
Abstract. Background: Hyperactivity of the mechanistic
target of rapamycin complex 1 (mTORC1) is implicated in a
variety of diseases such as cancer and diabetes. Treatment
may benefit from effective mTORC1 inhibition, which can be
achieved by preventing arginine from disrupting the cytosolic
arginine sensor for mTORC1 subunit 1 (CASTOR1)–
GTPase-activating proteins toward RAGS subcomplex 2
(GATOR2) complex through binding with CASTOR1. An
attractive idea is to determine analogues of arginine that are
as competent as arginine in binding with CASTOR1, but
without disrupting the CASTOR1–GATOR2 interaction.
Materials and Methods: Molecular dynamics simulations
were performed for binding of arginine analogues with
CASTOR1 and binding free energy, hydrogen bond

formation, and root mean squared deviation and root mean
square fluctuation kinetics were then calculated. Results: The
binding free energy calculations revealed that Nα-acetyl-
arginine, citrulline, and norarginine have sufficient binding
affinity with CASTOR1 to compete with arginine. The
hydrogen bond analysis revealed that norarginine, Nα-
acetyl-arginine and D-arginine have proficient H-bonds that
can facilitate their entering the narrow binding pocket.
Conclusion: Norarginine and Nα-acetyl-arginine are the top
drug candidates for mTORC1 inhibition, with Nα-acetyl-
arginine being the best choice. 

Mechanistic target of rapamycin (mTOR) in complex with
regulatory-associated protein of mTOR (RAPTOR) and
mTOR-associated protein, LST8 homolog (LST8) is referred
as mTOR complex 1 (mTORC1). It is implicated in diseases
in which growth is deregulated and homeostasis is
compromised (1). Deregulated mTORC1 signalling fuels the
destructive growth of cancer. Overstimulation of the
mTORC1 pathway by excess food consumption may be a
crucial factor underlying the diabetes epidemic (2-4). Recent
findings suggest that mTORC1 signalling controls the rate at
which cells and tissues age, and that inhibiting mTORC1
may represent a promising avenue for increasing longevity
(5). In particular, dysregulation of signalling pathways
upstream of mTORC1 can cause human diseases such as
cancer, metabolic diseases, neurological disorders, and
autoimmune diseases (6, 7).

In order for cells to grow and proliferate by manufacturing
more proteins, the cells must ensure that they have the
resources (energy, nutrients, oxygen, and growth factors)
available in order for mRNA translation to begin (5, 8, 9).
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Nutrient availability is primarily sensed as the intracellular
amino acid level, by the RAGULATOR–RAG complex
sitting on the surface of the lysosome (10). Figure 1 uses
leucine and arginine as examples to illustrate the pathway by
which amino acids activate mTORC1. The RAGULATOR–
RAG complex is formed by RAGULATOR and RAG
GTPases, with the former serving as the scaffold of the latter.
The RAG-GTPases form heterodimeric complexes
comprised of RAGA or RAGB bound to RAGC or RAGD
(11). To form the RAGULATOR–RAG complex, RAGA/B
must be GTP loaded (12, 13) and RAGC/D must be GDP
loaded (14, 15). This complex causes mTORC1 to be
translocated from the cytoplasm to the lysosomal surface,
which allows for the activation of mTORC1 by the
lysosome-anchored small GTPase Ras homolog enriched in
brain (RHEB) (13, 16).

GTPase-activating proteins toward RAGS subcomplex 1
(GATOR1) prevents RAGA/B from loading GTP and thus
prevents the formation of the RAGULATOR–RAG complex
and subsequent mTORC1 activation (17). To activate
mTORC1, GATOR1 must be inhibited, and its upstream
inhibitor is GATOR2. However, GATOR2 is usually
associated with other proteins and is thus inactivated. These
GATOR2-associating proteins are sensors for amino acids
and there are a variety of them. For example, SESTRIN2 is
a cytosolic leucine sensor (11) and CASTOR1 is an arginine
sensor (6). These amino acids, when binding with their
corresponding sensor proteins, can disrupt the association of
the sensor proteins with GATOR2 (Figure 1). Released
GATOR2 inhibits GATOR1 and ultimately leads to
activation of mTORC1. For example, the amino acid leucine
disrupts the GATOR2–SESTRIN2 complex and ultimately
activates mTORC1 (11). 

