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INHBA-encoded inhibin β A is a member of the transforming growth factor-β (TGF-β) superfamily. INHBA has been reported to
be implicated in the progression of multiple types of cancer including ovarian cancer (OC). However, the mechanisms by which
INHBA affects OC progression are not well-characterized. The aim of our study was to explore the prognostic value of INHBA
for different stages and grades of OC and to identify the possible mechanisms by which INHBA promotes OC progression. Our
results demonstrated that INHBA was specifically expressed in OC epithelium, and higher expression was associated with higher
risk of mortality in patients with advanced and higher-grade serous OC (SOC). In addition, knockdown of INHBA in cancer
cells impaired cancer xenograft growth through reducing OC stromal fibroblast activation in vivo. Further results confirmed that
Smad2 signaling pathway was involved in INHBA-induced stromal fibroblast activation, and inhibiting this pathway could
effectively reverse activation of stromal fibroblasts. In summary, our results showed that blocking INHBA in cancer cells may be
a potential therapeutic strategy to inhibit SOC progression.

1. Introduction

Ovarian cancer (OC) is the seventh leading cancer diagnosis
and eighth leading cause of cancer death among women [1].
OC is highly curable if found early and intervened actively,
but OC at early stage usually lacks obvious clinical symp-
toms. Around 60-70% of women are diagnosed with late-
stage disease that has already spread within the abdomen
[2, 3]. Despite numerous targeted drugs have been developed
to treat OC, patients’ overall survival (OS) is still very dismal
[4]. Therefore, it is urgent and significant to identify novel
molecules involved in the OC progression and further
develop some other effective treatments for OC patients.

INHBA-encoded inhibin β A is a member of the trans-
forming growth factor-β (TGF-β) superfamily [5]. Inhibin

β A could further form activin A by homodimerization or
be linked to inhibin β B to produce inhibin by heterodimer-
ization [6]. Activin A has been reported to be involved in a
variety of biological processes, such as immune response,
stem cell differentiation, and glucose metabolism [7]. Recent
studies have shown that overexpression of INHBA occurs in
multiple types of cancers, including colorectal cancer, breast
cancer, lung cancer, esophageal squamous cell carcinoma,
and bladder cancer [6, 8–11]. For example, activin A signal-
ing promotes breast cancer metastasis by regulating IL13Rα2
expression [8]. In esophageal squamous cell carcinoma, high
INHBA level predicts poorer prognosis [10]. Upregulation of
INHBA expression promotes cell proliferation and predicts
poor survival in patients with lung adenocarcinoma [6]. In
OC, although some studies have reported that patients with
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high expression of INHBA have shorter survival times than
those with low expression of INHBA [12], the relationship
of INHBA with clinical features and its contribution to OC
progression have not been fully elucidated.

Overwhelming studies have demonstrated the important
contribution of stromal involvement to the pathogenesis of
OC [13, 14]. As the predominant cell type in the cancer
stromal compartment, cancer-associated fibroblasts (CAFs)
are reported to actively promote migration and invasion
of tumor cells and impede drug delivery through generat-
ing extracellular matrix (ECM) components [15–18]. Cur-
rently, activated CAFs were considered to mainly originate
from the surrounding fibroblasts under education of
cancer cells [19, 20]. The ability of tumor cells to direct
normal fibroblasts to differentiate into CAFs is dependent
on cytokines such as PDGF, TGF β1, and FGF2 [21].
Recent studies have reported that INHBA is also a driver
of the CAF phenotype in OC [22, 23]. However, our
knowledge regarding activation effect of INHBA on fibro-
blasts is remained insufficient.

Therefore, the purposes of this study were to evaluate
the expression of INHBA in OC tissues and to characterize
the pivotal role of cancer cell-derived INHBA in stromal
fibroblast activation and SOC progression. This study could
help us better understand INHBA-mediated interaction
between cancer cells and stromal fibroblasts, providing evi-
dence to support that targeting INHBA in cancer cells to
inactivate stromal fibroblasts could be a promising SOC
therapeutic strategy.

