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ABSTRACT
Background: Three-dimensional optical (3DO) body scanning has
been proposed for automatic anthropometry. However, conventional
measurements fail to capture detailed body shape. More sophisti-
cated shape features could better indicate health status.
Objectives: The objectives were to predict DXA total and regional
body composition, serum lipid and diabetes markers, and functional
strength from 3DO body scans using statistical shape modeling.
Methods: Healthy adults underwent whole-body 3DO and DXA
scans, blood tests, and strength assessments in the Shape Up! Adults
cross-sectional observational study. Principal component analysis
was performed on registered 3DO scans. Stepwise linear regressions
were performed to estimate body composition, serum biomarkers,
and strength using 3DO principal components (PCs). 3DO model
accuracy was compared with simple anthropometric models and
precision was compared with DXA.
Results: This analysis included 407 subjects. Eleven PCs for each
sex captured 95% of body shape variance. 3DO body composition
accuracy to DXA was: fat mass R2 = 0.88 male, 0.93 female;
visceral fat mass R2 = 0.67 male, 0.75 female. 3DO body fat test-
retest precision was: root mean squared error = 0.81 kg male,
0.66 kg female. 3DO visceral fat was as precise (%CV = 7.4
for males, 6.8 for females) as DXA (%CV = 6.8 for males, 7.4
for females). Multiple 3DO PCs were significantly correlated with
serum HDL cholesterol, triglycerides, glucose, insulin, and HOMA-
IR, independent of simple anthropometrics. 3DO PCs improved
prediction of isometric knee strength (combined model R2 = 0.67
male, 0.59 female; anthropometrics-only model R2 = 0.34 male, 0.24
female).
Conclusions: 3DO body shape PCs predict body composition with
good accuracy and precision comparable to existing methods. 3DO
PCs improve prediction of serum lipid and diabetes markers, and
functional strength measurements. The safety and accessibility of

3DO scanning make it appropriate for monitoring individual body
composition, and metabolic health and functional strength in epi-
demiological settings. This trial was registered at clinicaltrials.gov
as NCT03637855. Am J Clin Nutr 2019;110:1316–1326.
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Introduction
Excess adiposity plays a central role in the development

of type 2 diabetes, cardiovascular disease, and several cancers
(1–3). Although obesity is defined using BMI, a shape index,
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anthropometric and regional body composition measurements
such as waist circumference (WC), waist-to-hip ratio, and
visceral adipose tissue have been shown to be better predictors
of metabolic disease and mortality risk (4, 5). These findings
indicate that more detailed descriptors of body shape and
composition might offer more accurate predictors of metabolic
and disease risk factors.

Clinicians and investigators have long used various manual
anthropometric measurements to estimate body fat mass and
fat-free mass (FFM) as predictors of health risks. A typical
assessment might include manually measured height and weight;
waist, trunk, and extremity circumferences; and multiple skin-
fold thicknesses (6). In practice, however, conventional manual
anthropometric assessment requires well-trained technicians to
produce precise results. Further, these methods are limited to
linear and circumferential measurements that fail to capture most
details of a person’s shape.

Recently, 3-dimensional (3D) laser and optical (3DO) scanners
have been investigated as an alternative to manual anthropometry
for health assessment (7). 3DO scanners are becoming widely
available in clinics, recreational facilities, and even in home
settings. Lengths, girths, and circumferences can be extracted
automatically from 3DO scans, allowing direct comparison with
the manual measurements traditionally used to quantify human
body shape and size. Several studies have investigated the use
of 3DO body shape to estimate body composition (7–12). 3DO
scanners capture high-resolution 3D body shape details, but the
practical simplification of 3DO body scan data into a few coarse
anthropometrics comparable to tape measurements still ignores
in-depth shape information. We hypothesized that more detailed
3D body shape features from advanced statistical shape models
of 3DO scans could provide superior estimates of metabolic risk.
Statistical shape modeling using principal component analysis
(PCA), a technique for dimensionality reduction, can capture
complex shape features of highly detailed 3D meshes using a
limited number of principal components (PCs). This technique
is ideal for describing nuanced 3D body shape in a low number
of features.

The primary aim of this study was to derive PC features
of body shape from 3DO scans of a diverse sample of adults
in terms of sex, age, BMI, and race/ethnicity, and evaluate
the association of these shape measures to total and regional
body composition, blood biomarkers, and functional strength.
We hypothesized that PC-derived 3D body shape features
would more accurately predict these somatic, biochemical, and
strength disease-risk markers than conventional models using
conventional anthropometric measurements. A secondary aim
of this study was to quantify the test-retest precision of body
composition estimates from 3DO PCA compared with DXA.

