
Abstract. Background/Aim: Proteomics of invasiveness opens
a window on the complexity of the metastasis-engaged
mechanisms. The extend and types of this complexity require
elucidation. Materials and Methods: Proteomics, immuno -
histochemistry, immunoblotting, network analysis and systems
cancer biology were used to analyse acquisition of invasiveness
by human breast adenocarcinoma cells. Results: We report here
that invasiveness network highlighted the involvement of
hallmarks such as cell proliferation, migration, cell death,
genome stability, immune system regulation and metabolism.
Identified involvement of cell-virus interaction and gene
silencing are potentially novel cancer mechanisms. Identified
6,113 nodes with 11,055 edges affecting 1,085 biological
processes show extensive re-arrangements in cell physiology.
These high numbers are in line with a similar broadness of
networks built with diagnostic signatures approved for clinical
use. Conclusion: Our data emphasize a broad systemic
regulation of invasiveness, and describe the network of this
regulation.

Systemic analysis of omics data has proven mature in
delivering novel insights into mechanisms of carcinogenesis
(1-4). It is accepted that the status of cancer networks is
more informative for understanding tumor growth than the
status of individual genes or proteins (1-4). Even relatively

small changes in the activity or expression of many
individual proteins and genes may result in a significant
cumulative effect on cell physiology. This has led to
development of diagnostic signature which has entered the
clinic (5, 6). Examples of approved clinical applications of
diagnostic signatures are Mammaprint Dx and OncoType Dx
diagnostic panels (7-9). 

The success of diagnostic panels is further developed by
implementation of a network analysis (1, 3, 10). The network
analysis allows a comprehensive overview of all engaged
components and mechanisms, e.g. proteins, genes, functional
and physical interactions. Proteomics, genomics,
transcriptomics, metabolomics and electronic health records
provide rich sources of data. An understanding that
tumorigenesis is the result of coordinated action of many
regulatory processes promotes development of tools for
systemic analysis, which enhances quality and biological
relevance of conclusions (11, 12). Tumorigenesis involves
hundreds of components, and is not anymore a chain of
changes in few tumor suppressors or/and oncogenes (6, 13,
14). Reported networks of thousands of components and
connections represent steps of the tumorigenic
transformation of cells or responses to cancer regulators (15).
Complexity of the cancer networks raises a question
regarding how much of the cellular physiology has to
change, when cells acquire invasiveness.

Metastasis is the main cause of lethality in breast cancer.
Invasion of malignant cells from the site of a primary tumor
into surrounding tissue is the first step toward a metastatic
disease (13, 16, 17). Development of markers to predict
transformation of cancer from a localized into a spread disease
has been an area of intensive research. Many markers and
panels have been identified, including reports of clinical
applicability of some of them (8, 9, 18-24). These reports
provide valuable insights into breast carcinogenesis, with
description of specific pathways. However, a comprehensive
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analysis of all regulatory processes engaged in invasiveness
has not been reported. Prediction of a large complexity of
regulatory mechanisms engaged in acquisition of invasiveness
comes from reports that more than one classical hallmark may
be affected in one step of carcinogenesis (25-27). 

Proteomics is the only technology allowing a comprehensive
and simultaneous analysis of thousands of proteins (28, 29).
Proteome profiles have been reported for human breast
epithelial cells at different steps of the carcinogenic
transformation and anti-cancer drug treatments (25-28).
Proteome profiling of tumors and normal tissues have also been
reported (21-24). However, a comprehensive coverage of all
cellular proteins is still a challenge. Top-down and bottom-up
proteomics are two main approaches. Separation in a two-
dimensional gel (2-DE) or ionization in a mass spectrometer
allow identification of intact proteins in the top-down approach,
whereas LC-MS/MS uses peptides of digested proteins as
analytes in the bottom-up approach (30, 31). Separation of intact
proteins allows detection of protein forms as they are in a cell,
and therefore is preferable for representing a proteome, as
compared to detection of peptides by LC-MS/MS. Because of
technical limitations none of the two proteomic approaches
deliver a full and comprehensive coverage of the proteome (30,
31). To compensate the lack of full coverage, proteomics may
use systems biology to extract regulatory components and
mechanisms reflected by the identified proteins. Integration of
proteomics with different omics and targeted studies by systems
biology has been widely employed (10, 25, 28, 29, 32-35). 

