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Abstract

Cytosolic calcium (cCa2+) entry into mitochondria is facilitated by the mitochondrial membrane 

potential (ΔΨm), an electrochemical gradient generated by the electron transport chain (ETC). Is 

has been assumed that as long as mutations that affect the ETC do not affect the ΔΨm, the 
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mitochondrial Ca2+ (mCa2+) homeostasis remains normal. We show that knockdown of NDUFAF3 

and SDHB reduce ETC activity altering mCa2+ efflux and influx rates while ΔΨm remains intact. 

Shifting the equilibrium toward lower [Ca2+]m accumulation renders cells resistant to death. Our 

findings reveal an unexpected relationship between complex I and II with the mCa2+ homeostasis 

independent of ΔΨm.
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1. Introduction

The electron transport chain (ETC) consists of four protein complexes embedded in the 

inner mitochondrial membrane that sequentially transport electrons delivered by NADH 

(Marreiros et al., 2016). The free energy from redox reactions at complex I, III and IV is 

used to translocate protons across the inner mitochondrial membrane, forming an 

electrochemical gradient called the mitochondrial membrane potential (ΔΨm), which is used 

by the F0-F1-ATP synthetase to generate ATP (Saraste, 1999). In addition, ΔΨm allows the 

import and export of metabolites, proteins and ions to and from the mitochondrial matrix 

(Poburko and Demaurex, 2012; Zorova et al., 2017). In fact, the ΔΨm is considered to be the 

main driving force for the mitochondrial Ca2+ (mCa2+) uptake (Nicholls and Budd, 2000) 

and its maintenance is essential to prevent the onset of cell death (Duchen, 2000).

The influx of Ca2+ into the mitochondria promotes the activity of at least seven different 

mitochondrial proteins including three rate-limiting dehydrogenases of the TCA cycle 

(Glancy and Balaban, 2012). Thus, Ca2+ plays a strategic task in coordinating cellular 

workload and generation of ATP (Denton, 2009).

Dysfunctions either in complex I, the larger enzyme of the ETC composed by 44 subunits; 

14 highly conserved core subunits that harbor bioenergetic functions, and 30 accessory 

subunits (Hirst, 2010) or complex II (succinate-ubiquinone oxidoreductase), the only 

member of the ETC that also participates in the TCA cycle and is comprised of four subunits 

(SDHA, SDHB, SDHC, and SDHD) (Bezawork-Geleta et al., 2017) have been associated 

with several diseases that show severe alterations in Ca2+ homeostasis such as cancer 

(Bustos et al., 2017; Kluckova et al., 2013; Urra et al., 2017) and neurodegenerative 

conditions such as Parkinson’s (Cieri et al., 2017; Gatt et al., 2016; Haelterman et al., 2014; 

Keeney et al., 2006), Alzheimer’s disease (Kim et al., 2001; Muller et al., 2018; Zhang et al., 

2015) and Leigh syndrome (Quinlan et al., 2012; Wasniewska et al., 2001). However, the 

relation between complex I or complex II dysfunction and Ca2+ dyshomeostasis has been 

poorly explored and only associated with loss of ΔΨm (Mbaya et al., 2010; Visch et al., 

2004), which occurs in specific scenarios, while in most the ΔΨm remains constant thanks 

to the reversal of ATP-synthase activity (Chinopoulos, 2011).

Here, we show that knockdown of both complex I assembly factor NDUFAF3 and complex 

II catalytic subunit SDHA reduce mitochondrial Ca2+ fluxes and mitochondrial respiration 

without changing the ΔΨm. Moreover, we demonstrate that the reduction in mCa2+ flux 
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protects these cells from cell death induced by mitochondrial Ca2+ overload. Our findings 

reveal that complex I and complex II play a role in Ca2+ homeostasis beyond their role in the 

maintenance of the ΔΨm.

2. Materials and Methods

2.1. Materials

Antibodies: From Santa Cruz Biotechnology®: NDUFAF3 (sc-99317), β-actin (sc-47778). 

Abcam®: SDHA (ab14715), SDHB (ab14714), ATP5A (ab14748) NDUFB8, (ab110242). 

Reagents and inhibitors were purchased from Sigma-Aldrich unless specifically stated.