Methods

Experimental design

This analysis was part of Shape Up! Adults, an ongo-
ing stratified cross-sectional observational study (NIH R01
DK109008, clinicaltrials.gov ID NCT03637855). Participants
underwent whole-body 3DO scans, DXA for body composition
assessment, blood serum tests for diabetes and cardiovascular

disease biomarkers, as well as handgrip and thigh strength tests.
Statistical body shape models were built from the 3DO scans. 3D
shape features from these models were then used to predict body
composition, serum biomarkers, and strength measurements. The
approaches used to test the main hypothesis and secondary aim
are presented in detail in the following sections.

Participants

Shape Up! Adults study participants were stratified by age
(18–40 y, 40–60 y, >60 y), ethnicity (non-Hispanic white, non-
Hispanic black, Hispanic, Asian, and native Hawaiian or Pacific
Islander), sex, BMI [(in kg/m3) <18, 18–25, 25–30, >30], and
geographic location (San Francisco, CA; Baton Rouge, LA; or
Honolulu, HI). Participants in Shape Up! Adults were excluded
if they could not stand without aid for 2 min, could not lie flat
for 10 min without movement, had metal objects in their body,
or had had significant body shape–altering procedures (e.g., lipo-
suction, amputations, breast augmentation or reduction). Female
participants were also excluded if pregnant or breastfeeding. All
participants were examined at either the University of California,
San Francisco (UCSF), Clinical and Translational Science
Institute, the Pennington Biomedical Research Center (PBRC),
or the University of Hawaii Cancer Center (UHCC) Body
Composition Laboratory. The study protocol was approved by
the institutional review boards at each site. Participants included
in the present sample were recruited between October 2015 and
September 2018. All participants gave written informed consent.

DXA scans

Each participant underwent 2 whole-body DXA scans, with
repositioning, on either a Horizon/A system (Hologic, Inc) at
UCSF or a Discovery/A system (Hologic, Inc) at PBRC or
UHCC. Participants were scanned according to the manufac-
turer’s guidelines. All DXA scans were analyzed at UHCC by
a single certified technologist using Hologic Apex version 5.6
with the National Health and Nutrition Examination Survey
Body Composition Analysis calibration option disabled. As per
International Society for Clinical Densitometry guidelines, offset
scanning was performed for subjects too wide to fit in the DXA
scan field. DXA systems were calibrated according to standard
Hologic procedures (13). In addition, Hologic spine and whole-
body phantoms were circulated between study sites and it was
determined that no correction factors were needed between the
densitometers used in the study. Body composition measure-
ments from DXA included total body mass, total and regional
(trunk, arms, legs) fat mass, bone mineral content, and FFM.

Whole-body 3DO scanning

Each participant underwent two 3DO whole-body surface
scans, with repositioning, on a Fit3D ProScanner (Fit3D, Inc).
Participants followed a standard positioning protocol and wore
skin-tight undergarments to minimize the effects of clothing
on observed body shape. The ProScanner uses ≥1 light-coding
depth sensors to capture 3D shape as the participant rotates 360◦

on the scanner platform. Each scan took approximately 40 s
to complete. The iterative closest point algorithm was used to
spatially align point clouds captured by the sensor as the subject
rotated (14). The final point cloud was converted to a triangle
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mesh with approximately 300,000 vertices and 900,000 faces
representing the human body shape. All 3DO scan data were
transferred from the measurement sites and stored securely at
UHCC prior to statistical analysis. All downstream analyses
were performed on the reconstructed 3D meshes provided by
Fit3D in Wavefront .obj format.

Blood serum biomarkers

A 40-mL whole blood sample was collected from each
participant after an 8-h overnight fast, except for water and
prescription medicines. Blood samples were placed on ice and
processed within 4 h into plasma, serum, whole blood, and buffy
coat components, following which they were stored at −80◦C at
each study site until analysis. Biochemical analysis of all blood
samples was performed at PBRC. Serum chemistry panels were
assayed through the use of a DXC600 instrument (Beckman
Coulter, Inc). LDL cholesterol was calculated as:

[total cholesterol] − [HDL cholesterol] − [triglycerides/5]

(all values in milligrams per deciliter) (1)

as described by Friedewald et al. (15). Insulin was measured by
immunoassay on an Immulite 2000 platform (Siemens Corp).
Measurements of fasting glucose, glycated hemoglobin (HbA1c),
total cholesterol, LDL and HDL cholesterol, serum triglycerides,
and insulin were used in the present analysis.