The present study focused on arginine, whose sensor is the
protein CASTOR1. In order to associate with GATOR2,
CASTOR1 needs to either homodimerize or heterodimerize
with CASTOR2 (6), in a complex denoted by CASTOR1–
GATOR2, which refers to either CASTOR1–CASTOR1–
GATOR2 or CASTOR1–CASTOR2–GATOR2. Arginine,
when present at sufficient concentrations, can bind to the
conserved ACT domains of CASTOR1 and subsequently
disrupts the CASTOR1–GATOR2 complex (18, 19). As a
consequence, GATOR2 dissociates from CASTOR1–
homodimer or CASTOR1–CASTOR2, leading to the
ultimate activation of mTORC1 (6, 11).

Given that mTORC1 hyperactivation underlies complex
diseases such as cancer and diabetes, this study considered
methods of mTOR inhibition. From the above, it is clear that
maintenance of CASTOR1–GATOR2 association is key to
inhibition of mTORC1. That is, as long as GATOR2 is
associated with either CASTOR1–CASTOR1 or CASTOR1–
CASTOR2, it has no opportunity to activate the downstream
mTORC1. Therefore, the key to preventing mTORC1

hyperactivation is to maintain integrity of the CASTOR1–
GATOR2 association. This association is, however, difficult
to maintain, because arginine is ubiquitously present in cells,
which can easily bind with CASTOR1 and subsequently
disrupt the CASTOR1–GATOR2 association. It is thus
highly desirable to develop small-molecule drugs that can
occupy the binding pocket of CASTOR1 to arginine and still
maintain integrity of the CASTOR1–GATOR2 interaction.
Naturally, arginine analogues are potential drug candidates
for fulfilling the above requirements, namely, to target the
conserved ACT domain of CASTOR1 for the treatment of
diseases related to mTORC1 hyperactivation.

The arginine analogues reported by Saxton et al. (18)
drew our attention. These arginine analogues can be divided
into two groups (Figure 2): those that can disrupt the
CASTOR1–GATOR2 interaction (called the disruption
group) and those that cannot (called the non-disruption
group). The disruption group includes L-arginine, canavanine
(a non-proteinogenic amino acid with the sole difference
from arginine being the replacement of a methylene bridge
in arginine with an oxygen atom in canavanine), and a
carboxy-modified arginine-methyl ester (arginine-OMe). The
non-disruption group includes compounds with alterations to
the guanidinium group, α-amine, or the length of the side
chain (18). In this study, the interactions between these
arginine analogues and CASTOR1 were studied at the
atomic level by molecular dynamics simulation (MD
simulation) in order to provide insights into development of
drug candidates targeting mTORC1 hyperactivation.
Specifically, we aimed to select inhibitors from the non-
disruption group that are sufficiently competitive with
arginine in terms of binding with CASTOR1.

Materials and Methods
Structure preparation. CASTOR1 protein, arginine and arginine
analogues, water and ions were used to construct the simulation
system. The atomic coordinates of CASTOR1 were obtained from
the crystal structure 5I2C, which was an arginine bound human
CASTOR1 structure (20). To obtain the pure CASTOR1 structure,
arginine and water molecules were removed and the missing amino
acids were then complemented by homology modelling. The protein
was then minimized and equilibrated in a water box with salt for
1000 ns by MD simulation. The 10 arginine analogues (Figure 2)
were then prepared in silico. They were drawn by Discovery Studio
2016 client software (BIOVIA, San Diego, CA, USA). They were
then respectively docked to the CASTOR1 structure to start MD
simulation. 

Simulation methods. MD simulation is a powerful method for
studying the kinetics of protein–ligand binding (21, 22). Molecular
docking, MD simulation, and free energy calculation methods were
used in this work. Molecular docking of each small-molecule drug
to the active site of CASTOR1 was performed by AutoDock Vina
(The Scripps Reasearch Institue, San Diego, CA, USA) (23).
Docking simulations not only provide the binding affinity data but
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also obtain the optimized holo-system for the subsequent MD
simulation. Ten simulation boxes were then built to simulate the
MD of the 10 small molecules interacting with CASTOR1. Before
the MD simulation, TIP3P water model (24) was employed to build
the water box and some chlorine or sodium ions were added to
neutralize the system. AMBER16 package (25) was employed to run
all the MD simulations with leaprc.protein.ff14SB (26) as the force
field for the protein, and General Amber Force field (GAFF) (27)
as the force field for the arginine analogues.