Introduction of diagnostic signatures unveiled complexity
of engaged mechanisms, and calls for their systemic analysis.
The question remains about the description of these systemic
mechanisms. Which regulatory processes are involved? What
are the relations between these regulatory processes? Do they
have a clinical impact? We report here a proteome profiling
and systemic analysis of acquisition of invasiveness by human
breast adenocarcinoma MCF7 cells and comparison with
aggressive breast adenocarcinoma MDA-MB-231 cells. We
show that the invasiveness is associated with mechanisms of
relevance to established and two potentially novel cancer
hallmarks. The invasiveness network complexity is high, but
it is comparable to networks associated with other
carcinogenesis mechanisms and diagnostic signatures. This is
a significant broadening of the number and types of the
invasiveness-related regulatory processes.

Materials and Methods
Cells and reagents. Human breast adenocarcinoma MCF7 and
MDA-MB-231 cells were obtained from the American Type Culture
Collection (ATCC; Manassas, VA, USA). MCF7 are tumorigenic
but not metastatic cells, while MDA-MB-231 are aggressive and
metastatic cells. Cells were regularly tested for contaminations, e.g.
mycoplasma. Antibodies to HNF4α (sc-6556), BRMS1 (sc-101219)
and actin (sc-376421) were obtained from Santa Cruz

Biotechnology (Dallas, TX, USA). Antibodies to cyclin G1 (PA5-
36050) and β-catenin-like protein 1 (PA5-21112) were obtained
from Invitrogen (by Sedeer Medical, Doha, Qatar). 

Generation of an isogenic model of invasiveness. We used collagen
gel invasion assay to select invasive isogenic clones of MCF7 cells.
Cells invading a collagen type I layer were selected. Collagen type
1 from rat tails was obtained from Sigma-Aldrich (C3867;
Darmstadt, Germany). Non-invasive cells were removed by washing
with cell culture medium. Collagen-invading cells were collected
and expanded as single-cell clones in culture plates under substrate-
anchored conditions, and passed again through the collagen
invasiveness-assay until highly invasive cell clones were generated.
Two cycles of selection of collagen-invading cells were performed.

Proteome profiling. For proteome profiling, two-dimensional gel
electrophoresis, gel image analysis and MALDI TOF mass
spectrometry were used, as described earlier (36). In brief, cells were
solubilized in urea-containing buffer for isoelectrofocusing. The first
dimension isoelectrofocusing was performed in IPGDry strips, linear,
pH 3-10, 18 cm in an IPGPhor instrument (Amersham Biosciences,
Uppsala, Sweden). The second dimension SDS-PAGE was performed
in Dalt Six (Amersham Biosciences). We generated seven 10% SDS-
PAGE large-size gels for each MCF7 and MCFc46 and six large-size
gels for MDA-MB-231 cells, and stained them with silver to detect
proteins. Protein spots were analyzed using dedicated software (Image
Master Platinum v6.0, GE Healthcare, Uppsala, Sweden). Statistical
significance of reproducibility of spot expression in 2D gels and
differences in expression were evaluated by using the ImageMaster
2D Platinum Version 6.0 software. Proteins whose expression was
changed by more than 50% up or down between MCF7, MCF7c46
and MDA-MB-231 were considered for identification. Student’s t-test
was used to ensure the statistical significance of the observed changes
in expression (p<0.05). 

Protein identification. Protein spots were excised from the gels,
destained and subjected to in-gel digestion with trypsin (modified,
sequence grade porcine, Promega, Madison, WI, USA), as described
earlier (36). Tryptic peptides were concentrated and desalted by C18
ZipTip’s. Peptides were eluted with 65% acetonitrile, containing the
matrix α-cyano-4-hydroxycinnamic acid, applied directly onto the metal
target and analyzed by MALDI TOF MS on a MALDI R instrument
(Micromass/Waters, Manchester, UK). Embedded software (MassLinx)
was used to collect and process mass spectra. Peptide spectra were
internally calibrated using autolytic peptides from trypsin (842.51,
1045.56, and 2211.10 Da). To identify proteins, we performed searches
in the NCBInr sequence database using the ProFound search engine
(http://65.219.84.5/service/prowl/profound.html). One miscut, alkylation
and partial oxidation of methionine were allowed. Search parameters
were set to no limitations of pI and “mammalian” was selected for
species search. Significance of the identification was evaluated
according to the probability value, Z value and sequence coverage. 