Strength assessments

Isokinetic and isometric right leg strength were measured
using a Biodex System 4 (Biodex Medical Systems Inc) or
HUMAC NORM (Computer Sports Medicine Inc) dynamometer.
Before measurements, participants walked on a treadmill to
warm up for ≤5 min. They were then fastened into the
dynamometer system with a seatbelt for measurement of right
leg strength through knee extension and flexion. The participants
then practised at an endurance of 50% of maximal effort for
isokinetic and isometric testing. For isometric measurements the
dynamometer was fixed at 60◦ from straight (full extension). For
the isokinetic measurement, resistance was set at 60◦/s. After
practising each measurement, participants performed a set of
5 repetitions at maximal effort. Peak torque was recorded as
the maximum torque (in newton-meters) achieved during the
repetitions.

Handgrip strength for the right and left arms was measured
with a handgrip dynamometer (JAMAR 5030J1; Sammons
Preston Rolyan). Participants positioned their elbow at a 90◦

angle and were asked to squeeze the dynamometer as hard as
they could, then encouraged to squeeze even harder. The strength
of each hand was measured in kilograms, and the average of 3
measurements was taken.

Statistical shape modeling

Statistical shape models of 3DO body shape were constructed
using a standardized 60,000-vertex body template that was
warped to fit each participant’s 3DO scan using the methods
of Allen et al. (16). This registration process ensures vertex
correspondence to specific anatomical locations across the

dataset, enabling direct 3DO body shape comparison across
the whole sample. To initialize registration, 75 markers were
manually placed on physiological landmarks defined by the
Civilian American and European Surface Anthropometry Re-
source Project (17). Marker placement was performed by an
exercise physiologist using MeshLab version 1.3.2 (Consiglio
Nazionale delle Ricerche). The template marker locations were
transformed to align with the participant mesh markers, then the
remaining template mesh vertices were warped to the participant
mesh surface using a minimization process that preserved overall
smoothness (16). After registration, PCA was performed to
produce a statistical shape model that captured >95% of shape
variation in the 60,000-vertex template space with only a small
number of PCs. Each detailed 3DO body scan could then be
represented in the 3DO PC space as a short vector of weights.

Statistical analysis

The average male and female body shapes in the sample
were generated and visualized. Pearson correlation coefficients
were calculated between body composition, blood marker
measurements, strength, and the PCs that capture 95% of shape
variance in each of the male and female models. Body shapes
representing high (+3 SDs) and low (−3 SDs) states for each of
these PCs were generated to illustrate the shape changes captured
by each component. P values <0.05 were considered statistically
significant with a secondary threshold at P < 0.001.

Stepwise linear regressions were performed to derive linear
models for each of the outcome body composition, blood marker,
and strength variables. Separate models were derived for each
sex. Four different types of models were created: 1) “3D PC-
only” models that included the first fifteen 3D body shape
model PCs as candidate variables; 2) “Anthro-only” models that
included height, weight, and linear circumference measurements
extracted by the 3DO scanner software along with ethnicity and
age as candidate variables; 3) “3D PC + Anthro” models that
included both 3D PC and anthropometric candidate variables;
and 4) “Simple Anthro” models for body composition only that
used the same variables as described by Ng et al. (10). Variable
selection was performed subject to minimization of the Schwarz–
Bayesian information criterion. Fivefold cross-validation was
performed to protect against overfitting. Model accuracies were
assessed using coefficient of determinations (R2) and root mean
squared errors (RMSEs). Differences in model accuracy by
ethnic group were tested for significance using ANOVA tests on
residuals calculated across the whole sample.

Measurement precision was quantified using RMSE and CV
expressed as a percentage.

PCA and mesh processing were performed using Python
version 3.6 (Python Software Foundation) and R version 3.3.3 (R
Core Team). Regression analysis was performed in SAS version
9.4 (SAS Institute).

Results

Participants

Four hundred and fifty-six healthy adults of diverse race and
ethnicity had completed the study at the time of this analysis.
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TABLE 1 Subject characteristics1

Males Females

Parameter Units n Mean SD Min. Max. n Mean SD Min. Max.

