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Obesity-related insulin resistance and high fatty acid concentrations occur during the development of type 2 diabetes mellitus. The
role of high concentrations of plasma-free fatty acids is not fully understood. In this study, palmitic acid (PA, 0.8 mM for 24 h)
induced the expression of miR-221 that bound to phosphoinositide 3-kinases (PI3K) mRNA to inhibit glucose uptake by HepG2
cells. Compared with controls, PA significantly decreased glucose uptake, increased insulin receptor substrate-2 (IRS-2) and miR-
221 expression, and decreased phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and glucose transporter type 4
(GLUT4) mRNA expression. Luciferase reporter assay revealed that miR-221 binding inhibited PI3K expression. Transfection of
HepG2 cells with an miR-221 mimic induced miR-221 expression and inhibited the PI3K/AKT pathway. PA decreased glucose
uptake in HepG2 cells by inducing the expression of miR-221, which bound to PI3K mRNA and suppressed PI3K/AKT signaling.

miR-221 may be a novel target for preventing and treating obesity-induced insulin resistance.

1. Introduction

Obesity is a serious global health problem [1, 2]. In the
United States, the prevalence of youth and adult obesity is
increasing, with an age-adjusted prevalence of 35% in men
and 40.4% in women in 2013-2014 [3]. The prevalence of
type 2 diabetes mellitus (T2DM) increases along with obesity
and has an estimated prevalence of 18.5% in obese adults and
5.4% in normal-weight adults in the United States in 2013-
2014 [4]. T2DM is a serious chronic metabolic disease
triggered by impaired insulin signal pathways and systemic
insulin resistance and the lack of response to insulin target
cells such as hepatocytes, skeletal muscle cells, and adipo-
cytes [5]. Insulin resistance occurs during the development
of metabolic abnormalities and diseases, including T2DM,
hypertension, and dyslipidemia, and decreasing insulin
resistance improves metabolic control in T2DM patients [6].

Activated insulin receptor substrate-2 (IRS-2) regulates
glucose homeostasis [7]. It transduces insulin action by
stimulating the phosphoinositide 3-kinases/protein kinase B

(PI3K/AKT) pathway and promotes glucose uptake by in-
sulin-sensitive glucose transporter type 4 (GLUT4) in the
plasma membrane. Glucose transport fails because of insulin
resistance in T2DM. Defective GLUT4 transport is a feature
of insulin resistance, which is a precursor of T2DM [8].
MicroRNAs (miRNAs) are small noncoding RNA molecules
that consist of approximately 23 nucleotide pairs [9]. They
have been reported to influence adipogenesis and fat
metabolism, and differential expression of miRNAs has been
reported in tissues from obese versus nonobese people [10].
A significant correlation has been reported between obesity
and increased risk of insulin resistance and T2DM [11]. The
pathogenesis of insulin resistance is complex and not well
understood, but free fatty acids (FFAs) may be involved [12].
An excess of lipids increases circulating FFAs and evokes
insulin resistance in muscle and liver tissues [13]. Palmitic
acid (PA), a representative FFA, has been shown to directly
impair insulin signaling in cultured hepatocytes and myo-
tubes [14]. Palmitic acid (PA) is the most common saturated
fatty acid found in animals and plants and is found in foods
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like meat, cheese, butter, and other dairy products. PA or
palmitate at concentrations of 0.4 to 1.0 mM can induce a
model of insulin resistance in cultured HepG2 cells [15-17].
Whether miRNAs are involved in the induction of resistance
is not yet understood.

In this study, the molecular mechanism of PA-induced
insulin resistance was investigated in HepG2 human he-
patocyte cells. The aim was to develop novel rationale
prevention and treatment of T2DM. We found that PA
induced miR-221 expression in HepG2 cells that impaired
PI3K/AKT signaling pathway and inhibited glucose uptake.

2. Materials and Methods

2.1. HepG2 Cell Culture and Glucose Uptake Experiment.
HepG2 cells (ATCC, Manassas, VA, USA) were maintained
in Dulbecco’s modified Eagle medium (DMEM) supple-
mented with 10% FBS, 100 units/mL streptomycin, and
100 pg/mL penicillin at 37°C in a humidified 5% CO, at-
mosphere. To assess the glucose uptake, HepG2 cells were
transferred to 6-well plates and treated with 0-0.8 mM PA
for 24 h. Glucose uptake was assayed by the glucose oxidase
method (Bio-Rongsheng, Shanghai, China), following the kit
manufacturer’s instructions. Glucose oxidase catalyzes the
breakdown of glucose to hydrogen peroxide and D-glucono-
d-lactone. Peroxidase then catalyzes the formation of a red
quinone imide in a reaction involving hydrogen peroxide, 4-
aminoantipyrine, and phenol. The absorbance of the
resulting solution at a wavelength of 490 nm is proportional
to the glucose concentration.