Systemic analysis. Protein names were translated into gene ontology
(GO) terms. Functional and pathway analysis was performed using
Cytoscape (cytoscape.org) (37). BioGrid database was used for
building networks, and BiNGO was used for building of networks
of biological processes. We used tools for union and intersection of
networks, available in the Cytoscape platform as plug-in
applications. Fischer’s exact test was used to calculate a p-value
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determining the network connectivity. The p-values for each
network can be retrieved from the file deposited at BioModels at
ebi.ac.uk, identifier MODEL1904060001.

For analysis of clinically relevant observations, we used open-
source clinical datasets and tools, e.g. The Cancer Proteome Atlas
(https://www.tcpaportal.org), Genomics Data Commons of the
National Cancer Institute (https://portal.gdc.cancer.gov/) and 
NCBI databases relevant to proteins, genetics and genome
(https://www.ncbi.nlm.nih.gov/search).
Immunoblotting. For immunoblotting, cell lysates were resolved on
SDS polyacrylamide gels and transferred onto Hybond P
membranes (Amersham Biosciences, Piscataway, NJ, USA).
Membranes were blocked with 5% (v/v) BSA for one hour and then
incubated with a primary antibody against target proteins with
dilutions, as recommended by the manufacturer, and followed by
incubation with an HRP-conjugated secondary antibody (GE
Healthcare, Uppsala, Sweden). The following antibodies were used:
anti-HNF4α (c-19, sc-6556), anti-BRMS1 (4H7, sc-101219) and
anti-actin (H-6, sc-376421) all from Santa Cruz biotechnology Inc.
The proteins were visualized using Western Blotting Luminol
Reagents (Santa Cruz Biotechnology Inc).

Invasiveness assay. Membrane was covered with matrigel, and 1,000
cells were seeded in wells of the 96 well-plate ChemoTx® chemotaxis
system (cat. no. #116-8; NeuroProbe, Gaithersburg, MD, USA). After
24 hours, the membrane was fixed with 4% paraformaldehyde. The
non-invaded cells were removed by cotton swab from the upper
chamber of the well. Membrane was stained with 0.5% crystal violet
and cells were counted under light microscope.

Immunohistochemistry. Breast cancer BC081120d tissue microarrays
(TMA) containing 99 cases of invasive ductal carcinoma, 1
intraductal carcinoma, 9 adjacent normal breast tissue, 1 cancer
adjacent breast tissue, single core per case were obtained from US
Biomax (Rockville, MD, USA). Sections were deparaffinized, and
antigen unmasking solution citrate-based solution (H-3300) was
used for antigen retrieval. Vectastain ABC kit (PK-6200) and DAB
peroxidase substrate kit (SK-4100) were used for staining. Primary
antibodies to cyclin G1 (PA5-36050) and β-catenin-like protein 1
(PA5-21112) were obtained from Invitrogen. After staining, TMA
were mounted with a cover oil and cover glasses. Images were taken
in a microscope. Intensity of staining, frequency of staining of
tumor cells and stromal elements, and histological structure of the
samples, including histology of tumor cells were evaluated.
Immunohistochemistry staining data were analyzed in relation to the
clinical information about the studied cases, e.g. TNM.

Results 
Generation of clones of invasive MCF7 cells. Collagen
invasiveness assay was used to collect clones of MCF7 cells,
which acquired enhanced invasiveness into a collagen layer.
Two cycles of selection were performed. The first cycle
consisted of collection of the collagen-invading cells and
their expansion. We collected 10 highly invasive clones for
further expansion; this number was due to sufficiency of no
more than 5 clones for the second cycle of selection. After
expansion of the selected clones, the second cycle of
selection of highly collagen-invasive cells was performed

with the cells collected after the first cycle. After the second
cycle, we collected another 10 highly invasive clones for a
validation study using a membrane invasiveness assay. For
our proteomics study, we selected the clone MCF7c46, as
this clone was among the most invasive and stable in
maintaining its invasive phenotype during the long-term
culturing and experiments, i.e. more than 5 months of the
monitoring time before freezing the cells (Figure 1A). MDA-
MB-231 cells were also used for our proteomics study, as
these cells are metastatic and have reported rates of
invasiveness 300-500 cells/1,000 cells, comparable to the
rate of MCF7c46 clone shown in Figure 1A. 

Proteome profiling and validation. 2D gels were generated
for MCF7, MCF7c46 and MDA-MB-231 cells. More than
2,000 protein spots were reproducibly detected in 2D gels
for each tested cell line. Significance of reproducible
detection was at p<0.05, with analysis of 7 large-size gels
each for MCF7 and MCF7c46, and 6 large-size gels for
MDA-MB-231 cells (Figure 1B). The 2D gels had size of
18cm strip for the first dimension and up to 20 cm separation
in the second dimension. This size is sufficient for
reproducible separation of more than 5,000 intact proteins,
and detection of 2,000 – 2,500 spots is well within the
saturation limit of separation (Figure 1B). 

