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Abstract
Introduction Recurrent spontaneous abortion is a multifactorial disorder and till date, various factors have been attributed in its
pathogenesis. Still, approximately 50% of RSA cases remain unexplained. Premutation (PM) expanded allele of fragile-X mental
retardation 1 (FMR1) gene is known to contribute to ovarian dysfunction in 20% of the cases. Recently, the link between
expanded FMR1 allele and recurrent miscarriages has been reported.
Method In the present prospective case–control study, we have investigated the status of CGG repeat size at 5′UTR of the FMR1
gene in women with unexplained RSA in comparison to age-matched healthy control women (n = 100 each). The genomic DNA
from these samples was subjected to molecular analysis for characterization of CGG repeat size and composition at FMR1 gene
Results As compared to the control women, the RSAwomen cohort had a higher frequency of carriers with alleles in gray zone
(GZ) and expanded PM range, i.e., 2% (2/100) versus 5% (5/100), respectively. Also, the RSA cohort had a significantly higher
number of normal alleles with ≥ 35 CGG repeats (24 out of 200 alleles) as compared to control cohort (8 out of 200 alleles). The
number of larger FMR1 alleles with pure CGG repeat tract was found to be significantly higher (P = 0.0063) in the RSA cohort
(15 out of 200 alleles) as compared to that in control cohort (3 out of 200 alleles).
Conclusion Henceforth, the CGG expanded uninterrupted FMR1 allele might be associated with recurrent abortions and may
help to explain many of these unexplained cases.
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Introduction

Recurrent spontaneous abortion (RSA) is characterized
by ≥ 2 successive pregnancy losses before 20–22 gesta-
tional weeks. Approximately 1–5% of reproductive age
women are affected by RSA [1–3]. It is multifactorial in

nature and the known factors include uterine anomalies
[4], immunological blood clotting disorder [5], genito-
urinary infection [6], endocrine dysfunction [7, 8], and
chromosomal abnormalities [9–11]. Despite the number
of proposed etiologies, the cause of RSA still remains
unexplained in ∼ 45–50% of the patients [12–14]. In
patients with idiopathic RSA, genetic factors have been
proposed to be a major underlying cause [15, 16].

The role of X-linked FMR1 gene in ovarian dysfunc-
tion had been already defined. The dynamic nature of
CGG repeat expansion in the FMR1 gene has a variable
trait. The full-mutation FMR1 allele (> 200 CGG re-
peats at 5′UTR) is associated with an inherited form
of mental retardation, and the permutation allele (55 to
200 CGG) with FXPOI, a form of ovarian dysfunction
[17]. Furthermore, few studies have reported that high
normal alleles (35 to 44 CGG repeats) and gray zone
alleles (45 to 54 CGG repeats) are also at an elevated
risk of POI [18–21]. It has been anticipated recently
that POI should be considered as a continuum of ovar-
ian dysfunction and not as a dichotomous state having
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normal ovarian functionality followed by menopause
[22, 23]. This is evident from the finding that PM car-
rier females, who are cycling normally, have a signifi-
cant level of ovarian reserve depletion [24, 25].
Continuous effect of increasing repeat size on disease
onset and severity has been documented previously in
other triplet repeat disorder like Huntington diseases
[26]. Thus, probably increasing the size of CGG repeats
beyond the normal range at the FMR1 gene may have
pathogenic consequences ranging from recurrent miscar-
riages to infertility. Also, recently connecting links be-
tween oocyte-specific genes involved in ovarian reserve
depletion and RSA is highlighted and the possibility of
interrogating these genes in cases of unexplained RSA
was suggested [27]. As the PM allele of the FMR1 gene
is already known to be associated with POI, it is also
reasonable enough to cross-examine the FMR1 gene for
its putative role in RSA. The pattern of AGG interrup-
tion in PM and GZ alleles had also been previously
linked to POI phenotype [28, 29]. Hence, the possible
correlation between the CGG repeat composition and
RSA manifestation needs to be inspected. We hypothe-
sized that presence of pure CGG tract in FMR1 allele is
prone to get expanded in the next generation, and these
expanded allele may have pathogenic consequences
leading to recurrent abortions. Thus, we investigated
the impact of both CGG repeat size and composition
at the FMR1 gene in women with unexplained RSA.