2. Methods

2.1. Cell Culture. We purchased human ovarian cancer cell
lines (SKOV3, CAROV3, OVCAR8, and OV90) and
fibroblast cell line MRC-5 from ATCC (Rockville, MD,
USA) and the cell bank of the Chinese Academy of Sciences,
respectively. All the cell lines were confirmed to be
mycoplasma-free by the source organizations prior to
purchase. We isolated and purified primary normal ovarian
fibroblasts (NOFs) from OC patients normal fresh ovary
tissues following procedures as previously described [24].
Briefly, all the patient tissues were obtained under the super-
vision of the Ethics Committee of Tongji Hospital and
confirmed by two senior pathologists. To collect tissue
homogenate, fresh normal ovary tissues of 1mm3 were
digested on a shaker in serum-free DMEM/F-12 containing
collagenase and hyaluronidase (Sigma) for 2-3 hours. After
the termination of digestion with FBS (Gibco), all the tissue
samples were incubated with red blood cell lysate (BioLe-
gend), filtered using a 40 μm cell strainer (BD Biosciences)
to obtain single cells, and then subjected to antifibroblast
microbeads (Miltenyi Biotec; 130-050-601) for fibroblast iso-
lation. Finally, single cell samples were sorted using an
MACS column (Miltenyi Biotec). The quality of the NOFs
was confirmed using a PDGFRα antibody (ab203491,
Abcam, USA). All OC cell lines were cultured in McCoy’s
5A medium, and MRC-5 and the primary NOFs were main-
tained in DMEM/F-12 medium. All the cells were cultured in
an incubator at 37°C, 5% CO2, and 80% humidity. All of

aforementioned media were mixed with 1% penicillin/strep-
tomycin (Thermo Scientific) and 10% FBS (Gibco).

2.2. Public Database Analysis.We used Oncomine online tool
(https://www.oncomine.org) to examine INHBA expression
in microdissected ovarian profile GSE26712 and TCGA
dataset. Student’s t-test was used to calculate statistical
significance. Gene expression data (GSE26193, GSE9891,
GSE51088 profiling data) were obtained from Gene Expres-
sion Omnibus online website (https://www.ncbi.nlm.nih
.gov/geo). The TCGA expression dataset and coexpression
genes with INHBA were obtained via the cBioPortal tools
(http://cbioportal.org). Screening criteria was based upon
Spearman’s correlation. The David analysis tool (https://
david.ncifcrf.gov) and the Kobas analysis tool (http://kobas
.cbi.pku.edu.cn) were used to perform the GO analysis and
the KEGG pathway analysis.

2.3. Single-Sample Gene Set Enrichment Analysis (ssGSEA). In
order to investigate the relationship between INHBA expres-
sion and the 141-stroma signature activation degree in
GSE9891, GSE51088, GSE26193, and TCGA dataset, ssGSEA
was used to generate geneset activation score as described
previously [25].

2.4. Tissue Sample Information. Tissue samples in this study
consisted of 224 cases from two sources. The first source
was a tissue microarray obtained fromUS Biomax authorized
AlenaBio (OV2084a; https://www.alenabio.com). There were
208 samples included in the tissue microarray, which
included formalin-fixed paraffin-embedded serous papillary
adenocarcinoma (n = 130), serous adenocarcinoma (n = 2),
adenocarcinoma (n = 7), endodermal sinus carcinoma
(n = 7), mucinous papillary adenocarcinoma (n = 24), dys-
germinoma (n = 5), endometrioid carcinoma (n = 3), imma-
ture teratoma (n = 2), embryonal carcinoma (n = 1), mature
teratoma (n = 1), clear cell carcinoma (n = 1), transitional cell
carcinoma (n = 1), strumal carcinoid (n = 1), squamous cell
carcinoma from teratoma with malignant transformation
(n = 3), granular cell tumor (n = 4), normal ovarian epithelial
tissue (n = 2), and adjacent normal ovary tissue (n = 14).
Clinical data such as age, histological type, differentiation,
FIGO stage, and other information were also obtained from
AlenaBio. Another source of tissue samples was the Depart-
ment of Pathology of Tongji Hospital. We applied for and
obtained 16 normal ovarian tissue sections from different
patients under the supervision of the Ethics Committee of
Tongji Hospital.

