥ 95 % .

Polygenic risk score analysis

We constructed PRS using a pruning and thresholding approach in a study set of EAS 

individuals with training summary statistics from either EUR or EAS individuals. In the 

former case, we used summary statistics from all EUR individuals in this study; in the latter 

case, we used a leave-one-out meta-analysis approach across the 13 stage 1 samples to build 

PRS.

For the EUR training data, we extracted EUR individuals (FIN, GBR, CEU, IBS, TSI) from 

1000 Genomes Project64 Phase 3 as an LD reference panel to greedily clump variants. For 

the EAS LD reference panel, we created two panels: (1) an analogous EAS panel (CDX, 

CHB, CHS, JPT, KHV) from 1000 Genome Project64 Phase 3 (Fig. 4 and Supplementary 

Fig. 8c,d), and (2) an LD panel from best guess genotypes from each cohort in the study 

(Supplementary Fig. 8a,b,e,f). For both EAS and EUR prediction sets, we filtered to variants 

with a MAF greater than 1% in each respective population and removed indels and strand 

ambiguous variants. We subset each list of variants to those in the summary statistics with an 

Lam et al. Page 15

Nat Genet. Author manuscript; available in PMC 2020 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



imputation INFO > 0.9. We then selected approximately independent loci at varying P-value 

thresholds or top-ranking n variants using an LD threshold of r2 ≤ 0.1 in a window of 500 

kilobase pairs in PLINK65 with the --clump flag. We treated the MHC with additional 

caution to minimize overfitting in this region, selecting only the most significant variant 

from the HLA region. To profile variants, we multiplied the log odds ratio for selected 

variants by genotypes and summed these values across the genome in PLINK65 using the --

score flag for each of the 13 EAS stage 1 samples. We assessed case/control variance 

explained by computing Nagelkerke’s and a liability-scale pseudo-R2 as in Lee et al.88 by 

comparing a full model with the PRS and 10 principal components with a model excluding 

the PRS. Results of PRS were presented in two ways the first we selected SNP based on 

GWAS P-value thresholds (PT) (i.e. 5e-8, 1e-6, 1e-4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1) and 

P-value ranks. In the latter, top ranked SNPs that exist between both EUR and EAS 

summary statistics were selected based on the SNP rank thresholds (i.e. top 100, 1,500, 

5,000, 15,000, 25,000, 35,000, 50,000, all).

Ethics.

The study protocols were approved by the institutional review board at each center involved 

with recruitment. Informed consent and permission to share the data were obtained from all 

subjects, in compliance with the guidelines specified by the recruiting centre’s institutional 

review board. Samples recruited in mainland China were processed and analyzed in a 

Chinese server to comply with the Interim Measures for the Administration of Human 

Genetic Resources (regulation from the Ministry of Science and Technology of the People’s 

Republic of China). We set up the computer codes on the Chinese server so that analyses 

performed on these samples were exactly the same as other samples. Summary statistics 

from these Chinese samples, with no individual-level data, were then shared and combined 

with the rest of EAS samples.

Data availability.

Genome-wide summary statistics from EAS samples, EUR samples (“49 EUR samples”) 

and all samples (EAS and EUR combined) in this study can be downloaded from https://

www.med.unc.edu/pgc/results-and-downloads/. Individual-level genotype data for EAS 

samples are available upon request from the contact authors (Supplementary Note). 

Alternately, requests can be made to the Psychiatric Genomics Consortium (PGC). In this 

case, access to individual-level genotypes from samples recruited outside of mainland China 

will go through the PGC “fast-track” approval. Access to individual-level genotypes from 

samples recruited within mainland China has to be approved by the individual Chinese 

contact authors (Supplementary Note), and are subject to the policies and approvals from the 

Human Genetic Resource Administration, Ministry of Science and Technology of the 

People’s Republic of China. Individual-level genotypes from samples recruited within 

mainland China have been stored and kept in a server physically located in mainland China. 

Analyses were performed on these samples using the same computer codes as those used for 

other EAS and EUR samples, which are available in the Code availability section.
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Code availability.

Computer code used in this manuscript: RICOPILI (quality control, principal component 

analysis, pre-phasing, imputation, association test and meta-analysis) https://github.com/

Nealelab/ricopili/wiki; embedded within RICOPILI (Eigenstrat https://github.com/

DReichLab/EIG/tree/master/EIGENSTRAT; SHAPEIT https://mathgen.stats.ox.ac.uk/

genetics_software/shapeit/shapeit.html; EAGLE https://github.com/poruloh/Eagle; IMPUTE 

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html; Minimac https://

genome.sph.umich.edu/wiki/Minimac; POPCORN (trans-ancestry genetic correlation): 

https://github.com/brielin/Popcorn; LDSC (heritability, partitioned heritability and within-

ancestry genetic correlation): https://github.com/bulik/ldsc; MAGMA (pathway analysis): 

https://ctg.cncr.nl/software/magma; Fine-mapping (Fine-mapping and PAINTOR): https://

github.com/hailianghuang/FM-summary, https://github.com/gkichaev/PAINTOR_V3.0; 

REHH (selection): https://cran.r-project.org/web/packages/rehh/index.html; B score 