2.2. Cell culture and transfection.

MCF7 cell line, derived from human breast cancer, was purchased from ATCC (ATCC® 

Number: HTB-22™) and cultured in DMEM HG supplemented with 10% FBS. For 

NDUFAF3 knockdown (NDUFAF3-KD), MCF7 cells where transduced with lentiviral 

particles (MISSION® Lentiviral Transduction Particles – Sigma-Aldrich SHCLNV-

NM_199069) and 24h after transduction selected with puromycin. For SDHA knockdown 

(SDHA-KD) cells, shRNA construct in retroviral untagged vector was used (Origene™ 

TR315539). Transfection was done with FuGENE® in reduced serum media for 24 hours 

and selected with puromycin.

2.3. Western Blotting.

Cell extracts were prepared with ice-cold 1X RIPA buffer (EMD Millipore®) supplemented 

with protease and phosphatase inhibitors (Complete EDTA-free, PhosSTOP, Roche). Equals 

amount of protein extracts were separated in NuPAGE 4–12% Bis-Tris protein gels 

(ThermoFisher Scientific) and transferred to PDVF membranes.

2.4. Immunopurification of complex I and II.

MCF7 Scramble, MCF7 NDUFAF3-KD and MCF7 SDHA-KD cells were lysed in lysis 

buffer [150 mM Tris-HCl, 150 mM NaCl (Merck), 1 mM EDTA (Chemix, 5 mM NaF 

(Sigma-Aldrich), 0.5% v/v NP-40 (Sigma-Aldrich), pH 7.4] containing protease inhibitors 1 

mM phenylmethylsulfonyl fluoride (PMSF; Sigma-Aldrich) and protease inhibitor cocktail 

(PIC; Cytoskeleton, Inc.). The lysates were centrifuged at 11,000 g at 4 °C for 10 min. The 

supernatants were incubated with Complex I or Complex II immunocapture KIT (Abcam, 

ab109711 and ab109799, respectively) for 16 h at 4°C. After incubation, 

immunoprecipitation reaction products were washed ten times in buffer (150 mM NaCl, 1 

mM EDTA, 50 mM Tris-HCl, pH 7.4, 5 mM NaF, 0.5% v/v NP-40). Immunocomplexes 

were eluted by boiling the samples in reducing sample buffer for 5 min and then, size-

fractionated on SDS–PAGE.

2.5. Mitochondrial complex I assay.

The activity of mitochondrial complex I was determined using the complex I enzymatic 

activity assay kit (ab109721) as recommended by the manufacture. Briefly, MCF7 neg 

shRNA and -NDUFAF3-KD cells were lysated as described in section 2.4 and the complex I 
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activity, define as the oxidation of NADH to NAD+, determine spectrophotometrically at 

450 nm.

2.6. Mitochondrial Complex II assay.

The activity of mitochondrial complex II was determined using the complex II enzymatic 

activity assay kit (ab109908) as recommended by the manufacture. Briefly, MCF7 neg 

shRNA and MCF7 SDHA-KD cells were lysed as described in section 2.4 and the complex 

II immunocaptured within the wells of the microplate. The activity of complex II, was 

determine by the reduction of the dye DCPIP (2,6-dichlorophenolindophenol) during the 

production of ubiquinol spectrophotometrically at 600 nm.

2.7. Extracellular flux analysis.

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were assessed 

in an extracellular flux analyzer XFe96 (Agilent Technologies™, CA, USA) as described 

previously [1]. Briefly, MCF7 cell lines generated for this study were seeded on XFe96-well 

plates (15,000 cells per well) and pre-incubated overnight at 37°C in 5% CO2 atmosphere. 

The following day, the culture medium was replaced with assay media (unbuffered DMEM 

supplemented with glutaMAX®, 10 mM glucose and 1 mM pyruvate, pH 7.4) 1 hour prior 

to the assay and left for the duration of the experiment. After establishing the baseline OCR, 

cells were sequentially challenged with oligomycin (1 μM), FCCP (125 nM) and rotenone + 

Antimycin A (both 1 μM) to reveal basal, maximal, ATP-coupled respiration and proton 

leak. For ECAR, the same assay media was used and cells were sequentially challenged with 

glucose (10 mM), oligomycin (1 μM) and the hexokinase inhibitor 2-deoxyglucose (2-DG, 

100 mM) to reveal the glycolytic capacity of the cells. The data were normalized by protein 

content.