2.5. Immunohistochemistry, Masson’s Trichrome Staining,
and Picrosirius Red Staining. Immunohistochemistry was
performed on paraffin-embedded tissue sections. The sec-
tions were first deparaffinized and then gradually hydrated.
Antigen retrieval was performed by pressure cooking in
0.01M citrate buffer for 10min. Then, sections were incu-
bated with 20% normal goat serum for 30min at 37°C. Next,
the slides were incubated with primary antibodies against
INHBA (Proteintech, USA), FAP(ab28244, Abcam, USA),
α-SMA(ab5694, Abcam, USA), FSP1(ab197896, Abcam,
USA), and Ki-67(ab16667, Abcam, USA) at a dilution of
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1 : 100 and then incubated with horseradish peroxide-
conjugated secondary antibody for 20min. Finally, a DAB
kit (BD Biosciences) was used for the slides to obtain the best
staining intensity. Immunostaining score was evaluated by 2
independent investigators who were unaware of the sections’
information using a semiquantitative scoring system. Briefly,
the intensity of immunostaining for INHBA is graded as fol-
lows: 0 = negative, 1 = weak, 2 = moderate, and 3 = strong,
and proportion of immunopositive cells is graded as follows:
0 = ≤4%, 1 = >5 to ≤ 25%, 2 = >25 to ≤ 50%, 3 = >50 to ≤ 75%,
and 4 = >75%to ≤ 100%. Then, the 2 scores of the correspond-
ing sample were integrated to obtain the final staining index.
Points = 0 were marked as -, 1-4 points as +, 5-8 points
as ++, and 9-12 points as +++. For statistical analysis, ++
and +++ were considered as high expression of INHBA,
whereas - and + were considered as low expression. Mas-
son’s trichrome (Servicebio, Wuhan, China) staining and
picrosirius red staining (Servicebio, Wuhan, China) were per-
formed on paraffin-embedded sections of xenografts accord-
ing to the corresponding manufacturer’s protocol.

2.6. Quantitative Real-Time- (RT-) PCR. Total RNA of cells
was isolated with TRIzol Reagents (Invitrogen) according to
the standard protocol [26]. Reverse transcription of 2 μg
RNA was performed using random primers and M-MLV
reverse transcriptase (Takara, Japan). RT-PCR reactions
were carried out using the Bio-Rad CFX96 system with IQ
SYBR Green supermix (Bio-Rad, Hercules, CA). Relative
expression levels of interesting genes were analyzed using
the ΔΔ Cq method [27]. GAPDH served as the internal
control. The primer sequences of INHBA are as follows:
forward, 5′-ACACAACAACTTTTGCTGCC-3′, and reverse,
5′-TCGTGTCACCACTGTCTTCTC-3′. The primer
sequences of GAPDH are as follows: forward, 5′-ACCCAT
CACCATCTTCCAGGAG-3′, and reverse, 5′-GAAGGG
GCGGAGATGATGAC-3′.

2.7. Transfection of siRNA and Lentivirus. For transient
endogenous INHBA knockdown, the cells were transfected
with INHBA-specific siRNA (si-INHBA) (RiboBio, Guang-
zhou, China) using Lipofectamine 3000 reagent (Invitrogen).
Negative control (si-Ctrl) was used as a transfection control.
In contrast, lentivirus targeting INHBA (sh-INHBA) (Vigene
Biosciences, Shandong, China) was used for long-term
INHBA knockdown, the transfection step was performed
according to the manufacturer’s instructions. Negative con-
trol (sh-Ctrl) was used as a transfection control. Specific
human INHBA shRNA sequence was as follows: CCAAC-
AGGACCAGGACCAA.

2.8. Western Blotting. Cellular proteins were dissolved in
modified RIPA buffer. Modified RIPA buffer formula was
as follows: 0.25% sodium deoxycholate, 50mmol/l Tris-Cl
(pH 7.4), 1% NP-40, 1mmol/l ethylenediaminetetraacetic
acid (EDTA), 1mmol/l sodium fluoride (NaF), 150mmol/l
sodium chloride (NaCl), and 1mmol/l phenylmethylsulfonyl
fluoride (PMSF). The concentration of proteins was quanti-
fied by a bicinchoninic acid (BCA) assay (Thermo Scientific).
A total of 40 μg of protein was separated by SDS-PAGE and

subsequently transferred to nitrocellulose membranes. After
blocking in TBST buffer, the membrane was incubated with
appropriate dilutions of primary antibodies overnight at
4°C: INHBA (Proteintech, USA), GAPDH (Proteintech,
USA), FAP (ab28244, Abcam, USA), α-SMA (ab5694,
Abcam, USA), FSP1 (ab197896, Abcam, USA), total Smad2
(ab33875, Abcam, USA), and p-Smad2(Ser 465/467)
(#18338, Cell Signaling Technology). Next day, the mem-
brane was incubated with the corresponding peroxidase-
conjugated secondary antibodies (Antgene). Finally, the
enhanced chemiluminescence (ECL, Bio-Rad) was used to
detect the antigen-antibody complexes. GAPDH was used
as the control [23].