The overall patterns of protein separations in 2D gels of
the tested cells were similar, which is in line with the same
tissue origin of the cells, i.e. from breast epithelium (Figure
1B). Gel image analysis was performed to detect protein
spots differentially expressed between MCF7c46 and MCF7,
MCF7 and MDA-MB-231, and MCF7c46 and MDA-MB-
231. These three combinations allowed extraction of proteins
which are invasiveness-specific, and exclude proteins
differentially expressed due to differences between the cell
lines and due to invasiveness-unrelated changes upon
selection of the MCF7c46 clone.

We identified 84 spots corresponding to proteins whose
expression changed upon acquisition of the invasive phenotype
by MCF7 cells (parental MCF7 vs. invasive MCF7c46), 152
proteins with different expression between invasive MCF7c46
and metastatic MDA-MB-231, and 197 proteins with different
expression between non-invasive parental MCF7 and MDA-
MB-231 cells (https://www.researchgate.net/publication/33523
4512_SupplInf_Mousa_etal_CGP) To verify the proteomic
data, we monitored expression of HNF4α and BRMS1 in
MCF7, MCF7c46 and MDA-MB-231 cells, and observed
correlations of proteomic data and immunoblotting results
(Figure 2A). 

To validate our data with clinical samples, we performed
an immunohistochemistry study of tissue microarrays
containing invasive ductal carcinoma histological sections.
We explored expression of 2 of the identified proteins,
cyclin G1 and β-catenin-like protein 1 (Figure 2B-E). A
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significant (predominantly high) expression of β-catenin-
like protein 1 (CTNNBL1) and cyclin G1 was observed in
invasive ductal carcinomas of breast (Figure 2B-E).
Expression levels of CTNNBL1in 62 cases and cyclin G1
in 68 cases, and examples of immunohistochemistry staining
are shown in Figure 2B-E. Proteomic data show that both
proteins were upregulated upon acquisition of invasiveness.
Predominantly high expression of these proteins in clinical
samples of invasive ductal carcinomas confirmed the
proteomics results. 

The approach used here with proteome profiling of non-
invasive MCF7, invasive clone MCF7c46, and metastatic
MDA-MB-231 cells ensured high probability of identification
of proteins associated with acquisition of the invasive
phenotype by the cells, and excluded most of the invasiveness-
unrelated changes. The identified proteins were subjected to a
systemic analysis by building networks for the three sets of
identified proteins (Figure 1B), followed by the network
analysis, as described in the next section. The validation study
(Figure 2) confirmed proteomics data for tested proteins.
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Figure 1. Generation of proteome profile of acquisition of invasiveness by MCF7 human breast epithelial cells. A) Generation of invasive MCF7c46
cells. The clones MCF7c42 and MCF7c46 cells show higher invasive activity, compared to their parental MCF7 cells. Quantification of invading
cells is shown in the graph. Images of membranes with stained cells (purple) are shown. Parental cells (MCF7) and clones (MCF7c42 and
MCF7c46) are indicated. B) Images of representative 2D gels with indication of numbers of identified proteins. Representative 2D gels generated
with non-invasive MCF7, invasive MCF7c46 and metastatic MDA-MB-231 cells are shown. Numbers of protein spots reproducibly (with p<0.05)
detected in 2D gels are indicated in the gel images. Directions of isoelectric focusing (IEF) and SDS-PAGE are indicated on the top and on the
side of the left gel image. Numbers of proteins identified as differentially expressed between the annotated by double arrows pairs are shown on
the double arrows. List of identified proteins are presented in Supplementary Tables I-SIII. 
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Figure 2. Validation studies confirmed the proteomic data. A) Expression of BRMS1 and HNF4α in MCF7, MCF7c46 and MDA-MB-231 cells.
Immunoblotting confirmed expression pattern of these proteins detected in the proteome profiling. For proteomics entries for BRMS1 see #64 in
Supplementary Table I and #157 in the Supplementary Table II, and for HNF4α see #51. (+) indicates increased expression. Actin immunoblotting
was performed for control of loading. B) Immunohistochemistry of β-catenin-like protein 1. Tissue microarray of 62 cases of invasive ductal
carcinomas was used for evaluation of β-catenin-like protein 1 expression. Intensity of staining of tumor cells (low, middle and high) in relation to
T1, T2, T3 and T4 of TNM classification of cases is presented as numbers of cases. C) Representative images of low (left), middle (middle) and
high (right) staining of tissues for expression of β-catenin-like protein 1 are shown. D) Immunohistochemistry of cyclin G1. Tissue microarray of
68 cases of invasive ductal carcinomas was used for evaluation of cyclin G1 expression. Intensity of staining of tumor cells (low, middle and high)
in relation to T1, T2, T3 and T4 of TNM classification of cases is presented as numbers of cases. E) Representative images of low (left), middle
(middle) and high (right) staining of tissues for expression of cyclin G1 are shown.