Age y 177 43.5 16.5 18.0 79.0 230 46.1 16.4 18.0 75.0
Height cm 177 175.3 6.9 154.7 190.2 229 162.2 6.9 144.2 180.5
Weight kg 177 85.5 20.3 40.6 173.5 228 70.3 19.3 35.4 152.7
BMI kg/m2 177 27.7 5.9 17.0 52.6 228 26.7 7.0 14.2 51.9
Waist circ. cm 170 92.1 14.4 59.5 145.9 222 85.2 15.4 55.0 150.0
Hip circ. cm 170 103.3 11.9 79.0 155.9 221 104.8 13.3 75.9 158.0
Arm circ. cm 175 34.9 5.0 24.6 50.8 222 31.5 5.4 19.9 53.0
Thigh circ. cm 175 58.9 6.1 44.3 82.2 222 60.0 7.6 40.3 85.3
Waist-to-hip ratio 170 0.89 0.07 0.74 1.03 221 0.81 0.08 0.66 1.06
Waist-to-height ratio 170 0.53 0.08 0.39 0.81 222 0.53 0.10 0.35 0.88
Fat mass kg 177 19.8 9.8 6.1 66.4 230 24.8 11.3 6.3 72.7
Lean mass kg 177 65.8 12.8 33.7 108.2 230 45.5 9.2 28.6 80.4
Percentage fat % 177 22.2 6.5 9.4 48.2 230 33.9 7.4 12.9 48.6
FMI kg/m2 177 6.4 3.1 2.0 21.0 230 9.4 4.3 2.0 24.7
FFMI kg/m2 177 21.3 3.5 14.1 35.8 230 17.3 3.2 10.9 29.1
Visceral fat mass kg 177 0.47 0.28 0.17 1.62 230 0.43 0.28 0.04 1.45
HbA1c % 164 5.4 0.6 4.3 8.9 215 5.4 0.5 4.1 8.9
Total cholesterol mg/dL 165 179.4 41.1 8.9 316.0 217 193.8 39.2 107.0 315.0
LDL cholesterol mg/dL 163 106.2 31.7 44.2 212.4 215 112.8 32.1 37.1 209.8
HDL cholesterol mg/dL 165 54.6 13.8 17.6 99.1 217 63.8 15.8 32.3 118.4
Triglycerides mg/dL 163 93.2 58.6 29.0 383.0 215 86.2 50.1 23.0 360.0
Glucose mg/dL 164 93.3 14.7 19.0 172.0 215 91.9 15.5 65.0 187.0
Insulin mIU/L 144 12.0 9.9 2.0 47.7 191 10.1 6.7 2.1 29.8
HOMA-IR G × I 144 2.9 2.8 0.4 17.5 191 2.4 1.9 0.4 10.2
Handgrip left kg 142 40.8 11.7 11.7 79.7 189 22.6 7.7 2.7 52.7
Handgrip right kg 149 40.8 11.4 12.0 79.7 193 23.3 7.5 6.0 46.0
Isometric knee ext. N m 144 155.2 66.4 24.8 351.7 162 87.9 35.3 26.4 193.0
Isokinetic knee ext. N m 141 160.4 70.6 2.9 339.2 187 88.8 36.5 8.7 222.7

1Circ., circumference; ext., extension; FMI, fat mass index; FFMI, fat-free mass index; G, glucose; HbA1c, glycated hemoglobin; I, insulin; max., maximum; min., minimum.

Three participants dropped out of the study during data collec-
tion. Nineteen participants were excluded for invalid DXA scans
(9 with body parts off the scan field, 9 with high-density artifacts
in the scan area, and 1 with movement artifacts). Twenty-seven
participants were excluded for invalid 3DO scans (14 did not
wear appropriate attire, 8 manufacturer errors, 3 template fitting
errors, and 2 had movement artifacts). After these exclusions,
407 participants were included for analysis. Summary charac-
teristics and counts of the sample participants are presented in
Table 1. Subject counts by ethnicity are presented in Table 2. A
CONSORT flow diagram detailing study enrollment is provided
as Supplemental Figure 1.

Shape models

PCA on registered 3DO scans produced unique statistical
shape models for males and females. Eleven components

TABLE 2 Subject ethnicity distribution

Males (n = 177) Females (n = 230)

Ethnicity Count % Count %

Asian 41 23.2 54 23.5
Black 44 24.9 57 24.8
Hispanic 15 8.5 17 7.4
NHOPI1 4 2.3 5 2.2
White 73 41.2 97 42.2

1NHOPI, native Hawaiian or Pacific Islander.

captured 95% of the variance in each of the male and female
body shape models. The mean body shapes of males and females
in the sample are shown in Figure 1. Visualizations of the
PC modes of body shape variation (±3 SDs for each from
the average shape) are shown in Figures 2 and 3 for males
and females, respectively. Univariate correlations of PCs to
body composition, blood marker, and strength measurements
are presented in Tables 3 and 4 for males and females,
respectively.