2.8. Mitochondrial Ca2+ dynamics in permeabilized cells.

MCF7 cell lines generated for this study (7.5×106 cells) were permeabilized using digitonin 

(40 μM) containing intracellular-like medium [ICM; permeabilization buffer: 120 mM KCl; 

10 mM NaCl; 1 mM KH2PO4; 20 mM HEPES-Tris, pH 7.2; 2 μM thapsigargin, and 

protease inhibitors (Roche Applied Science, Minneapolis, MN, USA) supplemented with 

succinate (3 mM)]. Fura-2FF (ThermoFisher Scientific®) was added to measure 

extramitochondrial Ca2+ using a fluorimeter (Photon Technology International). After 

baseline recording, 10 μM Ca2+ was added to cells at 350s to measure mitochondrial Ca2+ 

uptake, followed by the injection of the MCU inhibitor Ru360 (1 μM) at 550s, the inhibitor 

of the Na+/Ca2+ exchanger CGP37157 (10 μM) at 610s, and FCCP (2 μM) at 750s.

2.9. Cell proliferation assay.

Cell lines were incubated for 0, 24, 48 and 72 h. At each time point, culture medium was 

removed, and cells were carefully washed twice with PBS. After washing, cells were 

incubated at room temperature for 20 minutes in 0.5% crystal violet 20% methanol staining 

solution. Next, the plate was washed carefully four times in a gentle stream of tap water, 

inverted on a filter paper to remove the remaining liquid and dried at room temperature for at 
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least 1 hour. Finally, crystal violet was solubilized adding 200 μL of methanol per well. OD 

was measured at 570 nm.

2.10. Cell migration assay.

MCF7 cell lines with density of 1 × 106 cells/well were seeded in 6-well plates and grown 

until a confluent monolayer of cells was achieved. Then, a cross-shaped scratch over the 

well using a sterile 200 μl tip was made. Wells were washed with sterile PBS to remove 

detached cells and debris and then cultured in 2 ml of DMEM high glucose media 

supplemented with 25 mM HEPES and 1% fetal bovine serum to avoid cell proliferation. 

Wells were photographed in multiple locations with 20x magnification in an Olympus 

CKX41 microscope using a Qimaging micropublisher 3.3 RTV camera. Images were 

analyzed with Image J and data expressed as percentage (%) of gap closure as previously 

described (Liang et al., 2007).

2.11. Cell viability assay.

MCF7 cell lines were seed in 24-well plates and incubated for 24 h. Then, the cells were 

either exposed to DMSO (control), 5 μM ionomycin, 40 μM C2-ceramide or 30 μM 

thapsigargin. After 24h of exposure, cells were trypsinized, washed with PBS, and re-

suspended in PBS solution with 5 mg/mL of propidium iodide (PI, ThermoFisher 

Scientific). Incorporation of PI in dead cells was detected using a BD FACSAria III flow 

cytometer.

2.12 Measurement of Mitochondrial Superoxide

Mitochondrial superoxide was measured by using the mitochondrial oxygen free radical 

indicator MitoSOX Red (molecular probes; Invitrogen) as previously described (Dong et al., 

2017). Briefly, cells were grown on coverslips and loaded with 5 μM MitoSOX Red for 30 

min. Coverslips were mounted in a confocal microscope (510 Meta; Carl Zeiss, Inc.) and 

images were obtained at 561 nm excitation using a 63x oil objective. Images were analyzed, 

and MitoSOX Red fluorescence was quantified using ImageJ software (NIH). For flow 

cytometry experiments, 3 × 104 cells were trypsinized and re-suspended in fresh medium 

without FBS and MitoSOX fluorescence detected using a BD FACSCanto flow cytometer.

2.13. Mitochondrial membrane potential.

MCF7 cell lines were loaded with tetramethylrhodamine methyl ester (TMRM, 5 nM, Life 

Technologies) for 30 min at 37°C and 5% CO2. Hoechst 33342 (Life Technologies) was 

used as nuclear counterstain. Images were acquired using a Nikon C2+ spectral confocal 

microscope using the same settings for all experiments. TMRM fluorescence was quantified 

with ImageJ software.

