
Abstract. Background/Aim: Several links between DNA
replication, pluripotency and development have been recently
identified. The involvement of miRNA in the regulation of cell
cycle events and pluripotency factors has also gained attention.
Materials and Methods: In the present study, we used the
g:Profiler platform to analyze transcription factor binding
sites, miRNA networks and protein-protein interactions to
identify novel links among the aforementioned processes.
Results and Conclusion: A complex circuitry between retinoic
acid signaling, SWI/SNF components, pluripotency factors
including Oct4, Sox2 and Nanog and cell cycle regulators was
identified. It is suggested that the DNA replication inhibitor
geminin plays a central role in this circuitry.

The maintenance of genome stability in living cells is
associated with the tight regulation of DNA replication and
integrity, so that the genome is fully and accurately
replicated during each cell cycle. In eukaryotes, the initial

steps of replication consist of the sequential assembly of pre-
replicative complex (pre-RC) proteins onto the origins of
replication. This process is named replication licensing and
takes place during a restricted window of time from late
mitosis to early G1 (1, 2). The pre-RCs consist of several
proteins, including ORC, Cdt1, Cdc6 and MCM 2-7.
Restriction of replication licensing from the end of mitosis
to early G1 occurs by regulating Cdt1 levels, either by
ubiquitin-mediated degradation of Cdt1 or inhibition by
geminin (3). Geminin plays a central role in preventing DNA
re-replication, a process that can lead to genomic instability
and cancer development (3-5).

Geminin is a small nuclear protein (~25 kDa) that plays a
critical role in cell cycle regulation by inhibiting DNA
replication (6, 7). Geminin binds to and inhibits the DNA
replication factor Cdt1. It is expressed in the S and G2 phases
of the cell cycle and is degraded by the anaphase-promoting
complex during the metaphase-anaphase transition (8).

Geminin has been found to up-regulate transcription of the
geminin gene, suggesting that its expression may be
regulated by a molecular feedback loop (9). Although GMNN
is transcriptionally regulated by E2F family members, the
mechanism by which geminin modulates E2F-mediated
transcriptional regulation of the GMNN gene is not fully
understood (10). Geminin ablation has been reported to
enhance colon and lung carcinogenesis (4) while it has also
been found to be overexpressed in several human cancers
including colon, rectal, oral and breast cancer (11-13).
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Similarly to other pre-RC components, geminin has been
implicated in development and differentiation (14-16). In
Xenopus embryos, it has been shown to induce cell
differentiation contributing to the formation of the neural
tube (17), while it has also been found to regulate the Hox
homeobox proteins, controlling differentiation and
proliferation (18). In another study with embryonic stem
cells, geminin ablation was found to lead to loss of
pluripotency and mesendodermal differentiation (19).

In the present article, we explored the interplay that seems
to link the areas of DNA replication, pluripotency,
development and cancer (14, 15, 20-22). Our main focus was
to identify common regulatory nodes among networks of
pluripotency and oncogenic factors, development and
components of DNA replication. In this direction, we re-
examined recent experimental data, in conjunction with in
silico predictions placing retinoic acid and geminin on the
forefront of this network.

Materials and Methods

The web-based g:GOSt tool from the g:Profiler platform was used
to identify functional information and enriched pathways and
processes from gene lists (23-25). Data for predictions of
transcription factor binding sites were derived from the TRANSFAC
database (26), protein-protein interactions from the BioGRID
database (27) and miRNA target sites from the miRBase database
(28). In all cases, multiple testing correction was performed using
the g:SCS algorithm that is the default and most stringent algorithm
for multiple testing corrections that are not independent of each
other (23). A p-value<0.05 was considered to indicate statistically
significant differences. The organism parameter was set to ‘Homo
sapiens (human)’. The generated data of transcription factor
predictions and protein-protein interactions are depicted in Figure 1
while miRNA-mRNA UTR binding targets were used to construct
an interaction network, and visualized using the open source
software Cytoscape (version 3.3.0, USA) (Figure 2).

Results and Discussion

The present bioinformatic analysis is discussed along with
significant findings from the literature. Our analysis was
divided in several sub-sections in order to examine the
involvement of geminin in specific interactions and signaling,
shedding light to its pivotal role in certain complex regulatory
processes in the mammalian cell machinery.