Systemic analysis of invasiveness-specific proteome signature.
To identify invasiveness-specific proteome changes, we built
networks with the 3 datasets, i.e. MCF7 vs. MCF7c46, MCF7
vs. MDA-MB-231 and MCF7c46 vs. MDA-MB-231 pairs
(https://www.researchgate.net/publication/335234512_SupplI
nf_Mousa_etal_CGP; file deposited at BioModels at
ebi.ac.uk, identifier MODEL1904060001). The networks
were built in Cytoscape using the BioGrid database. These
networks were used to detect an intersection between MCF7
vs. MCF7c46 and MCF7 vs. MDA-MB-231 networks. This
intersection would deliver nodes affected upon acquisition of
invasiveness and metastatic phenotypes and reflect cell type
differences. From this intersection network we subtracted
nodes of the MCF7c46 vs. MDA-MB-231 network. The
resulting network would have nodes and connections (species
and edges) representing invasiveness, and not cell origin
(Figure 3A). The network showed clustered nodes and a
number of nodes without direct connections to the large
single network. The 6,113 nodes and 11,055 edges of the
network represent 1,085 biological processes connected by
1,883 edges (Figure 3B; see MODEL1906040001 at ebi.ac.uk
BioModels). This large size of the network is expected, as the
identified by us invasiveness-related proteins would reflect
regulatory processes retrieved by Cytoscape from an
extensive database of physical interactions and functional
dependencies of proteins and genes, discovered, validated and
deposited by other researchers. The size of the network shows
that the acquisition of invasiveness is not confined to few
pathways only but engages many regulatory mechanisms. 

Analysis of 1,085 biological processes and nodes in these
processes allowed an evaluation of the complexity of engaged
regulatory mechanisms. The established cancer hallmarks
were represented in the network, e.g. immortalization,
genome instability, cell proliferation, cell death, immune
system, cellular energetics and metabolism, and invasion and
metastasis (Figure 3C). A representation of regulation of
angiogenesis was observed via detection of angiogenesis-
regulating signaling pathways and developmental processes
engaging angiogenesis (Figure 3D and E). Observation of
cell-virus interactions suggests that virus integration and virus
defense mechanisms are components of the invasiveness
regulatory mechanisms (Figure 3D). Role of oncoviruses in
human tumorigenesis is well-documented (38). 

Analysis of intracellular regulatory processes showed the
involvement of transcription, translation, transport and gene
silencing mechanisms (Figure 3E). Of these mechanisms,
gene silencing by short RNAs is gaining a recognition as
cancer-regulating mechanism (39).

More than the half of the processes represent biological
functions on the levels of inter-cellular regulations or
processes involving different signaling pathways. List of
these processes is the source for further in silico analysis,
and is available as an original .cys file of a Cytoscape

session at BioModels, identifier MODEL1904060001. If
transcription, transport and translation are expected to be
affected, mechanisms of gene silencing and virus-host
interaction emerge as novel ways to regulate carcinogenesis.

Representation of invasiveness nodes in clinical observations.
Our systemic analysis predicts involvement of many proteins
and genes (Figure 3). If these predictions are correct, we
should be able to observe that the identified nodes are affected
in cancer. Our network analysis suggests that the changes of
the nodes may be on the level of protein or gene expression,
mutations and activities. We evaluated the potential clinical
impact of the identified invasiveness nodes by using open-
source clinical datasets, e.g. The Cancer Proteome Atlas
(https://www.tcpaportal.org), Genomics Data Commons of the
National Cancer Institute (https://portal.gdc.cancer.gov/) and
NCBI databases relevant to proteins, genetics and genome
(https://www.ncbi.nlm.nih.gov/search). These databases
contain data about mutations and expression of genes and
proteins in different cancers. As a control, we generated
random gene lists using http://molbiotools.com/randomgeneset
generator.html tool, and run it in parallel with our list of
nodes. If identified by us invasiveness nodes would be
retrieved as affected in breast cancer, that would support the
clinical relevance of these nodes. 