2.14. Statistics.

All data are summarized as mean ± SEM; significance of differences was assessed using 

unpaired t-tests. Differences were accepted as significant at the 95% level (p < 0.05).
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3. Results

3.1. Knockdown of NDUFAF3 and SDHA reduces mitochondrial oxygen consumption and 
increases glycolysis in MCF7 cells.

NDUFAF3 and SDHA are essential for the assembly of complex I and complex II (van den 

Ecker et al., 2012; Zurita Rendon and Shoubridge, 2012) and their absence is presumed to 

disrupt mitochondrial respiration. Here, we experimentally determined for the first time the 

effect of knocking down NDUFAF3 and SDHA on oxygen consumption in MCF7 cells. 

Using two different shRNA against NDUFAF3 and three against SDHA we generated stable 

knockdown MCF7 cell lines. As observed in Figure 1A and 1B, NDUFAF3–271 and 

NDUFAF3–564 cell lines show a decrease in NDUFAF3 protein expression of 52% and 

74.5% respectively (Fig. 1A and C). On the other hand, from the stable cell lines generated 

to knockdown SDHA, only SDHA-2 showed a significant reduction in the expression of 

SDHA (65%) (Fig. 1B, D). The level of complex V subunit ATP5A, which was used as a 

mitochondrial loading control, remained unchanged (Fig. 1A and B) similar to what is 

observed with the housekeeping protein actin. Given these results, we continued our studies 

in cell lines NDUFAF3–564 and SDHA-2 which hereafter we refer to as NDUFAF3 KD and 

SDHA KD respectively. To explore the assembly status of complex I and complex II in these 

cells, we determine whether subunits NDUFB8 and SDHB co-immunoprecipitated with 

complex I and complex II respectively. As expected, when complex I is immunoprecipitated 

in the control cell line (neg shRNA) the complex I structural subunit NDUFB8 is present 

indicating assembly of complex I. However, this subunit is not seen when complex I is 

immunoprecipitated in NDUFAF3 KD cells, confirming that NDUFAF3 assembly factor is 

required for complex I assembly (Barbi de Moura et al., 2012) (Fig. 1E). Similarly, the 

complex II structural subunit SDHB co-immunoprecipitated with complex II in the control 

cell line, but not in the SDHA KD cell line (Fig. 1F) confirming the absence of the SDHA 

catalytic subunit impairs complex II assembly (Saxena et al., 2016). Activity assays 

confirmed the reduced function of complex I and complex II in NDUFAF3 KD (Fig. 1G) 

and SDHA KD (Fig. 1H) cells, respectively.

Next, to determine whether NDUFAF3 KD and SDHA KD cell lines have impaired 

mitochondrial respiration, we performed oxygen consumption measurements. Both 

NDUFAF3 KD and SDHA KD cell lines showed lower levels of basal and maximal oxygen 

consumption rate (OCR) than the control cell line (neg shRNA) (Fig. 1I, J and K), 

confirming a defect in the electron transport chain. In addition, the respiration coupled to the 

ATP generation, calculated as the difference in OCR before and after oligomycin injection 

was also significantly diminished (Fig. 1L).

It is well documented that mitochondrial electron transport chain inhibition induces a 

compensatory rise of glycolysis (Hill et al., 2012; Saxena et al., 2016). Thus, by measuring 

the extracellular acidification rate (ECAR) we determined that NDUFAF3 KD and SDHA 

KD cells present higher glycolytic flux than the control cells (Fig. 1M and N). In addition, 

by inhibiting ATP synthase with oligomycin, we were able to determine that NDUFAF3 and 

SDHA KD cells demonstrated a higher glycolytic capacity, suggesting a metabolic 

remodeling toward glycolysis (Fig. 1O).
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3.2. Intact complex I or complex II are necessary to maintain mCa2+ homeostasis.

Maintenance of the ΔΨm is essential for cellular Ca2+ homeostasis (Contreras et al., 2010). 

