Skip to main content
. 2019 Nov 15;2019:7861651. doi: 10.1155/2019/7861651

Table 2.

CS reconstruction algorithm based on sparsifying transforms.

S/N Reference Method Average MAE
1 [39] Model basis
(i) Wavelet atom
(ii) D cosine T
(iii) DFT reconstruction
(iv) L1 minimization
(v) BSB
L1-FT 1.8994e − 04
L1-DCT 1.3124e − 04
L1-WA 1.2161e − 04
BSBL-FT 1.3693e − 04
BSBL-DCT 9.5381e − 05
BSBL-WA 1.6805e − 04

2 [37] Model basis
(i) Directional wave atoms
(ii) Daubechies wavelets
(iii) Fourier transform
L1-wavelet 1.5163e − 03
L1-DCT 8.3572e − 04
L1-W atom 5.5428e − 04

3 [38] Model basis
(i) DWT
(ii) DCT Reconstruction
Convex optimization
L1 minimization
MSE
CS-flow 1 2.34
CS-flow 2 2.95
CS-flow 3 4.34

4 [40] Model basis
(i) curvelets
(ii) Wavelet
(iii) Cosine
(iv) Fourier
Method PSNR SSIM
Cyst phantom image
Frequency domain 25.758 0.726
Time domain 22.857 0.701
Liver image
Frequency domain 32 0.783
Time domain 20.2 0.741

5 [32] (i) Approximate messaging passing model basis
(ii) DCT
(iii) Wavelet
(iv) Spatial domain ST and ABE as denoiser
Time ST 9.09 0.14
Time ABE 8.57 0.09
Wavelet ST 12.46 0.28
Wavelet ABE 12.38 0.25
DCT ST 18.56 0.54
DCT ABE 23.95 0.80