We focused here on nodes involved in cell motility, as a
validation example. The validation example would show
whether our approach delivers clinically relevant data. We
observed that the motility nodes have a strong record of
publications linking them to breast cancer (https://www.research
gate.net/publication/335234512_SupplInf_Mousa_etal_CGP),
confirming relevance of the nodes to breast tumorigenesis.
When we compared name-by-name our motility nodes to the
motility genes reported earlier, we observed only 4 common
nodes/genes (Figure 4A). However, the similarity was in
many times higher when affected biological processes were
compared with processes represented by the diagnostic
signatures (Figure 5). The reason for this difference may be
in the ways the lists were produced. Our list was generated
from the invasiveness-related network, and has a strong
component of a functional impact, whereas the motility
signature-genes (Supplementary Table IV) were selected as
individual species in a correlation study without taking into
account their functional activities. Similar differences in low
overlaps in name-by-name comparisons and large overlaps
of represented functional processes were observed for
reported diagnostic signatures (25). This suggests that system
biology approach is more informative in analysis of data as
compared to comparing lists name-by-name.

Validation of predicted by systems biology activities may be
performed in many ways. One way is an experimental
interrogation of each node in a network. However, with
thousands of nodes, it is an unrealistic task. Accepted and
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Figure 3. Continued
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Figure 3. Systemic analysis of the proteome profiling. A) Network of species affected by the identified invasiveness-relevant proteins shows presence
of clusters and a large number of involved nodes, e.g. 6,113 nodes. B) Biological processes represented in the invasiveness network are shown.
Relations between these processes are presented as a network. Size of the nodes correlates with the number of species engaged in that biological
process. Original data of the networks shown in (A) and (B) are in files deposited at BioModels at ebi.ac.uk, identifier MODEL1906040001, with
statistic values for each process/node. Distribution of biological processes of relevance to currently accepted cancer hallmarks (C), biological
processes not yet included in the cancer hallmarks (D), and relevant to intracellular regulatory mechanisms (E) are shown.



realistic is a validation study of selected nodes. We did a
validation study for 4 nodes, i.e. BRMS1, HNF4α, CTNNBL1
and CCNG1, and confirmed our proteomic data (Figure 2).
Another way of validation is the use of large and rich resources
deposited in various databases, which may describe relations
of a node of interest to breast cancer. We performed searches
for representation of the motility sub-set of invasiveness nodes
with 1) published reports of involvement in breast cancer, and
2) frequencies of mutations of genes in breast cancer. 

Search of publications confirmed that the identified nodes
are relevant to breast cancer (Supplementary Tables V-VIII).
The majority of motility nodes have been broadly studied in
the context of breast cancer. Comparison with a similar search
for established gene signature of cell motility (Supplementary
Table VI) showed 32 genes (94% of all genes) with more than
5 references. Out of the reported by us motility nodes, 61
(67%) have more than 5 references. Only 5 nodes were not
retrieved with searches for “breast” & “cancer”. However,
these nodes were retrieved with PubMed searches for links to
“cancer”, and showed relevance to testicular, lung, prostate,
lung, pancreatic, ovarian cancers. Thus, these motility nodes
do have records linking them to carcinogenesis. 

Searches of publications reflecting breast cancer engagement
of cell-virus interaction and gene silencing nodes
(Supplementary Tables VII and VIII) support involvement of
these nodes in breast cancer. Of 35 cell-virus interaction nodes,
31 were reported as relevant to breast cancer. The 4 other nodes
were reported as involved in regulations of hepatitis C virus,
Epstein-Barr virus, p53-dependent and virus-dependent
transcription. Therefore, all 35 cell-virus interaction nodes
relevant to invasiveness regulatory network have also been
reported as cancer-relevant. The similar observation was made
for the gene silencing invasiveness-relevant nodes. Twenty-
seven nodes have been reported in the context of breast cancer.
Other eight nodes were retrieved as involved in cancer-relevant
regulatory processes, e.g. processing of Epstein-Barr and
hepatitis C viruses, hepatocellular carcinoma, leukemia,
glioblastoma, stem cells differentiation and leiomyoma. Thus,
retrieved publications support involvement of reported here
nodes in cancer.