Inhibition of complex I activity has been associated with both increased and decreased ΔΨm 

(Abramov et al., 2010; Distelmaier et al., 2009a; Distelmaier et al., 2009b; Koopman et al., 

2005; Valsecchi et al., 2012), however, in NDUFAF3 KD cells the ΔΨm remained unaffected 

(Figure 2A and B). On the other hand, complex II plays an important role in maintaining 

ΔΨm in normoxic and hypoxic conditions (Hawkins et al., 2010). Surprisingly, SDHA 

knockdown induced a small, but significant increase in ΔΨm (Figure 2A and B) rather than a 

decrease. Under these conditions we hypothesized that mitochondrial Ca2+ flux should 

remain unchanged or increased in the case of the SDHA knockdown cells. Thus, we 

examined cytosolic clearance, mitochondrial Ca2+ efflux and release of total mitochondrial 

Ca2+ by assessing free extramitochondrial Ca2+ concentration in permeabilized cells as 

described before (Doonan et al., 2014). First, we triggered Ca2+ uptake, by adding a pulse of 

Ca2+ to permeabilized neg-shRNA, NDUFAF3, and SDHA KD cells in presence of the Ca2+ 

indicator, Fura-2FF. Surprisingly, the Ca2+ uptake rate was diminished in NDUFAF3 and 

SDHA KD cells (Fig. 2C and D). Then, in order to visualize [Ca2+]m efflux, we blocked 

mitochondrial Ca2+ uptake by adding Ru360, which revealed that both NDUFAF3 and 

SDHA KD cells have reduced efflux rate, suggesting that [Ca2+]m steady state was lower in 

the KD cells (Fig. 2E and F). Mitochondrial efflux was stopped with the addition of NCLX 

inhibitor CGP-37157. Finally, to determine the total levels of mitochondrial Ca2+, the 

mitochondrial membrane potential was dissipated by adding the uncoupler carbonyl 

cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), which revealed that NDUFAF3 and 

SDHA KD cells have a significantly lower [Ca2+]m content compared with control cells 

(Fig. 2G and H). Altogether, these results confirm that the absence of either complex I or 

complex II activity and/or levels, reduce [Ca2+]m efflux and influx rate, shifting the 

equilibrium of mitochondrial Ca2+ towards a lower [Ca2+]m accumulation.

3.3 Effect of NDUFAF3 and SDHA knockdown in cellular proliferation and migration.

Inhibition of Ca2+ transfer to mitochondria lowers mitochondrial respiration reducing the 

clonogenic capacity of breast cancer cells (Cardenas et al., 2016). As the lack of complex I 

or complex II activity decreases respiration and the flux of Ca2+ to mitochondria, we 

assessed proliferation in NDUFAF3 and SDHA KD cells and no differences were found 

after 72h (Fig. 3A and B). Accordingly, no increase in cell death was observed in the KD 

cells compared to the control (Fig. 3C). Cellular migration can also be affected by a 

reduction of mitochondrial Ca2+ content (Tosatto et al., 2016), thus, we studied migrating 

behavior in NDUFAF3 and SDHA KD cells. Remarkably, NDUFAF3 KD cells migrate 

faster than control cells (3D and E), while SDHA KD cells behave as controls, suggesting 

that another mechanism independent of mitochondrial Ca2+ homeostasis operates during 

migration in complex I KD cells. Reactive oxygen species (ROS), which are known to 

increase with mutations in mitochondrial or nuclear DNA-encoded ETC proteins that 

diminish complex I or II (Sabharwal and Schumacker, 2014; Sullivan and Chandel, 2014), 

play an important role in migration and cell adhesion (Hurd et al., 2012). We therefore 

determined the levels of superoxide in both NDUFAF3 and SDHA KD cells by confocal 

microscopy, as done before by our group (Mallilankaraman et al., 2012b), and by flow 

cytometry. Surprisingly, mitochondrial superoxide levels in NDUFAF3 KD cells were 
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similar to controls with both techniques (Fig. 3F–H), while SDHA KD cells show a small, 

but significant rise in mitochondrial superoxide levels by confocal microscopy than is not 

seen by flow cytometry (Fig. 3F–H).

3.4 The absence of complex I and II prevents cell death induced by mCa2+ overload.

Given the shifting of the mCa2+ equilibrium towards lower [Ca2+]m accumulation in 

NDUFAF3 and SDHA KD cells, we determined whether these cells were more resistant to 

cell death induced by mitochondrial Ca2+ overload. Accordingly, we treated all cells with 5 

μM ionomycin or 40 μM ceramide C2 for 24h and measured cell death using propidium 

iodide and flow cytometry. As shown in Figure 4, complex I and complex II KD cells were 

significantly more resistant to these challenges than control cells.