2.9. Immunofluorescence Staining. The cells were grown on
cover slips. Next day, the cells were fixed with paraformalde-
hyde for 20min, then rinsed three times with phosphate buff-
ered saline (PBS), and followed by incubation with PBS
containing 5% bovine serum albumin (BSA) and 0.1% Triton
X-100 to permeabilize and block nonspecific antibody bind-
ing. Then, the samples were incubated with primary antibod-
ies, including α-SMA (ab5694, Abcam, USA) and Ki-67
(ab16667, Abcam, USA) overnight at 4°C. Third day, the cells
were incubated with secondary antibody (Alexa Fluor 594
conjugated, Antgene), phalloidin-iFluor 488 Reagent
(ab176753, Abcam, USA), and DAPI (Sigma). Fluorescence
images were obtained using an Olympus BX53 microscope
(Olympus, Tokyo, Japan).

2.10. Collagen Gel Contraction Assay. Briefly, 6 × 105 cells
were prepared in each group and washed with PBS. Then,
the cells were resuspended in 200 μl collagen gel mixture
per well in a 96-well ultra-low adhesion plate (Corning Life
Sciences, Corning, NY). 200μl of collagen gel mixture for-
mula was as follows: 31.25μl Type 1 Rat Tail Collagen
(Thermo), 168.75μl DMEM/F-12 medium, and 0.72μl 1N
NaOH. After 12 h, the images were taken and contraction
area was quantified with ImageJ software. All contraction
assays were performed in triplicate.

2.11. Cellular Viability Assay. Cells were seeded in 24-well
plates in triplicate with an initial density of 1 × 104 cells per
well. At 24 h, 48 h, 72 h, and 96h since planting, the cells were
digested with trypsin and counted using an automated cell
counter.

2.12. Xenograft Tumor Model. All procedures performed in
studies involving mice were carried out according to the
Regulations for the Administration of Affairs Concerning
Experimental Animals of China (2017) and were approved
by the Committee on the Ethics of Animal Experiments in
the Hubei Province. Ten female BALB/c nude mice (weight
20–23 g, 4-6 weeks of age) were purchased and cultured in
laminar flow cabinets under specific pathogen-free condi-
tions. The mice were randomly divided into two groups
(n = 5 per group). 2 × 106 SKOV3 tumor cells expressing
sh-INHBA and sh-Ctrl were subcutaneously implanted in
the right backs of the mice in the INHBA knockdown group
and in the control group, respectively. All mice were killed
humanely on day 28 after transplantation, and tumor
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nodules were dissected, weighed, and paraffin-embedded for
subsequent detection.

2.13. Statistics. All statistical analyses were performed using
SPSS 22.0 (IBM, Ehningen, Germany) and GraphPad Prism
5.0 software (GraphPad Inc., San Diego, CA, USA). The
Shapiro-Wilk test was used to evaluate whether the data were

normally distributed. For normally distributed data, the data
were presented as means ± standard error of themean ðs:e:
m:Þ for at least three independent experiments and evaluated
using Student’s unpaired two-tailed t-test for comparisons
between two groups, and one-way ANOVA followed by
Tukey’s posttest for analyses among multiple groups. For
nonnormally distributed data (INHBA IHC scores), the
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Figure 1: INHBA is specifically overexpressed in OC tissues. (a, b) Oncomine analysis showed the mRNA expression of INHBA was
significantly increased in OC. (c) Western blot analysis of INHBA in normal ovary tissues and OC tissues. GAPDH was used as the
loading control. (d–g) IHC staining of INHBA protein in OC: (d) negative INHBA staining, (e) low INHBA expression, (f) moderate
INHBA expression, and (g) high INHBA expression. (h) Comparison of IHC scores from the normal ovary and OC groups. Data are
expressed as mean ± s:e:m: or median ± interquartile range, ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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data were presented as medians ± interquartile range, and
the Mann-Whitney test was performed to compare the
IHC scores between the normal ovary and OC groups.
The Kruskal-Wallis test and chi-squared test were used
to analyze the relationship between INHBA expression
and clinical pathological parameters. P < 0:001 was consid-
ered very significant (∗∗∗), P < 0:01 was considered highly
significant (∗∗), and P < 0:05 was considered statistically
significant (∗).