Materials and methods

Subjects We have enrolled 100 women of unexplained RSA
(cases) (age ± standard deviation: 29.2 ± 3.8 years) and 100
age-matched healthy women (controls) (age ± standard devi-
ation: 29.4 ± 4.1 years) in this study.

The RSA cohort consists of women who had at least two
successive pregnancy losses up to the completion of 20 weeks
of pregnancy. Clinical examination and laboratory investiga-
tions were performed for the study subjects to exclude other
causes of abortion. Women with the known causes for RSA
like parental chromosomal abnormalities, untreated hypothy-
roidism, uncontrolled diabetes mellitus, uterine anatomic ab-
normalities antiphospholipid antibody syndrome (APS), other
endocrine disorders, thrombophilias, immunologic abnormal-
ities, infections, and environmental factors have been exclud-
ed from this study. The control cohort consists of reproduc-
tively active women with documented fertility and no history
of recurrent pregnancy loss.

The cases were referred from the outpatient department of
Genetics, SGPGI, Lucknow. The control women were those
who were visiting the General Hospital, SGPGIMS,
Lucknow, for a routine checkup.

Study duration and setting

This study was carried out from September 2014 to July 2018
in the department of medical genetics, Sanjay Gandhi
Postgraduate Institute Of Medical Sciences, Lucknow. The
study was approved by the institutional ethical committee
(IEC: 2016-28-PHD-90) and informed consent was obtained
from the cases and controls.

Sample collection and DNA isolation

Two milliliters of peripheral blood was collected in EDTA-
coated vials from the cases and the controls. Genomic DNA
was extracted by the standard phenol-chloroformmethod. The
DNA concentration was measured using Nanodrop.

Methodology

Genomic DNA samples from cases and control were tested for
the presence of CGG expansion in the FMR1 gene using a
two-step PCR protocol. Briefly, fluorescent SP-PCR was car-
ried out for all the samples. The samples that yielded single
amplification band were then subjected to TP-PCR reaction.
The amplified product (4 μl) was diluted in 8 μl of Hi-Di
formamide and 0.5 μl of LIZ 500, denatured, and subjected
to fragment analysis (capillary electrophoresis (ABI 310) with
the following parameters: injection time 5 s, injection voltage
15 kW, run time 28 min, running voltage 12.5 kW, polymer
POP4 [30].

Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics
v21. Continuous data were described as mean ± S.D. and
frequencies as n (%). Comparison between the two cohorts
to test the level of significance was performed using Fisher
exact test.

Results

Out of 100 RSA women enrolled for the study, 59% had a
minimum of two pregnancy losses (average age ± standard
deviation 29.2 ± 3.8 years), while 41% had three or more
pregnancy losses (average age ± standard deviation 29.2 ±
3.8 years) (28% with three, 10% with four, and 3% with five
pregnancy losses). Eighty-six percent losses were in the first
trimester and 14% were reported in the second trimester.