2.2. Quantitative Real-Time Polymerase Chain Reaction (qRT-
PCR). HepG2 cells were harvested after treatment and
washed three times with ice-cold phosphate-buffered saline.
Total RNA was extracted by TRIzol reagent (Invitrogen)
following the manufacturer’s instructions. The purity and
concentration of the extracted RNA were determined at 260/
280 nm using a spectrophotometer (NanoDrop ND-1000)
and was reverse transcribed into cDNA with a TaKaRa One-
Step RT-PCR kit using 1 ug of total RNA and the supplied
Oligo (dT) primers. Gene expression was determined by
qRT-PCR performed with SYBR Green chemistry and a
StepOnePlus system (LightCycler 480 II, Roche). The PCR
program started at 95°C for 30s followed by 40 cycles of
denaturation at 95°C for 5s, annealing at 60°C for 30s,
extension at 95°C for 5s, and a final extension at 60°C for
1 min. Melting curves were obtained stepwise from 55°C to
95°C. Data were reported as fold change (27°““"). Assays
were performed independently in triplicate. The primer
sequences are shown in Table 1.

2.3. miRNA Isolation and Detection. A miRNA cDNA
Synthesis Reaction System and a qPCR system (Mir-X™
miRNA First-Strand Synthesis and SYBR® qRT-PCR,
TaKaRa Bio Company, USA) were used, following the
manufacturer’s instructions. The prepared PCR solution,
except for the DNA template, was pipetted into 96-well
plates. The DNA template of the PCR was added, and the
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amplification conditions were set. The amplification reaction
was performed with a QuantStudio™ 3 and 5 Real-Time PCR
System with U6 as a control. The reactions were performed
in triplicate. The primer sequences for miRNA-221 and U6
are shown in Table 2.

2.4. Luciferase Reporter Assay. Psi-Check2 wild-type 3'-
untranslated sequences (wt-3'-UTR) of PI3KR1, containing
the miR-221 binding site ligated to a pLuc-reporter luciferase
vector, are shown in Supplementary Figure 1 and were
synthesized by Sangon Biotech (Shanghai, China). PCR was
performed with Primer STAR® HS DNA Polymerase
(TaKaRa Bio Inc. Shiga, Japan) following the manufac-
turer’s instructions. Psi-Check2 mutated vectors (mut-3'-
UTR) were constructed using the Fast Mutagenesis System
(TransGen Biotech, China). All constructs were verified by
DNA sequencing.

HEK-293T human embryonic kidney cells were seeded
in 24-well plates, cotransfected with 10 nmol pre-miR-221 or
pre-miR-NC and 100ng pLuc-3'-UTR. The cells were
harvested 24h after transfection. Luciferase activity was
measured with a Dual-Luciferase Reporter Assay System
(Promega, USA) and a Glomax Luminometer (Promega,
USA). Renilla luciferase activity was normalized to firefly
luciferase. All assays were conducted in triplicate.

2.5. Cell Transfection. Cells were transfected with Lip-
ofectamine 3000 (Thermo Fisher Scientific, Waltham, MA,
USA), following the manufacturer’s instructions. The miR-
221 mimic and mi-221 inhibitor were purchased from
Sangon Biotech (Shanghai, China). The primer sequences
are shown in Table 3. PA was added to the cell culture media
24 h after transfection, and cells were cultured for another
24h.

2.6. Western Blotting. Total protein was extracted with RIPA
lysis buffer and separated by sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE). The proteins
were transferred to polyvinylidene difluoride membranes,
blocked with 5% skim milk in Tris-buffered saline containing
0.1% Tween-20 for 1h, and then incubated with anti-PI3K,
anti-AKT, anti-p-PI3K, anti-p-AKT, and anti-f-actin pri-
mary antibodies (Proteintech, Rosemont, IL, USA) for 16 h
at 4°C. Membranes were washed three times in Tris-buffered
saline containing 0.1% Tween-20 and then incubated with
anti-mouse or anti-rabbit IgG secondary antibodies for 1h.
Immunoreactive bands were visualized by a commercial
electrochemiluminescence (ECL) kit (Amersham Pharmacia
Biotech, Little Chalfont, Great Britain).