For men, PC3 was significantly correlated (P < 0.001)
with all 12 body composition measures presented as well as
the glucose and lipid metabolism biomarkers. PC8 and PC9
significantly correlated (P < 0.05) with 7 of the 12 body
composition measures. Similarly, PC3 for women correlated
strongly (P < 0.001) with all 12 body composition measures and
several of the serum glucose and lipid metabolism biomarkers.
PC1 generally captured overall body size, and PC3 captured
thinness/thickness independent of height in both males and
females as shown in Figures 2 and 3.

Prediction equations

Linear models selected from the stepwise regressions are
shown in Table 5. The variables selected in each 3D PC-only
model are provided. For body composition variables of total
body, we directly regressed to predict fat mass, then used that
equation along with scale weight and measured height to produce
estimates of FFM, fat mass index, and FFM index. R2 and
RMSE metrics for each model are shown. Full equations for the
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Anthro-only models are provided in Supplemental Tables 1
and 2.

Body composition estimation models using 3D PCs only,
anthropometric measurements only, or a combination of the 2
variable types exhibited largely comparable R2 values, though
RMSE values were generally lowest for the combined models.
R2 values for the 3D PC-only models ranged from 0.65 for
male percentage fat to 0.93 for male FFM and female fat
mass. By comparison, the corresponding values from the Ng
2016 conventional anthropometric model had R2 values of 0.42,
0.91, and 0.94, respectively. Interestingly, across all model
types, R2 values for prediction of fat mass were higher for
females than for males whereas those for prediction of FFM
were higher for males than females. This observation suggests
that on average lean components of body mass are stronger
contributors to body shape in males than in females, and that
fat mass is a stronger contributor to body shape in females
than males. 3D PC and anthropometric models for visceral fat
notably outperformed (higher R2 and lower RMSE) the Ng 2016
conventional anthropometric models for visceral fat in both males
and females. Similar trends were observed for prediction of fat
and FFM in the arm and leg regions.

Blood serum biomarkers were predicted with moderate
strength by 3D PCs and anthropometric measurements. For
both male and female shape models, PC3 was selected in
regression models for serum HbA1c, HDL cholesterol, triglyc-
erides, glucose, insulin, and HOMA-IR. Body shape PCs and
anthropometric estimates did not significantly predict LDL
cholesterol. Insulin and HOMA-IR models achieved R2 values
between 0.36 and 0.43 with 3–5 PCs of body shape selected as
input variables.

Handgrip and leg strength measurements were most accurately
estimated by combined 3D PC + Anthro models. Models for

FIGURE 1 The average body shape of males and females in the sample.
These 60,000-vertex 3-dimensional meshes are the sex-specific means of the
registered meshes fitted to participant scans.

FIGURE 2 The first 11 principal components (PCs) that captured 95% of
shape variance in males. Each component displays −3 SD to the left and +3
SD to the right.

isometric knee extension strength achieved an R2 value of 0.67
for males and 0.59 for females. By comparison, the equivalent
Anthro-only models achieved an R2 value of 0.34 for males and
0.24 for females. The 3D PC + Anthro models for right handgrip
strength achieved an R2 of 0.44 for males and 0.45 for females,
whereas equivalent Anthro-only models achieved an R2 of 0.33
for males and 0.37 for females.

Residual analysis to detect significant differences in model
performance across ethnicities identified one 3D PC-only model
(isokinetic knee extension strength in males, P = 0.02) and three
3D PC + Anthro models (trunk lean mass in males, P = 0.04;
handgrip right in males, P = 0.05; isokinetic knee extension
strength in males, P = 0.002).

Repeatability

Test-retest precision was calculated for body composition
measurements from duplicate DXA scans and duplicate 3DO
scans using the 3D PC-only models from Table 5. Subjects were
excluded from this analysis if any of their 2 DXA scans or two
3DO scans were flagged to have artifacts. Precision results for
male and female models are presented in Table 6. RMSE in
total body percentage fat was 1.01 percentage units and 0.99
percentage units for males and females, respectively. Across both
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TABLE 3 Correlation of male body shape principal components (PCs) to anthropometric, body composition, blood, and strength metrics (n = 177)1