Molecular analysis of the CGG repeat region at FMR1
gene identified polymorphic nature of the repeat region in
both size (number of repeats) and composition (presence of
AGG interruptions and its location).
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A total of 19 different sized alleles were obtained in the
control cohort (comprising of normal and GZ alleles). The
CGG repeats in normal alleles ranged from 18 to 44 repeats
within the normal range, the most common repeat is 29 (33%),
followed by 28 (19%). Combining the results of fluorescent
SP-PCR and TP-PCR, 79% were found to be heterozygous
and 21% were homozygous for the repeat size at FMR1 gene.
GZ allele was observed in two (2%) control subjects, while no
PM alleles were identified among the control subjects. Among
the RSA women, a total of 28 different sized alleles were
obtained including the normal, GZ, and PM alleles. The
CGG repeats in normal alleles ranged from 18 to 43 repeats.
Here also, the most commonly found repeat size is 29 repeats
(31%), followed by 28 (15.5%). Seventy-eight percent were
found to be heterozygous and 22% were homozygous for the
repeat size at FMR1 gene. GZ allele and PM allele were ob-
served in five (5%) and two (2%) cases respectively.

The comparative FMR1 gene allelic frequency within the
normal range among the control and the RSA women is
depicted in Fig. 1.

As compared to the control women, the RSA women co-
hort had a higher frequency of carriers with alleles in GZ and
PM range, i.e., 2% (2/100) versus 5% (5/100), respectively.
Also, the RSA cohort had a significantly higher number of
normal alleles with ≥ 35 CGG repeats (24 out of 200 alleles)
as compared to the control cohort (eight out 200 alleles) (P =
0.005)

The pattern of AGG interruption at the FMR1 repeat gene
was also studied in both the cohorts. Mostly, FMR1 alleles
with repeat size in a normal range were found to be interrupted
with 1, 2, or 3 AGG interruptions in both cohorts.
Furthermore, FMR1 allele with pure CGG repeat tract (com-
prising of normal, GZ, and PM alleles) was observed in nine
(9%) control subjects and in 22 RSA cases (22%). Among the
normal alleles, this continuous stretch of CGG repeats is found
in either smaller-sized FMR1 alleles (with 18 to 25 CGG
repeats) or with larger FMR1 alleles (with ≥ 35 CGG repeats

but within the normal range). Upon statistical investigation of
the data, it was found that the number of larger FMR1 alleles
with pure CGG repeat tract was found to be significantly
higher (P = 0.0063) in the RSA cohort (15 out of 200 alleles)
as compared to that in the control cohort (3 out of 200 alleles).
In the control cohort, one of the two identified expanded GZ
allele was found to be interrupted while in RSA cohort all the
GZ and PM alleles identified were uninterrupted. Table 1
shows the CGG repeat categories at the FMR1 gene in RSA
and control cohort, Fig. 2 shows the representative TP-PCR
peaks of normal, GZ, and PM alleles. The CGG repeat size
obtained in RSA women cohort did not correlate with the
number of miscarriages they had.

Discussion

FMR1 gene expansion mutation in the PM range has long
been documented to be responsible for impaired ovarian re-
sponse and decreased fertilization rate [31, 32]. While the
reproductive consequences of GZ alleles, as well as larger
normal alleles (35 to 44 CGG), are argumentative. Some of
the previous studies have displayed augmented rates of larger
normal repeats in POI and diminished ovarian reserve groups
[33, 34]. Other studies had depicted expanded allele in GZ
range to be associated with a higher frequency of subfertility,
menstrual irregularities, earlier menopause, POI, higher rate of
aneuploidies, miscarriage, and non-identical twinning as com-
pared to normal [35, 36]. Previously, [37] it was reported that
trisomy 21 births frequently occur in female fragile X carriers.
While other studies could not find a positive relationship be-
tween the rate of unfavorable outcomes (including pregnancy
loss) and premutation carrier status of women [38–40]. These
findings suggest the involvement of the FMR1 gene in a spec-
trum of ovarian dysfunction.