3. Results

3.1. INHBA Is Specifically Overexpressed in OC Epithelium. In
order to investigate the expression pattern of INHBA in OC
and normal ovary, we analyzed two microdissected profiles
including OC and normal ovary samples and found that
INHBA mRNA was elevated in the OC samples
(Figures 1(a) and 1(b)). Immunoblotting analysis showed
that INHBA protein expression was significantly increased
in OC tissues compared to that in normal ovarian tissues
(Figure 1(c)). Subsequently, immunohistochemistry (IHC)
analysis was performed on 192 OC tissues and 32 normal
ovarian tissues. Consistent with Figures 1(a)–1(c), INHBA
expression was obviously elevated in OC tissues. In detail,
positive INHBA staining was mainly distributed in the tumor
tissue epithelium (Figures 1(d)–1(g)). Among the 192 OC
tissues, 55 (28.6%) cases showed high expression of
INHBA, and 137 (71.4%) cases demonstrated low expression
of INHBA. In contrast, only 3 (9.4%) of 32 normal ovarian
tissues showed high expression of INHBA (Figure 1(h)).

3.2. Correlation between INHBA Expression and
Clinicopathological Features. Among the many types of OC,
SOC is the most common and deadliest type, which accounts
for over 80% of all epithelial OC cases [1], so we mainly
investigated the role of INHBA in SOC. To better understand
the effect of INHBA on SOC progression, the relationship

between INHBA expression and clinicopathological features
was analyzed using the chi-squared test and Kruskal-Wallis
test for 132 cases of SOC. As shown in Table 1, high INHBA
expression in SOC was significantly associated with FIGO
stage, and later stages of SOC had higher INHBA expression
(P < 0:0001). Similarly, there was a tendency for positive cor-
relation between INHBA expression and higher pathological
grades (P = 0:039). However, we did not find significant cor-
relation between INHBA expression and age (P = 0:363).
These results indicated that there was a positive correlation
between INHBA expression and SOC progression.

3.3. Prognostic Value of Different INHBA Expressions in SOC.
To investigate the relationship between INHBA expression
and survival of patients with SOC, we then analyzed the
prognostic value of INHBA for SOC by using an online
tool (http://kmplot.com). Survival curves were plotted in
http://kmplot.com for all patients with SOC (n = 1232),
patients with stages I and II SOC (n = 98), patients
with stages III and IV SOC (n = 1023), patients with
grade I SOC (n = 31), patients with grade II SOC
(n = 243), and patients with grade III SOC (n = 901).
The Affymetrix ID was valid: 210511_s_at (INHBA).
As depicted in Figure 2, high INHBA mRNA expres-
sion was correlated with worse overall survival (OS)
of SOC patients [hazard ratio ðHRÞ = 1:36 ð1:16 − 1:59Þ,
P = 0:00012] (Figure 2(a)).More importantly, high expression
of INHBAwas associated with poor OS in patients with stages
III and IV SOC [hazard ratio ðHRÞ = 1:23 ð1:04 − 1:45Þ,
P = 0:016], but not in patients with stages I and II
SOC [hazard ratio ðHRÞ = 1:94 ð0:81 − 4:62Þ, P = 0:13]
(Figures 2(b) and 2(c)). Similarly, high expression of
INHBA was correlated with poor survival prognosis in
patients with grade II SOC [hazard ratio ðHRÞ = 1:86 ð1:26 −
2:74Þ, P = 0:0016] and grade III SOC [hazard ratio ðHRÞ =
1:27 ð1:05 − 1:54Þ, P = 0:013], but not in patients with
grade I SOC [hazard ratio ðHRÞ = 2:07 ð0:54 − 7:87Þ, P = 0:28]
(Figures 2(d)–2(f)).