In addition to reviewing publications, a search for cancer-
relevant mutations in the genes of invasiveness nodes, and
modulations of expression as genes and/or proteins may
support clinical relevance. A search of the Cancer Proteome
Atlas database with the motility nodes retrieved 13 nodes
with recorded correlations between expression of the
corresponding proteins and survival of breast cancer patients
(Figure 4A, nodes in bold). We also searched a breast cancer
database CGD for mutations of the nodes genes. Mutation
rates of our motility nodes were found to be similar to the
rates of the confirmed motility genes (Figure 4B).
Comparison to the mutation rates of random lists of genes
showed up to 2x higher mutation frequency for the motility

nodes as compared to the random gene list. Search for
mutation rates of genes of nodes involved in cell-virus
interactions and gene silencing sub-sets of the invasiveness
nodes showed that most of the rates were below 2% (Figure
4C and D). The mutation rates for all sets of nodes (Figure
4B, C and D) were not sufficiently high to claim a strong
contribution of mutations to carcinogenesis. Literature
reports, on the other side, support involvement of these
nodes in cancer. For example, the mutation rate of CDK6
gene is below 1.0%, but there are more than 300 publications
linking this node to breast cancer, including activity of
CDK6 (Figure 4C; Supplementary Table VII). Therefore, the
identified by us nodes may be involved in breast
tumorigenesis on different levels, as genes or proteins.
Systems biology and network analysis allow combination
different types of data, e.g. mutagenesis, expression and
activities. This merging of different data is crucial for
supporting involvement of identified nodes in tumorigenesis,
including proteins identified by proteomics and nodes
identified by the network analysis. 

The network effect of observed invasiveness nodes is
supported by the comparison of biological processes affected
by the invasiveness nodes and the reported gene and protein
signatures (Figure 5). For this comparison, we built networks
for diagnostic signatures (file deposited at BioModels at
ebi.ac.uk, identifier MODEL1904060001). Mammaprint Dx,
OncoType Dx, Invasiveness Gene Signature and PAM50
signature are approved for use in diagnosis of breast cancer
(8, 9, 19, 20). There are also reported proteome signatures
relevant to metastasis and aggressiveness of breast cancer
(21-24). We built networks with the signatures’ genes or
proteins and extracted biological processes affected by these
genes or proteins. Then, we compared these biological
processes with the processes associated with our
invasiveness network. We observed a similarity in quantity
and types of affected biological processes (Figure 5). Our
network shows engagement of 1,085 biological processes.
The networks of the diagnostic gene-signatures indicated
involvement of more than 1,000 biological processes for
gene-based signatures (from 1,103 to 1,353). The networks
of reported proteomic signatures showed engagement in the
range of 1,000 processes for proteomic signatures of 152, 49
and 44 proteins. Only TNBC 11-protein signature resulted in
559 processes (Figure 5). Regulation of proliferation, cell
differentiation, motility, cell death, various metabolic and
signaling pathways are examples of similar processes (file
deposited at BioModels at ebi.ac.uk, identifier
MODEL1904060001). This analysis of our data and reported
earlier signatures suggest that the high complexity of
engaged mechanisms is a general phenomenon associated
with tumorigenesis. This makes cancer from a disease of few
oncogenes and tumor suppressors into a systemic disease
involving hundreds of components. 
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Discussion

Cell signaling is a network. The size and shape of this
network may include hundreds to thousands of components
(1-4, 10, 12, 15, 16). When cells acquire an invasive
phenotype, it is expected that the affected regulatory
processes would be complex. After all, the cells may have to

modify cell-cell and cell-substrate interactions, proliferation,
death, migration and differentiation status (13-16). All these
activities constitute established cancer hallmarks. The
reported herein proteome profiling and systemic analysis
describes this complexity of invasiveness for human breast
adenocarcinoma cells. We observed that this complexity
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covers all established cancer hallmarks and adds two more
processes, i.e. gene silencing and mechanisms engaged in
cell-virus interactions.

Engaging cancer hallmarks in metastasis is expected, but the
scale of this engagement has been under investigation (5, 40).
Our data show that the cellular transformation into an invasive
phenotype is a large-scale process. The number of engaged
biological processes is 1,085 (Figure 4), showing that the inputs
to these processes are multiple. The multiplicity of inputs is a
feature of a robust signaling. When there are many triggers, the
probability that the cells would respond is higher, as compared

to a single input which may be compensated by the network
signaling (12-14, 41). As an example, we observed 24 biological
processes directly linked to invasiveness and metastasis (Figure
3C). Ten more biological processes were involved in the
regulation of cell-cell and cell-matrix interactions (Figure 3D).
These 34 processes ensure a robust response. 