In the current study, we inspected the incidence of expand-
ed FMR1 alleles in women with unexplained RSA. Our study
documented that these women had a higher number of ex-
panded GZ and PM FMR1 allele in comparison to control
women with documented normal fertility. The number of larg-
er normal alleles was meaningfully different between the two

Fig. 1 Comparative FMR1 allelic frequency of RSA and control cohort
(n = 100 each)

Table 1 CGG repeat categories at FMR1 gene in RSA and control
cohort

FMR1 allele RSA group Control
group

Normal alleles (6–44 CGG) 193 198

GZ alleles (45–54 CGG) 5 2

PM alleles (55–200 CGG) 2 0

FMR1 alleles (≥ 35 CGG repeats) 24 8

FMR1 alleles (uninterrupted ≥ 35 CGG repeats) 17 4
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cohorts. Also, a significantly higher abundance of uninterrupt-
ed larger FMR1 alleles was observed among the RSA cohort.
The results of our study suggest a possible role of uninterrupt-
ed PM, GZ, and large normal FMR1 allele in unexplained
RSA.

It is well known that the reproductive potential of a woman
depends principally on the ovarian reserve, number, and qual-
ity of the oocytes. In line with this finding, a higher prevalence
of decreased ovarian reserve has been found among the wom-
en with unexplained RSA [41, 42] and the expanded alleles of
FMR1 gene, permutation allele [35, 43], a high normal allele
[18, 19], and gray zone allele [20, 21], increase the risk of
diminished ovarian reserve and/or premature ovarian insuffi-
ciency in women. Although in our study we have not obtained
PM allele to be significantly different among the cases and
control, we cannot directly link recurrent miscarriages with
POI. However, we have obtained a significantly higher num-
ber of GZ and high normal alleles in the case-cohort. As it is
already established, the diagnosis of POI represents the ex-
treme spectrum of an impaired ovarian function. It is quite
possible that FMR1 allele with CGG repeats in range of high

normal and GZ results in diminished ovarian reserves (DOR).
Compromised oocyte quality in this situation could ultimately
lead to genetic defects (aneuploidies) that are not compatible
with life, thus leading to abortion. This hypothesis is support-
ed by the findings that women with repeats > 30 CGG have
shown reduced ovarian reserve, as documented by measuring
ovarian parameters like AMH and FSH levels [20, 44]. The
diminished level of serum AMH and elevated level of serum
FSH already has documented role in miscarriage, thus provid-
ing evidence of the link between CGG expansion in GZ and
high normal FMR1 alleles with recurrent miscarriages.
Furthermore, the study by Kline et al. in 2012 depicted that
the proportion of FMR1 alleles with long CGG repeat length
was quite higher in women who had trisomic spontaneous
pregnancy loss in comparison to the controls [45].

The main limitation of our study is that we have not ana-
lyzed the AMH and FSH values of cases and control and the
presence of potential confounding factors and genetic evalua-
tion of the product of conceptus of the RSA women cohort.
Therefore, further prospective studies in this direction are re-
quired to confirm the possible link between FMR1 CGG

Fig. 2 TP-PCR DNA chromatogram for normal, GZ, and PM subject
from control and RSA cohort. a Homozygous sample with interrupted
normal FMR1 alleles (29 CGG repeats). b Homozygous sample with
normal FMR1 alleles (29 CGG repeats). One allele is interrupted by
two AGG while other by 1 AGG. c Heterozygous sample with
interrupted normal FMR1 alleles 29 and 40 repeats. d Heterozygous

sample with interrupted normal allele of 29 and continuous GZ allele of
53 repeats (Pure CGG tract on second allele). e Heterozygous sample
with interrupted normal allele of 30 CGG repeats and continuous PM
allele of 99 CGG repeats (pure CGG tract on second allele). Note: blue
vertical line shows edge of repeats in normal range and red vertical arrows
depicts the position of AGG interruptions
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repeats and recurrent miscarriages and also to reveal the mo-
lecular pathophysiology involved.

In spite of extensive studies done so far, for approximately
50% of the RSA cases that are encountered by the treating
physicians, the cause remains unknown. Our study suggests
a possible role of uninterrupted CGG alleles in GZ and the
high normal range in RSA. Interrogating the FMR1 gene in
the future may provide an explanation for a number of
miscarriages.
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