3.4. INHBA Blockade in Tumor Cells Does Not Significantly
Inhibit Cellular Growth Ability In Vitro. Previous studies
have shown that INHBA was mainly expressed in OC epithe-
lium [28], and our IHC results confirmed this finding. To
explore the biological mechanisms that could account for
the association between high INHBA expression and poor
survival, a series of experiments were carried out. Firstly,
we evaluated INHBA expression levels in four SOC cell lines
(Figure 3(a)) and then performed transient gene knockdown
in SKOV3 that had a higher expression of INHBA. Real-time
PCR and western blotting confirmed that si-INHBA not only
efficiently suppressed the intracellular INHBA protein
expression but also decreased extracellular INHBA protein
levels in conditioned medium (CM) (Figures 3(b) and 3(c)).
However, cell immunofluorescence for Ki-67 indicated that
there were no significant differences in the positive staining
rate between the si-INHBA group and control group
(Figure 3(d)). Clone formation and cell counting assays
showed that knockdown of INHBA did not significantly
inhibit SKOV3 cellular growth ability (Figures 3(e) and 3(f

Table 1: Association of INHBA expression with the
clinicopathological variables of primary SOC patients (132a cases).

Variable
INHBA expression

Low High Total P

Agea P = 0:363
≤50 years 29 18 47

>50 years 56 27 83

Stagea P < 0:0001
I 81 31 112

II 4 4 8

III 0 6 6

IV 0 4 4

Gradeb P = 0:039
1 23 4 27

2 9 4 13

3 51 36 87
aTwo cases without epithelial components were excluded. bFive cases
without grade information were excluded.
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)). Collectively, the above results confirmed that knockdown
of INHBA has no noteworthy effect on the proliferation of
SKOV3 in vitro.

3.5. INHBA Blockade in Tumor Cells Causes Xenograft
Tumor Growth Inhibition and Reduces Stroma Components
In Vivo. INHBA encodes Inhibin β A which is a member of
the TGF-β pathway and has been declared to be a driver of
the CAF phenotype in OC [22, 23]. Thus, considering the
obvious prognostic significance of INHBA in SOC and limi-
tations of in vitro experiments, we evaluated the role of
INHBA in tumorigenesis in vivo using an immunodeficient
mouse subcutaneous tumor model. Interestingly, treatment
with sh-INHBA in SKOV3 cells obviously inhibited tumor
growth in vivo and resulted in smaller tumors compared to

the control group (Figures 4(a) and 4(b)). Further IHC anal-
ysis confirmed the in vivo stability of INHBA knockdown in
SKOV3 (Figure 4(c)). More importantly, positive staining of
Ki-67 was also obviously reduced in sh-INHBA-treated
tumor xenografts (Figure 4(d)). Furthermore, Masson’s
trichome staining and picrosirius red staining showed that
INHBA knockdown in SKOV3 cells resulted in downregu-
lation of stromal components and reduced collagen depo-
sition (Figures 4(e) and 4(f)). Besides, markers of
fibroblast activation, such as α-SMA, FAP, and FSP1, were
also obviously decreased in sh-INHBA-transduced tumor
xenografts (Figure 4(g)). These above results demonstrated
that blocking INHBA in SKOV3 may hamper tumorigen-
esis by reducing tumor stromal microenvironment activa-
tion in vivo.
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Figure 2: Prognostic value of different INHBA expressions in OS of SOC. Survival curves were plotted from KMplotter (https://kmplot.com).
The desired Affymetrix ID was valid: 210511_s_at (INHBA). (a) For all SOC patients (n = 1207). (b) For all SOC patients of stage I+II (n = 98).
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3.6. INHBA from Tumor Cell-Derived Conditioned Medium
(CM) Promotes Activation of Stromal Fibroblasts. In order
to better understand the promotion effect of INHBA
on tumor growth in vivo, a series of experiments were
subsequently conducted. Firstly, 23 genes coexpressed
(Spearman’s correlation ratio > 0:8) with INHBA such as
FAP, THBS2, COL5A2, VCAN, and COL11A1 were
screened by using an online website (http://www
.cbioportal.org) in the TCGA database. The KEGG and
GO analyses showed that these genes related to INHBA
were highly enriched in pathways that encoded ECM pro-
cesses, such as extracellular matrix organization, extracellular
structure organization, and collagen fibril organization
(Figures 5(a) and 5(b)). Next, single-sample GSEA (ssGSEA)
showed that INHBAmRNA expression was positively associ-
ated with the stromal activation score in the GSE 9891, GSE
26193, GSE 51088, and TCGA datasets (Figure 5(c)). West-
ern blot data showed that exposure of fibroblasts to activin
A obviously increased the expression of FAP, α-SMA, and
FSP1 (Figure 5(d)). Furthermore, an INHBA-neutralizing

antibody significantly reversed the α-SMA elevation and
cytoskeletal stretch caused by SKOV3 CM in fibroblasts
(Figure 5(e)). In addition, SKOV3 CM-induced upregulated
ability of stromal fibroblasts in contracting ECM was also
reduced by INHBA-neutralizing antibody (Figure 5(f)).
Meanwhile, CM from SKOV3 CM-treated fibroblasts in turn
increased the Ki-67-positive rate and cell growth in SKOV3,
and these effects were eliminated by INHBA-neutralizing
antibody (Figures 5(g) and 5(h)). These data implied that
SKOV3 cell-derived INHBA promoted stromal fibroblast
activation, and these activated fibroblasts maintained tumor
cell growth.