Parameter PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Age –0.19 –0.25∗ 0.32∗ –0.20
Height –0.95∗
Weight –0.47∗ 0.22 –0.79∗ 0.22
BMI –0.20 0.27∗ –0.88∗ 0.23
Waist circ. –0.32∗ 0.24 –0.84∗ 0.17 0.20
Hip circ. –0.34∗ 0.22 –0.79∗ 0.19 –0.17
Arm circ. –0.33∗ 0.24 –0.72∗ 0.27∗
Thigh circ. –0.36∗ 0.16 –0.65∗ 0.31∗
WHR –0.52∗ –0.21 0.22
WHtR 0.28∗ –0.87∗ 0.16 0.23
Fat mass –0.23 0.20 –0.77∗ 0.20 –0.17 0.21 0.19
Lean mass –0.57∗ 0.19 –0.65∗ 0.20
Percentage fat 0.16 –0.58∗ 0.32∗ 0.28∗
FMI 0.21 –0.79∗ 0.19 –0.16 0.24 0.20
FFMI –0.25∗ 0.26∗ –0.77∗ 0.22
Visceral fat 0.19 –0.55∗ –0.18 0.27∗ 0.16
Trunk fat –0.20 0.24 –0.79∗ 0.16 0.23 0.18
Trunk lean –0.55∗ 0.20 –0.70∗ 0.20
Arm fat –0.23 0.20 –0.75∗ 0.22 0.19 0.19
Arm lean –0.50∗ 0.22 –0.54∗ 0.17 0.17
Leg fat –0.24 –0.66∗ 0.22 –0.20 0.16 0.19
Leg lean –0.58∗ –0.58∗ 0.21
HbA1c 0.16 –0.32∗ 0.20
Total cholesterol
LDL cholesterol –0.16
HDL cholesterol 0.36∗ 0.16
Triglycerides –0.16 –0.20 –0.19
Glucose –0.21 –0.20 0.17
Insulin 0.31∗ –0.53∗
HOMA-IR 0.25 –0.52∗
Handgrip left –0.34∗ –0.27 –0.33∗ –0.20
Handgrip right –0.31∗ –0.26 –0.26
Isometric knee

extension
–0.50∗ –0.39∗ –0.31∗ –0.23 –0.19

Isokinetic knee
extension

–0.38∗ –0.21 0.33∗ 0.21 –0.26 –0.25

1Only significant correlations are shown (P < 0.05 or ∗P < 0.001). Circ., circumference; FFM, fat-free mass; FFMI, fat-free mass index; HbA1c,
glycated hemoglobin; WHR, waist-to-hip ratio; WHtR, waist-to-height ratio.

sexes, FFM measurements had lower CVs than corresponding fat
mass measurements at both total body and regional levels, owing
to the greater quantity of FFM compared with fat mass in the
body. 3DO PCA measurement precision metrics were generally
about 1 to 3 times the magnitude of corresponding DXA precision
metrics.

Discussion
In this work we used advanced statistical shape modeling to

derive PCs that compactly describe detailed body shape with
data acquired using a 3DO whole-body scanner. We sought to
determine whether these PCs could be used to better predict body
composition, disease risk, and functional strength markers over
existing conventional anthropometric models.

Across whole-body and regional body composition mea-
surements, statistical shape analysis met or outperformed the
previous best method of body composition assessment from 3DO
scans that uses conventional anthropometrics-based prediction
models. Coefficients of determination for the 3D PC fat mass

index prediction model (R2: 0.87 males; R2: 0.93 females)
compare favorably with both skinfold anthropometry (SFA)
and bioelectrical impedance analysis (BIA), as described in
a 2013 study by Hronek et al. (18) comparing DXA with
SFA (R2: 0.86) and DXA with BIA (R2: 0.88). No significant
differences in accuracy across ethnicities were found for any
3D PC-only body composition or blood biomarker models. This
suggests that 3D PC features could be useful for estimating
metabolic risk without the need for ethnicity-specific adjust-
ments.

Test-retest precision metrics of body composition estimates
from this technique are about 1 to 3 times greater than those of
DXA. This indicates that 3DO estimates of body composition
can be somewhat less precise than DXA, but the high safety
and accessibility of 3D body scanning make this technology
amenable to repeat measurements that can reduce measurement
error. Notably, precision of visceral fat measurements from 3DO
shape models (CV: 7.4% for males, 6.8% for females) was
comparable to that of DXA (CV: 6.8% for males, 7.4% for
females). The DXA visceral fat precision in the present study



1322 Ng et al.

TABLE 4 Correlation of female body shape principal components (PCs) to anthropometric, body composition, blood, and strength metrics (n = 230)1