(background selection): http://www.phrap.org/othersoftware.html; PRS analyses: https://

github.com/armartin/pgc_scz_asia

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 ∣. Genetic associations in East Asian populations.
Manhattan plot for schizophrenia genetic associations using East Asian samples (stages 1 

and 2; n = 22,778 cases; 35,362 controls).
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Figure 2 ∣. Schizophrenia associations in EUR and EAS samples.
Manhattan plot for the schizophrenia genetic associations from the EAS (stages 1 and 2) + 

EUR meta-analysis (n = 56,418 cases; 78,818 controls).
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Figure 3 ∣. Trans-ethnic fine-mapping improves resolution.
a, An association was mapped to a single variant (rs11587347) after adding EAS samples 

and using the trans-ancestry fine-mapping approach. Regional association plots were 

generated using http://locuszoom.org/ and LD from 1000 Genomes Project Phase 3 EUR 

subjects. b, LD with the lead variant (rs11587347). c, The lead variant (rs11587347) has 

strong association significance in both populations and low heterogeneity across 

populations. a-c, n (EAS stage 1) = 13,305 cases, 16,244 controls; n (EUR PGC2) = 33,640 
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cases, 43,456 controls. d, Number of variants in the 95% credible set using the trans-

ancestry (EAS+EUR) and published fine-mapping approaches (EUR only).
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Figure 4 ∣. Genetic risk prediction accuracy in EAS from EAS or EUR training data.
Polygenic risk scores were computed with GWAS summary statistics from EAS and EUR 

populations as training sets. EAS risk alleles and weights were computed with a leave-one-

out meta-analysis approach across the 13 stage 1 samples. Error bars indicate the 95% 

confidence interval. LD panel for clumping is from EUR and EAS 1000 Genomes Phase 3 

samples. a, Case/control variance explained in EAS samples by variants from EAS and EUR 

training data with a P-value more significant than the threshold. b, Case/control variance 

explained by the n most significant independent variants. a-b, For EAS stage 1: 13,305 cases 

and 16,244 controls; For EUR 33,640 cases and 43,456 controls.
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Table 1 ∣

Genome-wide significant loci in the East Asian populations.

Stage 1 Stage 2 Combined

SNP Chr BP AL P OR P OR P OR

rs4660761 1 44440146 A/G 3.6E-06 0.91 3.53E-04 0.92 5.08E-09 0.91

rs848293 2 58382490 A/G 3.7E-10 0.90 3.10E-09 0.87 9.87E-18 0.89

rs17592552 2 201176071 T/C 8.4E-10 0.86 2.68E-05 0.89 1.50E-13 0.88

rs2073499 3 50374293 A/G 1.1E-09 0.89 2.14E-05 0.91 1.33E-13 0.90

rs76442143 3 51043599 T/C 6.9E-09 1.14 1.03E-02 1.08 6.40E-10 1.12

rs10935182 3 136137422 A/G 1.3E-06 0.90 1.33E-04 0.90 7.08E-10 0.90

rs4856763 3 161831675 A/G 3.9E-06 0.92 8.54E-06 0.91 1.73E-10 0.92

rs13096176 3 180752138 T/C 3.1E-07 0.88 2.21E-03 0.90 3.35E-09 0.89

rs6832165 4 24270210 C/G 3.7E-08 1.12 3.70E-01 1.08 2.79E-08 1.12

rs13142920 4 176728614 A/C 9.5E-05 0.93 5.85E-06 0.89 4.85E-09 0.92

rs4479913 6 165075210 A/G 3.6E-07 1.13 9.98E-05 1.12 1.53E-10 1.12

rs320696 7 137047137 A/C 5.5E-08 0.90 1.07E-02 0.93 2.81E-09 0.91

rs11986274 8 38259481 T/C 5.1E-04 1.07 2.73E-06 1.11 1.44E-08 1.08

rs2612614 8 65310836 A/G 2.2E-08 1.14 4.51E-02 1.06 1.62E-08 1.11

rs4147157 10 104536360 A/G 6.6E-10 0.90 3.87E-07 0.89 1.32E-15 0.89

rs10861879 12 108609634 A/G 4.8E-07 1.09 5.00E-03 1.07 1.18E-08 1.08

rs1984658 12 123483426 A/G 5.1E-11 0.89 2.14E-04 0.92 8.62E-14 0.90

rs9567393 13 32763757 A/G 3.5E-08 1.11 4.37E-03 1.07 1.13E-09 1.09

rs9890128 17 1273646 T/C 3.5E-08 0.90 2.44E-02 0.91 2.61E-09 0.90

rs11665111 18 77622996 T/C 5.2E-06 1.08 6.89E-04 1.09 1.46E-08 1.09

rs55642704 18 77688124 T/C 1.1E-06 1.09 7.11E-06 1.10 3.76E-11 1.09

BP, genomic position in HG19; AL, reference and non-reference alleles; OR, odds ratio; P, P-value. n (EAS stage 1) = 13,305 cases, 16,244 
controls; n (EAS stage 1+2) = 22,778 cases, 35,362 controls. Fixed effect inverse variance meta-analysis was utilized to generate P-values.
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