3.7. The SMAD2 Signaling Pathway Is Involved in INHBA-
Induced Fibroblast Activation. It was well documented that
INHBA is a member of the TGF-β pathway and can activate
Smad signaling by binding to ACVR2A [5]. Similarly, our
western blot analysis showed that SKOV3-derived CM and
recombinant activin A both induced phosphorylation of
Smad2 in NOFs and MRC5 (Figure 6(a)). Furthermore,
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SB431542, an inhibitor of the Smad signaling cascade, not
only suppressed phosphorylation of Smad2 but also
decreased stromal fibroblast activation induced by SKOV3-
derived CM and recombinant activin A (Figures 6(b) and
6(c)). Immunofluorescence assay to evaluate α-SMA, and
collagen contraction experiments, demonstrated that
SB431542 effectively reversed stromal fibroblast activation
caused by SKOV3-derived CM (Figures 6(d) and 6(e)). These
data suggested that the Smad2 signaling pathway was
involved in INHBA-induced fibroblast activation.

4. Discussion

In the present study, we demonstrated that INHBA mRNA
and protein were overexpressed in ovarian cancer (OC) tis-
sues, and INHBA expression significantly increased with
the advance of serous ovarian cancer (SOC) pathological
grades and clinical stages. Kaplan-Meier plotter analysis
showed that patients with SOC with higher INHBA expres-

sion had worse overall survival (OS) outcomes. Through
comprehensive in vivo and in vitro experiments, we con-
firmed that knockdown of INHBA in tumor cells reduced
OC stromal fibroblast activation, which turned to inhibit
tumor growth. Furthermore, we found that the Smad2 sig-
naling pathway was involved in INHBA-induced stromal
fibroblast activation (Figure 7(a)).

Previous researches have demonstrated that the expres-
sion of INHBA is related with prognosis of different types
of cancer, such as lung cancer, colorectal cancer, gastric can-
cer, urothelial carcinoma, and breast cancer [6, 8–11]. Okano
et al. reported that INHBA was a predictor of poor prognosis
in patients with colorectal cancer [9]. Wang et al. showed that
INHBA overexpression implied adverse clinical outcomes in
patients with gastric cancer [29]. In lung adenocarcinoma,
Seder et al. demonstrated that upregulated expression of
INHBA promoted cell proliferation and was related with
poor survival [6]. In OC, INHBA was reported to cause sex
cord-stromal tumors, which was evidenced by the occurrence
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of these tumors in INHA knockout mice [30]. However, the
contribution of INHBA to epithelial OC progression is con-
troversial. Dean et al. showed that OC patients with high
INHBA expression had shorter survival times than patients
with low expression of INHBA [12]. In contrast, Do et al.
considered that INHBA expression in OC epithelia did not
correlate with survival [31]. However, we speculated that this
difference was due to the inconsistent OC stages and grades
included in these studies. In our study, we analyzed the rela-
tionship between INHBA expression with pathological
grades and clinical stages of patients with SOC, showing that

INHBA expression significantly increased with the advance
of SOC pathological grades and clinical stages. Upregulated
expression of INHBA was linked with poorer OS in clinical
stages III and IV as well as pathological grade II and III
patients, but not in clinical stages I and II and pathological
grade I patients.