Simulation protocol. For each simulation box, energy minimization
was first performed to obtain a low-energy starting conformation
for the subsequent MD simulations. Four-thousand steps of steepest
descent method was first employed followed by six-thousand steps
of conjugate gradient method. The whole system (protein, ligand,
water, ions) was first minimized, followed by minimization on the
solutes (protein and ligand) only. With the Langevin thermostat
applied, the system was heated under canonical ensemble from 0 to
303 K for 300 ps, with the force constant for the harmonic restraint
set at 10.0 kcal mol−1 Å−2. The system was then equilibrated for 10
ns under isothermal-isobaric conditions (with constant pressure of
1.0 bar). The relaxation time for the barostat bath was set at 2.0 ps.
Finally, the production simulation was run for 100 ns under
isothermal-isobaric conditions with periodic boundary conditions.
The time step was set at 2 fs and bonds connected with hydrogen
atoms were constrained using the SHAKE algorithm. The long-
range electrostatics was handled by the particle-mesh Ewald method

(28). The cut-off value for short range interactions was set at 10.0
Å. The production simulation was repeated three times in order to
calculate the average. 

Binding free energy calculation. The free energy of CASTOR1
binding to arginine analogue was calculated by the molecular
mechanics energies combined with the generalized born and surface
area continuum solvation method (29-32). In order to identify the
most crucial residues of CASTOR1 for the binding of the arginine
analogue, the total binding free energy was decomposed into
contributions from individual residues (i=1, 2, …, 342): 

where ∆Gibind were the per-residue contributions, and ∆Gi,jbind were
the residue-pairwise interaction contributions. The calculations were
rendered by the MMPBSA.py.MPI module (33) of AMBER16.

Results

Root mean square deviation (RMSD) and root mean square
fluctuation (RMSF). MD simulations were performed on the
10 arginine analogue systems to reveal the overall dynamical
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Figure 1. Amino acid signalling through cytosolic arginine sensor for mechanistic target of rapamycin complex 1 (mTORC1) subunits (CASTORs),
SESTRINS, and solute carrier family 38 member 9 (SLC38A9) to regulate mTORC1 activity. In particular, binding with CASTOR1 (an arginine
sensor) is required for arginine to activate the mTORC1 pathway. GATOR1/2: GTPase-activating proteins toward RAGS subcomplex 1/2; RHEB:
Ras homolog enriched in brain; LAT1: linker for activation of T-cells.



features of the binding between CASTOR1 and arginine
analogues, and to determine the difference between the
disruption and the non-disruption groups. The calculation of
RMSD can be used to investigate the variation and stability of
protein–drug complex. The disruption group consisted of three
arginine analogues (arginine, canavanine, and arginine-OMe)
and their RMSD results are presented in Figure 3A. It can be
seen that the initial unsteady state lasted about 20 ns before the
atoms stably oscillated around their new positions. For the L-
arginine system, the new position was about 3.75 Å away from
the initial position during 20 to 80 ns, after which the atoms
moved a little further away (4 Å). For the canavanine and
arginine-OMe systems, the new position was about 2.75 Å
away from the initial position during 20 to 80 ns, after which

the atoms also moved a little further away (3 Å). The non-
disruption group consisted of seven arginine analogues and
their RMSD results are presented in Figure 3B. Except D-
arginine, the atoms behaved similarly to those of the disruption
group, oscillating around a new position some 3 Å away from
the initial position. The D-arginine system atoms fluctuated
considerably between 30 ns and 70 ns before finally stabilizing
3.75 Å away from the initial position. This difference appeared
to be attributed to the chiral carbon distinguishing D-arginine
from arginine. These results demonstrate that arginine and D-
arginine exerted much stronger influence on protein
conformation than the other arginine analogues. 

RMSF analysis was then used to estimate the fluctuations
of each amino acid residue over the simulation time. We
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Figure 2. Chemical structures of arginine and its analogues. Differences from arginine are highlighted by dashed circles.
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Figure 3. Time course of root mean square deviation (RMSD) values for the disruption (A) and non-disruption (B) groups of arginine analogues. 



found that most of the systems fluctuated considerably
around amino acids 25-50, 75-100, 150-175, 250-275 and
300-325 (Figure 4). Note that these residues belong to the
domains ACT2 and ACT4, which concurs with the fact that
CASTOR1 bound to arginine through a narrow pocket at the
interface of ACT2 (amino acids 75-156) and ACT4 (amino
acids 259-329) (1). Therefore, the differences of the arginine
analogues from arginine do not alter their approximate
docking site on CASTOR1. However, there was one
significant difference between arginine and its analogues. In
the arginine system, residue Lys213 of CASTOR1 had the
highest RMSF value, indicating its large fluctuation.
Surprisingly, Lys213 does not locate on the interface of
ACT2 and ACT4.
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Table I. Summary of binding free energy for arginine analogues with
cytosolic arginine sensor for mechanistic target of rapamycin complex
1 subunit 1.