Parameter PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Age 0.16 –0.18 –0.30∗ –0.16
Height –0.95∗ 0.14
Weight –0.20 –0.94∗ 0.13
BMI 0.14 –0.96∗ 0.15
Waist circ. 0.19 –0.93∗ 0.18
Hip circ. –0.15 –0.91∗
Arm circ. –0.92∗
Thigh circ. –0.16 –0.85∗
WHR 0.24∗ 0.23∗ –0.50∗ 0.18
WHtR 0.23∗ 0.20 –0.90∗ 0.19
Fat mass –0.94∗
Lean mass –0.36∗ –0.82∗ 0.14 0.15
Percentage fat 0.17 –0.75∗ 0.17
FMI –0.93∗
FFMI 0.14 –0.87∗ 0.17
Visceral fat 0.17 –0.76∗
Trunk fat 0.18 –0.93∗ 0.15
Trunk lean –0.34∗ –0.83∗ –0.14
Arm fat 0.13 –0.82∗
Arm lean –0.30∗ –0.71∗ 0.17
Leg fat –0.14 –0.84∗
Leg lean –0.38∗ –0.76∗ 0.13 0.19
HbA1c –0.23∗ –0.19 –0.22
Total cholesterol
LDL cholesterol
HDL cholesterol 0.33∗ –0.16 –0.14
Triglycerides 0.14 –0.21 0.16
Glucose –0.29∗ 0.14 –0.14
Insulin –0.55∗
HOMA-IR 0.16 –0.52∗
Handgrip left –0.34∗ –0.24∗ 0.26∗ –0.32∗
Handgrip right –0.43∗ –0.24∗ 0.17 0.24∗ –0.20
Isometric knee extension -0.44∗ -0.27∗ 0.33∗ 0.35∗ -0.35∗ 0.21
Isokinetic knee extension -0.34∗ -0.30∗ 0.19 0.21 -0.16 0.21

1Only significant correlations are shown (P < 0.05 or ∗P ≤ 0.001). Circ., circumference; FFM, fat-free mass; FFMI, fat-free mass index; HbA1c,
glycated hemoglobin; WHR, waist-to-hip ratio; WHtR, waist-to-height ratio.

using Hologic densitometers was similar to the precision of CV:
7.3% reported by Ergun et al. (19) on a GE iDXA.

Several 3D body shape PCs were significantly correlated with
HDL cholesterol, triglycerides, glucose, insulin, and HOMA-
IR. This suggests significant associations between body shape
and diabetes risk and metabolic state. It is known that WC
significantly outperforms BMI for prediction of hypertension,
dyslipidemia, and metabolic syndrome (20), and that waist-to-
height ratio further outperforms both BMI and WC for several
cardiometabolic risk factors (21). These findings indicate that
more detailed descriptors of body shape can offer additional
information about metabolic risk. Detailed 3D body shape PCs
could be useful for direct risk classification in epidemiological
studies, and for future investigation to identify more sophisticated
shape phenotypes associated with metabolic disease.

LDL cholesterol was significantly correlated with only 1 male
3D body shape PC and with no female shape PCs. This result
agrees with prior studies showing a general lack of significant
correlation between LDL cholesterol concentrations and simple
body shape metrics such as BMI or WC (22, 23).

3DO PCs significantly improved the accuracy of leg strength
prediction compared with models using anthropometrics alone.

This indicates that detailed body shape features capture informa-
tion about functional ability and quality of body mass beyond
conventional anthropometric measurements. It can be seen in
Figure 3 that female PC11, selected in the regression models for
both leg strength measurements, captures information about body
posture. The −3SD image for this PC appears slouched whereas
the +3SD image has a more erect posture. This is an example of
a recognizable body shape cue associated with functional ability.
Ethnicity-specific strength models could be warranted in males,
because 3D PC + Anthro model performance for isokinetic knee
extension and right handgrip strength varied significantly with
ethnicity.

Previous studies on clinical application of 3DO body scanners
report precise measurements of body shape and composition.
Lee et al. (8) reported accurate prediction of total fat mass
(training R2: 0.95; RMSE: 3.39 kg) using 1 length and 2
volumes from a custom-built 3DO scanner, along with sex.
Ng et al. (10) demonstrated accurate prediction of total body
composition (fat mass validation R2: 0.76; RMSE: 3.72 kg; FFM
validation R2: 0.85; RMSE: 3.14 kg) using a combination of
4 length and volume measurements from a commercial 3DO
scanner, along with sex as a covariate. These previous studies
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FIGURE 3 The first 11 principal components (PCs) that captured 95% of
shape variance in females. Each component displays −3 SD to the left and +3
SD to the right.

have been limited to linear, circumferential, volumetric, and
surface area measurements extracted from scans using scanner
manufacturers’ proprietary, often nonstandard, algorithms. This
limitation can lead to incompatibility between datasets and
fragile statistical models that apply only to specific scanner
hardware/software combinations. By contrast, our study used
the entire space of detailed 3D human shape to create PCA-
based body shape models. This technique eliminates the need
for inconsistent anthropometric measures for prediction of health
status. With proper preprocessing and registration, 3DO body
shape models can be agnostic to scanning technology, allowing
comparison across a wide array of 3DO body scanning systems.
Further studies could use more advanced supervised statistical
shape modeling techniques to investigate health predictions that
require more localized or fine-grained shape characteristics not
captured by PCA, such as those caused by edema or cellulite.