Our data do not contest validity of oncogenes and tumor
suppressors as strong drivers of carcinogenesis. We suggest
that the regulatory mechanisms are not passive passengers,
but are active participants affecting cancer drivers. These
mechanisms are often identical to normal regulatory
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Figure 4. Nodes engaged in regulation of cells motility and correlations with clinical outputs. A) Intersection of the nodes involved in cell motility
and identified in this work with the set of genes with compelling evidences of involvement in cell motility is shown (40). GO terms in bold annotate
nodes which showed correlations with clinical data on survival of breast cancer patients. Survival data were retrieved from the TCPA portal
(https://www.tcpaportal.org/), and contain data of 436 cases. B) Frequencies of mutations of genes of the motility nodes (upper graph) and previously
reported motility genes (lower graph) (40) are shown. Top 20 mutated nodes are annotated. C) Frequencies of mutations of genes of the cell-virus
interaction nodes. Top 20 nodes are annotated. D) Frequencies of mutations of genes of the gene silencing nodes. Top 16 nodes are annotated. Data
for B, C and D were retrieved from GDC database (https://portal.gdc.cancer.gov/). The top nodes with highest mutation frequencies are shown. 



processes, but are tricked to support malignant growth (1-3,
41). The described here invasiveness-relevant mechanisms
have been reported as strong regulators of cellular physiology.
For example, the nodes regulating cell motility represent
potent regulators of transcription, (de)differentiation, cell
cycle and cytoskeletal regulation (Figure 4A). 

Viruses are known to affect tumorigenesis (38). It is
expected that tumor cells would develop mechanisms to
interact with viruses. Gene silencing by microRNAs is
another regulatory mechanism engaged in carcinogenesis
(39, 42-44). The observations of virus-cell interaction and
gene silencing mechanisms as part of a cell motility relevant
to invasiveness (Figure 4C and D), adds another layer of
complexity to the regulation of invasiveness. 

Reported diagnostic protein and gene signatures provide an
opportunity to cross-validate our results. When we validated
our data with networks built with Mammaprint Dx, OncoType
Dx, IGS and PAM50 genes signatures and with 4 proteomics
signatures, the overlap in biological processes was both
quantitative (Figure 5) and qualitative (files of signatures
deposited at BioModels at ebi.ac.uk, identifier MODEL
1904060001). The signatures contain 70 (Mammaprint Dx,;
6,366 nodes), 21 (OncoTarget Dx,; 3,259 nodes), 186 (IGS;
11,047 nodes), and 50 (PAM50; 2,402 nodes) genes, and 152
(9,190 nodes), 49 (4,810 nodes), 11 (TNBC signature; 845
nodes) and 44 (4,315 nodes) proteins (Figure 5; see also the
file deposited at BioModels at ebi.ac.uk, identifier MODEL

1904060001) (8, 9, 19-24). The reported signatures show
engagement of a high number of biological processes (Figure
5). This is a strong indication that each step of tumorigenesis
affects profoundly cellular physiology, where thousands of
cancer “drivers”, “modulators” and “passengers” are equally
important for transforming a normal cell into a cancerous one.
Our results illustrate the case of acquisition of invasiveness by
breast adenocarcinoma cells, by describing the network of the
invasiveness, e.g. nodes and connections. 

Supplementary Information 
Supplementary Tables I-VIII can be accessed online at
https://www.researchgate.net/publication/335234512_SupplInf_Mou
sa_etal_CGP and the file of the networks is deposited at BioModels
at ebi.ac.uk (identifier MODEL1904060001).
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Figure 5. Invasiveness-network shows engagement of biological processes at a scale comparable to the numbers of biological processes engaged
by the protein and gene diagnostic signatures. Numbers of biological processes reported here: invasiveness network (1,085 processes), diagnostic
gene-signatures Mammaprint Dx (1,194 processes), OncoType Dx (1,103 processes), Invasiveness Gene Signature (1,140 processes), PAM50 (1,353
processes), and proteomics signatures of invasive cells (152 proteins; 1,076 processes), triple-negative breast cancer (11 proteins; 559 processes),
grading signature (49 proteins; 954 processes), and aggressiveness signature (44 proteins; 1,203 processes). Note engagement of large number of
biological processes by the signatures, identified by systemic analysis (see file of the networks, which is deposited ta BioModels at ebi.ac.uk, identifier
MODEL1904060001).
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