                                                      Analogue              ∆Gbind (kcal mol−1)

Disruption group                          Arginine                        −44.6420
                                                     Canavanine                     −33.3440
                                                  Arginine-OMe                   −39.7628
Non-disruption group                   Citrulline                       −31.5504
                                                    Norarginine                     −29.7002
                                                      Ornithine                       −17.0416
                                                   Homoarginine                   −16.0391
                                              Nα-Acetyl-arginine               −36.2542
                                                         Lysine                         −20.1681
                                                     D-Arginine                     −17.0416

Figure 4. Time course of root mean sAquare fluctuation (RMSF) values for the disruption (A) and non-disruption (B) groups of arginine analogues.



Binding free energy analysis. Affinity of enzyme–substrate
binding can be estimated by calculating the free energy of
binding ∆Gbind. In this study, the last 20 ns of the MD
simulation was used to calculate the binding free energy by
using the MM-GBSA method. With the lowest binding free
energy ∆Gbind of −44.6420 kcal mol−1, the arginine system
was the most stable complex among the 10 systems (Table
I). Moreover, the binding of molecules of the disruption
group with CASTOR1 was generally more stable than that
of the non-disruption group, which demonstrates that our
choice of drug candidates would not be abundant.
Nevertheless, Nα-acetyl-arginine in the non-disruption group
had ∆Gbind of −36.2542 kcal mol−1, which was the third

lowest binding free energy and was even lower than that of
canavanine in the disruption group. Therefore, Nα-acetyl-
arginine might be a strong candidate if other measures (such
as hydrogen bonding; see below) are also suitable. Besides
Nα-acetyl-arginine, citrulline and norarginine in the non-
disruption group also had very low binding free energy with
CASTOR1 (around −30 kcal mol−1). Therefore, Nα-acetyl-
arginine, citrulline, and norarginine may be competitors of
arginine and are thus potential drug candidates.

Hydrogen bond (H-bond) analysis. H-Bond analysis is
important in structure-based drug design. In general, the
more H-bonds formed, the more stable the interaction. If an
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inhibitor in the non-disruption group forms significantly
more H-bonds with CASTOR1 than arginine does, then it
would be a good candidate mTORC1 inhibitor. We therefore
performed a comprehensive H-bond analysis of the 10
systems. During the 100 ns MD simulation of each system,
the real-time formation of H-bonds was monitored, and the
results are presented in Figure 5. To comprehend more
intuitively, the structure of the binding pocket formed by the
ligand and its surrounding amino acid residues is illustrated,
with the primary H-bonds indicated by green dashed lines
(Figure 6). 

We first analysed the disruption group. For arginine, its C-
terminus and N-terminus mainly form H-bonds with nearby
CASTOR1 residues such as Ile280, Gly279, Cys278, Val112,
and Ser111. At the other end, the guanidine group interacts
with Gly274, Asp304, Thr300, and Phe301. The molecule
arginine-OMe is derived from arginine by replacement of the
carboxyl group with an ester group, which causes a small
rotation abolishing the H-bond between the C-terminus and
Cys278 and generating a new H-bond between the C-
terminus and Val281. The rotation also abolishes the H-bond
between the N-terminus and Phe301 and generates a new H-
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bond between the N-terminus and Ser299. Canavanine is
derived from arginine by replacing C-5 with an oxygen
atom, which reduces H-bond availability on Ser111 and
Cys278. It is clear that arginine-OMe and canavanine do not
differ significantly from arginine as far as H-bonding is
concerned. The results demonstrate consistency of the MD
simulation and H-bond analysis for the three molecules. 