This study had several limitations. The study population was
restricted to adults, in whom body shape is relatively stable
over time. Children, by contrast, undergo skeletal and overall
body shape changes as they grow and thus the adult shape
models derived here might not accurately interpret the unique
body shapes and shape dynamics of children. Shape variation
of children is an active area of research, and child-specific body
shape models are currently under development in the Shape
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TABLE 6 Test-retest precision of body composition predictions from 3DO scans and DXA scans1

3DO PCA DXA

Male Female Male Female

n %CV RMSE n %CV RMSE n %CV RMSE n %CV RMSE

FMI, kg/m2 119 4.37 0.266 162 2.68 0.250 119 1.37 0.082 162 0.91 0.085
FFMI, kg/m2 119 1.26 0.266 162 1.45 0.250 119 0.50 0.105 162 0.58 0.099
Fat mass, kg 119 4.30 0.809 162 2.67 0.655 119 1.36 0.251 162 0.91 0.223
FFM, kg 119 1.24 0.809 162 1.45 0.655 119 0.51 0.332 162 0.57 0.259
Percentage fat, % 119 4.69 1.010 162 2.92 0.987 119 — 0.277 162 — 0.308
Visceral fat mass, kg 119 7.40 0.033 162 6.78 0.028 119 6.80 0.030 162 7.40 0.031
Trunk fat mass, kg 119 5.14 0.466 165 2.88 0.321 119 2.66 0.239 165 2.00 0.222
Trunk FFM, kg 119 1.37 0.426 165 1.61 0.361 119 0.97 0.302 165 1.10 0.245
Arms fat mass, kg 119 4.76 0.054 161 3.45 0.055 119 3.02 0.034 161 2.73 0.043
Arms FFM, kg 119 3.11 0.135 162 2.45 0.059 119 1.64 0.072 162 1.82 0.043
Legs fat mass, kg 121 6.41 0.207 161 6.53 0.299 121 2.36 0.074 161 1.38 0.064
Legs FFM, kg 119 2.43 0.260 162 2.10 0.155 119 1.15 0.124 162 1.12 0.082

1Repeat 3DO and DXA scans were each performed with repositioning. FFM, fat-free mass; FFMI, fat-free mass index; FMI, fat mass index; PCA,
principal component analysis; RMSE, root mean squared error; 3DO, 3-dimensional optical.

Up! Kids study (NIH R01DK111698). Furthermore, the adults
in this cross-sectional study were recruited as healthy. It is
not known if these models would apply to individuals with
conditions that impact body composition. Some examples include
cancer-related cachexia, wasting, sarcopenia, heart failure and
associated edemas, and skeletal deformities related to arthritis
and osteoporosis. Follow-up studies to assess the scalability
of these models to special populations, and cohort studies to
determine the efficacy of longitudinal disease risk estimation, are
warranted.

Another limitation of this study was the requirement for
manual landmark placement on points difficult to identify without
palpation. This is a laborious, time-consuming process that could
have introduced noise in the statistical shape models. We are
addressing this limitation by investigating automated template
registration techniques as well as the use of physical landmarks
on the body at poor precision points. We also did not remove
differences in pose that introduce unwanted variance in the body
shape models. We are investigating deformable 3D body pose
models to remove pose differences in future models (24–26).
Validation of a robust landmark-free registration method would
automate the analysis process and enable broad implementation
of these modeling techniques. 3D body scans could be captured
and analyzed using these rich shape features automatically in
minutes with minimal need for manual data review, thereby
greatly expanding accessibility of these models.

In conclusion, PCA of 3DO scans provides compact shape
features that describe detailed individual body shape. These
3DO PCs can be used to predict body composition with greater
accuracy than traditional anthropometric modeling approaches
and have good repeatability. In addition, these 3DO PCs are
passive, noninvasive measurements that provide improved pre-
diction of blood lipid and diabetes markers, as well as functional
strength. 3DO body scanning is safe, accessible, and increasingly
affordable. Consequently, this technology is uniquely attractive
for both longitudinal body shape and composition monitoring
at the individual level, and metabolic health and functional
assessment in epidemiological settings.
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