The molecular mechanisms by which INHBA affects can-
cer progression remain elusive. Many studies have focused
on metastasis and proliferation of tumor cells themselves.
In non-small-cell lung cancer, INHBA has been shown to
induce and maintain mesenchymal phenotypes of cancer
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Figure 5: INHBA from SKOV3 CM promotes activation of stromal fibroblasts. (a, b) The GO term gene set enrichment analysis and KEGG
pathway analysis using genes related with INHBA (Spearman’s correlation ratio > 0:8). (c) Spearman’s correlation analysis showing the
relation between the calculated stromal component score and expression level of INHBA in the GSE 9891, GSE 26193, GSE 51088, and
TCGA dataset. (d) The results of western blot analysis showed that activin A enhanced the expression of fibroblast activation markers,
such as FAP, α-SMA, and FSP1. GAPDH served as loading control. (e) In MRC5 and primary NOFs, an INHBA-neutralizing antibody
suppressed the α-SMA elevation and cytoskeletal stretch caused by CM from SKOV3. (f) The INHBA-neutralizing antibody reversed the
increased ability of fibroblasts to contract ECM caused by CM from SKOV3. (g, h) The immunofluorescence assay of Ki-67 and wound
closure assay showing that INHBA-neutralizing antibody reversed the tumor-promoting ability of fibroblasts treated by CM from SKOV3.
Data are expressed as mean ± s:e:m:, ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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stem-like cells and to promote cancer cell metastasis [32].
Additionally, INHBA gene is found to mediate activation of
the TGF-β signaling pathway to promote gastric cancer cell
migration and invasion [33]. In breast cancer, INHBA signal-
ing promotes breast cancer metastasis by regulating IL13Rα2
expression [8]. However, in OC, the role of INHBA is mixed
and has not yet been fully elucidated. Welt et al. found that
the majority of ovarian cancer cells did not exhibit acceler-
ated proliferation in response to activin A treatment [34].
Ramachandran et al. showed that some epithelial OC cell
lines did not respond to activin A, while others showed
growth inhibition [35]. In our study, we demonstrated that
INHBA was abundantly expressed in SKOV3 cells, and
knockdown of INHBA did not significantly influence SKOV3
cellular growth ability in vitro.

However, OC cells grow in highly complicated stromal
microenvironments that nurture them through metabolic
remodeling, catabolism, autophagy, and inflammation and
are capable of facilitating metastasis and resistance to therapy

[36]. The results of in vitro experiments did not adequately
represent the real situation in vivo. Our findings confirmed
that decreased INHBA expression in SKOV3 had no effect
on proliferation of tumor cells in vitro, but could hamper
tumor xenografts growth by decreasing activation of stromal
fibroblast in vivo. To better elucidate the regulation of stro-
mal activation by INHBA in OC, we defined 23 genes coex-
pressed with INHBA including FAP, THBS2, COL5A2,
VCAN, and COL11A1. Further analyses demonstrated that
these 23 genes were mainly related to the stromal ECM and
collagen-regulated processes. In addition, the stromal fibro-
blast activation caused by SKOV3-driven CM was signifi-
cantly reversed by an INHBA-neutralizing antibody.
Furthermore, we found that phosphorylation of Smad2 was
involved in INHBA-induced fibroblast activation, and
SB431542, an inhibitor of Smad signaling cascade, not only
suppressed phosphorylation of Smad2 but also decreased
stromal fibroblast activation induced by SKOV3-derived
CM and recombinant activin A.
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Figure 6: The Smad2 signaling pathway is involved in INHBA-induced fibroblast activation. (a) Immunoblotting showed that activin A or
CM from SKOV3 increased the expression of p-Smad2 in fibroblast. GAPDH served as loading control. (b, c) SB431542 reduced the elevation
of p-Smad2, FAP, α-SMA, and FSP1 expression in fibroblasts caused by activin A or CM from SKOV3. GAPDH served as loading control. (d)
In MRC5 and primary NOFs, SB431542 suppressed the α-SMA increase and cytoskeletal stretch caused by CM from SKOV3. (e) SB431542
reversed the increased ability of fibroblasts to contract ECM caused by CM from SKOV3. Data are expressed as mean ± s:e:m:, ∗P < 0:05;
∗∗P < 0:01; ∗∗∗P < 0:001.

10 Disease Markers



This study suffered from several limitations. First, single-
source tumor tissue samples seem to be inadequate to reach
greater reliability. Further multicentric and large-scale stud-
ies are required to verify our present findings. Second, the
specific molecular mechanism by which INHBA activates
stromal fibroblasts requires further characterization.

5. Conclusions

This study revealed the prognostic role of INHBA in SOC at
different clinical stages and pathological grades. Additionally,
our results shed light on the activation role of OC cell-derived
INHBA in stromal fibroblasts, which was via the p-Smad2
pathway and promoted tumor xenograft growth. Our obser-
vations suggested that inhibition of INHBA in tumor cells
could be a potential therapeutic approach to inhibit tumor
progression and improve survival rates.
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