Geminin, pluripotency factors, and retinoic acid interactions   

Geminin has been reported to be essential for maintaining
Oct4, Sox2 and Nanog expression (19, 29) by antagonizing
Brg1, a chromatin remodeling protein, and indirectly
activating the Sox2 SRR2 enhancer (19); thus, keeping cells
in a pluripotent state. In the chick embryo, there is strong
evidence that it induces expression of the Sox2 SRR1

enhancer as well, through Brm, a subunit of SWI/SNF (30).
Geminin has also been reported to act downstream of
retinoic acid (RA) signaling; during primary neurogenesis,
RA up-regulates the ERF and ETV3L transcriptional
repressors which, in turn, have been reported to restrict
geminin expression (31). 

Bioinformatic analysis results concur with current literature

Evidence for Oct4 and geminin regulation by RAR. In the
present study we used the g:Profiler platform (23, 24) in
order to identify potential shared transcription factor (TF)
binding sites from the TRANSFAC database (26).
Interestingly, the Oct4 and geminin genomic loci were
predicted to have binding sequences for the retinoic acid
receptor (RAR) (p=0.016; g:SCS algorithm) (Figure 1),
which is a TF as well as a nuclear receptor (32).

Retinoic acid (RA) has been reported to inhibit Oct4
expression during embryonic stem (ES) cell differentiation
indirectly, by repressing a cis enhancer element (33), as well
as silencing its promoter (34). However, in these experiments,
the role of RAR in mediating the RA effects was not assessed.

RAR has been reported to modulate the expression of c-
myc as well as several Hox genes (including HoxB4, HoxB7,
HoxA9 and HoxA10) (35), while our recent microarray data
have shown that geminin ablation in the murine
haematopoietic system results in significant RAR up-
regulation (36, 37). Interestingly, RA has also been shown to
suppress Nanog, Oct4, geminin and Hox gene expression;
however, the exact mechanism and whether it acts directly
or indirectly, through RAR and/or other factors, is not known
(Figure 1). More importantly, in a recent study, RA was
reported to induce chromatin remodeling close to the Oct4
and Nanog genes and suppress their expression. This effect
was dependent on a complex of RAR, receptor-interacting
protein 140 (RIP140) and Brm. Using chromatin
immunoprecipitation, the authors showed that Brm replaces
another SWI/SNF subunit, Brg1, in this complex upon RA-
induced repression, in the promoters of the aforementioned
genes (38). In accordance with these data, Flajollet et al. (39)
have also shown that RAR physically interacts with Brg1, as
well as the SMARCD3/BAF606 complex, a core SWI/SNF
subunit, which was eventually identified as a co-activator for
RAR-induced transcription (Figure 1). 

An interesting point is that during neural development,
geminin has also been shown to directly interact with Brg1
and antagonize its activity, in order to maintain the cells in
a multipotent state (29, 40, 41). Adding another layer of
complexity, geminin is also known to interact with Hox
genes, both directly and indirectly, through Polycomb (18,
36) (Figure 1) while BRG1 is known to control Nanog
transcription through histone deacetylation (42) and occupy
the promoters of Oct4, Sox2 and Nanog (43).
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Moreover, RA has been shown to repress canonical and
activate the non-canonical Wnt pathway in ES cells (44) and,
in line with this, there is evidence that geminin expression
is also regulated by Wnt. More specifically, geminin 5’
regulatory sequences and endogenous geminin positively
feedbacked to exogenous Wnt signals in Xenopus laevis
embryos (45) while geminin down-regulation was shown to

enhance Wnt signaling (46). This complex signaling cascade
is summarized in Figure 1.

Evidence for Oct4 and geminin regulation by HNF4 and
COUPTF. The results of the present study predict that, Oct4 and
geminin, apart from RAR, have common binding sequences for
HNF4 (p=0.016; g:SCS algorithm) and COUPTF (p=0.0266;
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Figure 1. The signaling events involving geminin, RA signaling and pluripotency factors. RA modulates Wnt signaling (shown in black). Once inside
the nucleus, it inhibits Nanog, Oct4, geminin (Gmnn) and Hox gene expression (shown in red), however, whether it mediates these effects through
RAR is not known. In turn, RAR modulates Hox and c-myc expression (shown in white) and physically interacts with Brg1 and Smarcd3, while it
may bind to the Oct4 and Gmnn genomic loci (shown in green). RAR and Brm are postulated to induce chromatin remodeling and inhibit Nanog
and Oct4 expression, upon RA induction, while RAR also modulates Hox gene expression, possibly in co-operation with Brg1. Gmnn regulates Hox
expression (shown in white), interacts with Hox and Brg1 proteins and shares bidirectional inhibition with the Wnt signaling pathway (shown in
red). HNF4 is predicted to bind to Oct4 and Gmnn sequences (shown in green), while COUP-TF is known to inhibit Oct4 (shown in red) and is
predicted to bind to Gmnn (shown in green). Oct4 inhibits COUP-TFII (shown in red) and induces expression of mir-302 (shown in blue), which in
turn, inhibits COUPT-TFII (shown in red).