2.7. Statistical Analysis. Values were expressed as the
means + standard deviation (SD). Between-group differ-
ences were compared with unpaired two-tailed t-tests.
Multigroup differences were compared by analysis of vari-
ance with Dunnett’s multiple comparison test or the
Tukey-Kramer test. p values <0.05 were considered statis-
tically significant.
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TaBLE 1: The primer sequences of IRS-2, PI3K, and GLUT4.

Primer sequence

Gene

Forward Reverse
IRS-2 CACCTACGCCAGCATTGACTTC CAAACACAGTCATTGCTCAGATCC
PI3K AGCATTGGGACCTCACATTACACA ACTGGAAACACAGTCCATGCACATA
AKT AGCGACGTGGCTATTGTGAA CACGTTGGTCCACATCCTG
GLUT4 GGGCTGAGACAGGGACCATAAC CATGAGCAATGGCATCCCAGAA
B-Actin TGGATCAGCAAGCAGGAGTA ATGGTGGTGAAGACGCCAGTA

TaBLE 2: The primer sequences of U6 and miR-221.

Name of Sequence of primer
miRNA K ’
;{;’a'mlR‘ZZI' Forward ~ CTACATTGTCTGCTGGGTTTC

U6 Forward GGAACGATACAGAGAAGATTAGC
Reverse TGGAACGCTTCACGAATTTGCG

TaBLE 3: The sequences of miR-221-3p-mimic/inhibitor.

Name of miRNA
Hsa-miR-221-3p-
mimic
Has-miR-221-3p-
inhibitor

Sequence of primer

AGCUACAUUGUCUGCUGGGUUUC

GAAACCCAGCAGACAAUGUAGCU

3. Results

3.1. PA Decreased Glucose Uptake in HepG2 Cells. PA has
been shown to directly impair insulin signaling in cultured
hepatocytes and has been previously used to induce insulin
resistance in HepG2 cells [15, 16]. As shown in Figure 1,
treatment with 0.2 to 0.8 mM PA for 24 h did not inhibit cell
viability and the lowest glucose uptake occurred with
0.8 mM PA. Consequently, 0.8 mM PA for 24 h was used to
establish the HepG2 insulin resistance model.

3.2. PA Impairs PI3K/AKT Signaling Pathway and Increases
miR-221 Expression. The PI3K/AKT pathway regulates
glucose homeostasis via insulin-sensitive GLUT4 [18]. In
this study, inhibition of the PI3K/AKT pathway was de-
termined by assay of IRS-2, PI3K, AKT, and GLUT4 mRNA
expression in HepG2 cells, before and after exposure to PA
for 24 h. IRS-2 mRNA expression was significantly increased
by PA, but PI3K, AKT, and GLUT4 mRNA expressions were
decreased. Normally, PI3K is upregulated by IRS-2, but that
was not observed in this study, possibly because of the
change in miRNA expression [19].

miRNAs regulate gene expression posttranscriptionally
by directly binding to the 3'-untranslated region (3’-UTR) of
target mRNAs [9]. Dysregulation of miRNAs has previously
been implicated in the pathogenesis of various diseases,
including obesity and diabetes [20]. miR-221 is involved in
the development of obesity and has been reported to neg-
atively regulate insulin sensitivity [21]. gPCR confirmed that
PA significantly increased miR-221 expression (Figure 2(b)).

To verify that PI3K was a direct target of miR-221, the
putative miR-221-binding sequence at the 3’-UTR of the
PI3K gene was subcloned into a luciferase reporter vector.
Ectopic expression of miR-221 significantly reduced lucif-
erase activity in HepG2 cells transfected with the reporter
vector containing the PI3K 3'-UTR sequence. The effect of
miR-221 was abolished when the binding sequence was
mutated (Figure 2(c)).

3.3. miR-221 Expression Decreases Glucose Uptake in HepG2
Cells. 'The involvement of miR-221 in glucose uptake by
HepG2 cells treated with PA was investigated in HepG2 cells
transfected with miR-221 mimic and inhibitor. The ex-
pression of miR-221 was significantly increased in HepG2
cells transfected by mimic and was decreased in those
transfected by inhibitor with (Figure 3(a)) and without
(Figure 3(b)) PA treatment. As shown in Figure 3(c), miR-
221 mimic significantly reduced glucose transport by HepG2
cells and miR-221 inhibitor reversed the reduction in re-
sponse to PA, indicating that miR-221 modulated glucose
uptake.

3.4. miR-221 Suppresses GLUT4 Expression via the PI3K/AKT
Pathway. Changes in protein expression indicated that the
effects of miR-221 on glucose transport were mediated by the
PI3K/AKT pathway. Figure 4 shows that PI3K, p-PI3K,
AKT, p-AKT, and GLUT4 protein expressions were de-
creased by miR-221 mimic and that the miR-221 inhibitor
blocked the effects of PA on protein expression. The results
indicate that miR-221 regulated glucose uptake via the PI3K/
AKT pathway.