In the non-disruption group, we first analysed lysine,
ornithine, and citrulline, which are derived from arginine by
replacing the guanidine group with three other groups. This

replacement does not enhance H-bonding because the lost
guanidine group is an important H-bond donor. Given that
the replacements are more thorough in lysine and ornithine
(from the guanidine group to N2H), the two analogues would
have greater loss of H-bonds. Indeed, lysine and ornithine
fail to form important H-bonds with Phe301 and Asp304 due
to the lack of two H-bond-donating nitrogen atoms in the
guanidinium group. For citrulline, the guanidine group is
replaced by a bio-isostere, and the substitution of oxygen for
imidogen provides a new H-bond interaction between the O
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atom and Phe275, at the expense of losing a H-bond with
key residue Ser111 of CASTOR1. Therefore, among the
three molecules, citrulline is much more appropriate as a
drug candidate than the other two because it creates more H-
bonds and its ∆Gbind is low (−31.5504 kcal mol−1).
However, citrulline would not be a strong competitor of
arginine because the total number of H-bonds appears to be
lower. 

We then analysed the remaining four arginine analogues
in the non-disruption group. Homoarginine and norarginine
are structurally related to arginine by elongating and

shortening the side chain of arginine by just one carbon unit,
respectively. The norarginine system might be more stable
than the homoarginine system because norarginine forms
many more H-bonds with CASTOR1 than does
homoarginine (Figure 5). We therefore analysed the H-bonds
of norarginine in more detail and found that they are similar
to those of canavanine. Moreover, the number of H-bonds
appeared to be greater than in the arginine system. For Nα-
acetyl-arginine, the formamide group provides an H-bond
interaction with Val281. For D-arginine, the chiral change
makes NH2 interact with Gly277. More importantly, we
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found that both Nα-acetyl-arginine and D-arginine form more
H-bonds than does the arginine system.

The H-bond analysis revealed that norarginine, Nα-acetyl-
arginine and D-arginine are competitive with arginine in
binding with CASTOR1. Unlike arginine, which disrupts the
CASTOR1–GATOR2 complex, the three analogues belong
to the non-disruption group and are thus potential drug
candidates for mTORC1 inhibition.

Discussion

mTORC1 hyperactivation causes many complex diseases
such as cancer, neurological disorders, metabolic diseases,
and autoimmune diseases. Therefore, mTORC1 inhibition
is a potentially effective therapeutic strategy. mTORC1
inhibition can be realized by maintaining integrity of the
CASTOR1–GATOR2 complex in vivo. Because arginine
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Figure 5. Frequency of hydrogen bond formation between arginine analogues and surrounding amino acid residues of cytosolic arginine sensor for
mechanistic target of rapamycin complex 1 subunit 1. Each row corresponds to a specific hydrogen bond. The columns correspond to time zones
dividing the 100 ns simulation time. The colours indicate the times of H-bond formation: the darker the colour, the more frequent the H-bond formation.
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can bind with CASTOR1 and disrupt the CASTOR1–
GATOR2 complex, it is crucial to prevent arginine from
binding with CASTOR1. An attractive idea is to find
arginine analogues that are as competent as arginine in
binding with CASTOR1 but do not disrupt the CASTOR1–
GATOR2 interaction. 

In this study, we performed MD simulation of the
interaction of arginine analogues with the protein
CASTOR1. The RMSD and RMSF analyses revealed key
features of the atomic level dynamics, which agree with the
structural features of the protein–ligand interaction, thus
demonstrating the validity of our approach. The analyses
also highlighted the differences in binding dynamics among
arginine analogues. The binding free energy calculations
revealed that Nα-acetyl-arginine, citrulline, and norarginine
have sufficient binding affinity with CASTOR1 to compete

with arginine. The H-bond analysis revealed that
norarginine, Nα-acetyl-arginine and L-arginine have
proficient H-bonds that can facilitate their entering the
narrow binding pocket of CASTOR1. We therefore suggest
that norarginine and Nα-acetyl-arginine are the top drug
candidates for testing experimentally and clinically.
Moreover, Nα-acetyl-arginine is the best choice because its
binding affinity with CASTOR1 is very high, only lower
than arginine and arginine-OMe. Importantly, Nα-acetyl-
arginine forms more hydrogen bonds with CASTOR1 than
arginine, which should confer additional advantages in
binding with CASTOR1.  
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Figure 6. Structure of the pocket of binding between arginine analogues and cytosolic arginine sensor for mechanistic target of rapamycin complex
1 subunit 1. The hydrogen bonds are indicated by green dashed lines.
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