g:SCS algorithm). Common regulation of Oct4 and geminin by
HNF4 seems to be in line with the recent finding that geminin
together with the GATA6 TF can induce the generation of
induced-pluripotent stem cells (iPSCs), without the need for
Oct4 and Sox2 expression (47). Interestingly,  our previous
RNA-seq has shown that upon geminin ablation, HNF4a is
highly up-regulated in the fetal liver (36).

Additionally, there is experimental evidence that COUP-
TF is a ligand-activated nuclear receptor, with RA as a ligand
(48), while other studies had shown that this receptor serves
as a RAR accessory protein (49) and is involved in RA
signaling (50-52). Interestingly, a regulatory network has
also been identified, involving the miRNA miR-302 and the
TFs OCT4 and COUPTFII (53) (Figure 1).

Geminin, miRNAs, GABA signaling and retinoic acid

Recent data have revealed an important role for miRNAs in
pluripotency as well as regulation of the cell cycle. miRNAs
can maintain the pluripotency state (54) or facilitate an exit,
by repressing core pluripotency factors (55, 56). There is
also increasing evidence about their role in the cell cycle and
replicative stress (57, 58). It has been shown, for example,
that the miR-34 family targets the MCM proteins of the pre-
RC complex (59-61).

Geminin and mir-452. Geminin has only recently been
reported to be targeted by miR-571, the only miRNA known

to date to prevent aberrant DNA replication (62). Besides
MiR-571, no other miRNA has been reported to target
geminin or any pre-RC component associated with the
previously described circuitry. Nevertheless, geminin appears
to share a spatiotemporal expression pattern with mir-452.

Firstly, this miRNA is enriched during mouse neural crest
development where it plays a role in the epithelial-
mesenchymal signaling; mir-452 down-regulation affects the
Sonic hedgehog and Fgf8 signaling in the first branchial
arch, through Wnt5a down-regulation, resulting in
craniofacial defects (63). Similarly, a study by Emmett and
O’Shea has shown that geminin knockdown resulted in E9.5
embryos with smaller and abnormally oriented first
branchial arch with reduced Fgf8 expression (64). In line
with this, our previous results have shown that mice lacking
geminin expression have a reduced number of neural crest
cells at E9.5 and 10.5 (65). Another study has reported
similar results by E10.5 (66), whereas, in a reciprocal
approach, FGF8 has been reported to induce geminin
expression (30). Geminin down-regulation has also been
reported to up-regulate Wnt5a in the primitive streak (46)
and has been associated to the epithelial-mesenchymal
transition (EMT), even though there is conflicting evidence
as to whether its down-regulation (46) or overexpression
(64, 67) promotes EMT.

Secondly, mir-452 overexpression has been reported to
down-regulate the pluripotency regulators Klf4, Sox2, Oct4,
Nanog and c-Myc as well as Bmi1, LEF1 and TCF4 in
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Figure 2. Network of miRNA UTR binding targets, predicted using miRBase. miRNAs are depicted in yellow and genomic UTRs in blue. Network
representation was generated by Cytoscape (version 3.3.0, USA). Node distances in the network are not to scale.



glioma cells (68). In hepatocellular carcinoma cells (HCC),
mir-452 directly targeted Sox7, which has been shown to
interact with TCF4. HCC treatment with all-trans retinoic
acid (ATRA) promoted cell differentiation and apoptosis and
suppressed metastasis in mouse models (69). Regarding
geminin, as already mentioned, its expression is required for
maintaining Oct4, Sox2 and Nanog expression in ES cells
(19, 29), while the geminin promoter contains binding sites
for the TCF transcription factor (45). In addition, Caronna et
al. have reported that geminin directly binds and represses
the Lef1 promoter (46).

Thirdly, E2F1 directly activates mir-452 by transactivating
its host gene, GABAA receptor ε, in melanoma cell lines. In
turn, mir-452 induces EMT and down-regulates TXNIP, a
metastasis suppressor (70). Similarly, TXNIP expression
induces p27 (71) which promotes EMT via Twist1 up-
regulation (72). Surprisingly, the geminin promoter has E2F-
responsive sequences and E2F1-4 have been shown to up-
regulate geminin (10) while geminin dysregulation is
associated with increased Twist1 (46, 67).