4, Discussion

Overweight and obesity are both increasing in prevalence
worldwide. Most patients with T2DM are overweight or
obese and have elevated plasma FFA levels that are cor-
related with the severity of insulin resistance [22, 23].
Consumption of a diet high in saturated versus mono-
unsaturated fats has been associated with increased insulin
resistance [24]. High levels of circulating FFAs are thought
to have a key role in initiating and promoting the pro-
gression of insulin resistance, but the mechanism of action
is not fully understood. In this study, PA, a representative
FFA, induced the expression of miR-221, which then bound
to PI3K mRNA to inhibit its expression, and that of PI3K/
AKT pathway-associated proteins to decrease glucose
uptake.
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F1GURE 4: Effect of miR-221 mimic and inhibitor on expression of PI3K/AKT pathway proteins. HepG cells were transfected with miR-221
mimic or inhibitor for 24 h; PA was then added for an additional 24 h. PI3K, p-PI3K, AKT, p-AKT, and GLUT4 protein expressions were
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IRS-2 is a cytoplasmic adaptor protein that organizes  intracellular signal transducer of diverse cellular functions.
signaling complexes downstream of cell surface receptors ~ AKT is a protein kinase downstream of PI3K that mediates
and it coordinates responses to insulin that are associated the release of growth factors, cytokines, and other stimuli of
with induction and worsening of resistance [25]. PI3Kisan  cell survival, growth, proliferation, angiogenesis, and
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FIGURE 5: Proposed mechanism of PA induction of insulin re-
sistance in HepG2 cells. PA induces miR-221 overexpression. miR-
221 binds PI3K to decrease PI3K and AKT expression and phos-
phorylation. Impairment of the PI3K/AKT pathway results in
reduced GLUT4 expression and glucose consumption, which in-
duces insulin resistance.

metabolism. The IRS/PI3K/AKT signaling pathway regulates
insulin signaling and lipid metabolism [19, 26]. In this study,
PA induced the expression of IRS-2 but not PI3K, its
downstream target. The lack of PI3K response was mediated
by miR-221.

There is evidence that miRNAs are involved in insulin
secretion, f3-cell differentiation, and glycolipid metabolism
and that they contribute to the progression of T2DM
[27, 28]. Previous studies have described the involvement of
miR-221 in the development of obesity and decreased insulin
sensitivity [21, 29]. In the previous study, postnatal over-
feeding was found to induce miR-221 expression and im-
paired PI3K/AKT signaling in the livers of adult male rats. In
the present study, we found that miR-221 influenced IRS/
PI3K/AKT signaling during the induction of insulin re-
sistance by PA.

miR-221 is located on the X chromosome (Xp11.3). It is
highly conserved in vertebrates and is a putative oncogene
that is overexpressed in a number of human tumors [30-32].
Adipose miR-221 is upregulated in obesity, and its ex-
pression is positively correlated with an increased body mass
index in the Pima Indian population, which has a high
prevalence of T2DM [33]. The luciferase reporter assay
revealed that in HepG2 cells transfected by miR-221 mimic
and inhibitor, PA induced the expression of miR-221 by
binding to PI3K mRNA and suppressing its expression.
Thus, miR-221 played an important role in the insulin re-
sistance induced by PA.

GLUT4 is an insulin-regulated transmembrane glucose
transporter that controls glucose homeostasis and is a
downstream target of the PI3K/AKT pathway [18]. In this
study, PA decreased glucose uptake by suppressing GLUT4
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expression. The decreased GLUT4 expression can be
accounted for by the impairment of the PI3K/AKT signaling
pathway. Polysaccharides extracted from Enteromorpha
prolifera, an edible seaweed, have hypoglycemic and
hypolipidemic effects and have been shown to lower blood
glucose by increasing GLUT4 expression [34-38]. Thus,
polysaccharides from dietary seaweed may be found effective
for preventing T2DM.

In summary, PA decreased glucose uptake in HepG2
cells by promoting miR-221 overexpression, which reduced
GLUT4 expression and glucose uptake by impairing PI3K/
AKT signaling. A proposed mechanism of miR-221 over-
expression induced by PA and the resulting impairment of
the PI3K/AKT pathway is shown in Figure 5. The study
results suggest that inhibition of miR-221 may have potential
as a novel approach for preventing and treating obesity-
induced insulin resistance.
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