GABA signaling, geminin and H2AX. As mentioned above,
E2F1 can activate GABAA receptor ε, which in turn induces
mir-452 expression (70). Interestingly, signaling through
GABAA receptors has been reported to be mediated through
H2AX and inhibit the proliferation of ES cell and neural crest
stem cells, independently of differentiation or DNA damage
(73). Similarly, H2AX phosphorylation through GABAA
activation negatively regulates proliferation of neural stem
cells in the subventricular zone (74). γH2AX is well-known
to be induced upon geminin down-regulation, as a result of re-
replication and DNA damage (75, 76). However, it is plausible
that geminin-induced γH2AX can also affect cell proliferation.
So far, geminin is known to affect proliferation-differentiation
decisions through different factors (77-82) but not H2AX.
Nevertheless, inactivation of geminin at E3.5 has been shown
to be lethal due to proliferation defects concurrently with an
increase in γH2AX (83).

Retinoic acid, pluripotency and cell cycle miRNA regulation.
In order to identify mRNA UTR binding targets of miRNAs,
an in silico analysis was carried out using g:Profiler (23, 24),
employing the miRBase database (28). This analysis identified
several miRNAs that were predicted to bind to UTRs of cell
cycle and pluripotency factors, pointing to a common
regulatory mechanism. Within this miRNA network, cell cycle
factors i.e. geminin, MCM2, ORC1 and CDC6 are predicted
to be coregulated with pluripotency factors Nanog, Oct4, Sox2
and Rex1, as well as Brg1, HoxC13 and Klf4. More
specifically, mmu-miR-883b-5p is predicted to bind to Nanog
as well as geminin and Mcm2. According to similar
predictions, mmu-miR-706 binds to Oct4, Orc1 and c-myc.
hsa-miR-367 binds to Nanog as well as Cdc6 and Orc1. hsa-

miR-490-3p binds to Rex1 as well as CDC6 and ORC1. hsa-
miR-148a* binds to c-myc, geminin and ORC1. hsa-miR-212
binds to Brg1, geminin, Mcm2 and c-myc. hsa-let-7b* binds
to Sox2, geminin and CDC6. hsa-miR-423-5p binds to
HoxC13, Brg1 and Mcm2. hsa-miR-452 binds to Klf4, Brg1
and Rex1. All the above including some further predictions
are graphed as a network in Figure 2.

Several of these miRNAs have been experimentally
reported to be modulated by retinoic acid. let-7b, predicted
to bind to Sox2, geminin and CDC6 UTRs, has been found
to be up-regulated in response to all-trans retinoic acid
treatment of the NB4 cells, a human acute promyelocytic
leukemia cell line (84). Similarly, miR-883b-5p, predicted to
bind to Nanog, MCM2 and geminin UTRs, has been found
to be highly up-regulated in J1 mouse ES cells upon RA-
induced differentiation (85), while miR-423, predicted to
bind to HoxC13, Brg1 and MCM2 was up-regulated in the
neuroblast-like SH-SY5Y cells, again, upon RA induction
(86). In the latter cell line, RA has also been reported to up-
regulate miR-628-3p (predicted to bind to the UTRs of
geminin, ORC1 and CDC6) and down-regulate miR-490-3p
(predicted to bind to CDC6, ORC1 and Rex1) (87).

Conclusion

Based on the results of the present study, along with
extensive evidence from the literature, it is evident that there
is a circuitry between RA signaling, SWI/SNF, pluripotency
factors and cell-cycle regulators. The role of geminin in this
circuitry is shown to be of great significance.

While being essential for the maintenance of genome
stability, we have previously shown that geminin acts as a
tumor suppressor in the murine colon and lung cancer model
(4). In addition, it is frequently overexpressed in several
human cancers and a recent study has shown that geminin
overexpression promotes breast cancer metastasis through
FoxO3 deacetylation (88). Geminin is, therefore, involved in
cancer, development and pluripotency. It has also recently
been reported to be targeted by miR-571, the first miRNA to
prevent aberrant DNA replication (62).

Further transcriptional and miRNA interactions could be
examined by molecular dynamic simulations (89-92) and
verified in vitro by chromatin immunoprecipitation, miRNA/
mRNA co-expression and the study of miRNA effects on
target proteins (93), along with analysis of possible
epigenetic changes. A better understanding of this crosstalk
will be invaluable for delineating the cell-cycle links to the
loss of pluripotency, subsequent cell differentiation and
oncogenesis.
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