4. Discussion

Although the regulation of the ETC complex and its influence on cell physiology has been 

studied at length (Guo et al., 2018; Lobo-Jarne and Ugalde, 2018), there are still aspects that 

have received little attention. For instance, Ca2+, a pivotal regulator of mitochondrial 

function (Cardenas et al., 2010), and key determinant of cell fate (Berridge et al., 2003) has 

been assumed to be regulated by the ETC indirectly through the ΔΨm. Here, we show that 

either complex I or II regulate mCa2+ homeostasis independently of the ΔΨm. 

Downregulation of NDUFAF3, an early assembly factor of complex I, decreased basal, ATP-

coupled and maximal oxygen consumption and the mitochondrial Ca2+ fluxes in the human 

cancer cell line MCF7. The ΔΨm was conserved to a similar extent as in control cells. The 

same characteristics were observed during complex II subunit SDHA knockdown. SDHA 

contains the prosthetic group that oxidizes succinate to fumarate. Mitochondrial internal 

membrane damage can cause low ETC activity (Brand and Nicholls, 2011), however, this 

possibility was discarded in our system since proton leak showed no difference between 

knockdown and control cells (data not shown), indicating that the internal mitochondrial 

membrane was intact.

The lack of ΔΨm depolarization observed in NDUFAF3 and SDHA KD cells was expected 

as it has been established that in either absence or low activity of complex I, II, III and IV, 

the ΔΨm is maintained by complex V (F1F0-ATP synthase) reverse activity, which pumps 

protons towards the mitochondrial intermembrane space hydrolyzing ATP as the energy 

source (Chinopoulos, 2011; Jonckheere et al., 2012). The maintenance of the ΔΨm is 

essential to avoid the activation of the intrinsic branch of apoptosis (Gottlieb et al., 2003). 

For example, in neurons carrying either a severe mutant form of complex I that reduced its 

activity to less than 10%, or a mutant form of complex IV that reduced its activity to 40%, 

the ΔΨm remained stable (Abramov et al., 2010). Similarly, primary isocortical neurons and 

astrocytes derived from a complex I deficient Ndufs4 knockout mouse showed no alteration 

in ΔΨm (Bird et al., 2014). However, in both cases the ΔΨm collapsed in response to 

oligomycin, a well-known inhibitor of complex V activity (Hong and Pedersen, 2008), 

demonstrating that the ΔΨm was maintained by complex V in reverse mode. Supporting the 

notion that the ATP synthase reverse activity could maintain the ΔΨm in NDUFAF3 and 

SDHA KD cells, both cell lines exhibited an increased glycolytic flux. Glycolysis and 
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OXPHOS are tightly coupled by intermediary metabolites, as has beenrevealed in cancer 

cells (Vander Heiden et al., 2009). Complex I uses NADH as a source of electrons for proton 

pumping and for ubiquinone reduction. When complex I is inhibited for example by 

rotenone, NADH concentration increases, diminishing NAD+/NADH ratio, which in turn, 

increases the conversion of pyruvate to lactate. Therefore, increasing NADH concentration, 

increases glycolytic flux as well. Also, when OXPHOS activity is decreased due to low SDH 

activity, AMPK is activated, upregulating lactate dehydrogenase activity (Hou et al., 2018), 

which replenishes ATP levels necessary to maintain Complex V working in reverse and 

maintaining ΔΨm.

Strikingly, the ΔΨm in SDHA knockdown cells is even higher than in control cells. 

Inhibition of complex I can induce a mitochondrial hyperpolarization due to low activity of 

complex II, III, IV and V (Forkink et al., 2014), and therefore a similar mechanism could be 

expected to operate in these cells. Since ΔΨm is the main driving force for Ca2+ uptake into 

mitochondria, no changes were expected in the mitochondrial Ca2+ flow in NDUFAF3 and 

SDHA KD cells. Unexpectedly, we found that the Ca2+ influx to the mitochondrial matrix as 

well as the mitochondrial Ca2+ efflux was lower in both knockdown cell lines (Fig. 2), 

causing a lower overall mitochondrial Ca2+ content. As far as we know, this is the first time 

that a correlation between either complex I or II and mitochondrial Ca2+ homeostasis 

independent of ΔΨm has been established. In a previous report, fibroblasts from patients 

carrying isolated mutations in complex I exhibited a reduced mCa2+ uptake/accumulation 

that impaired ATP production, but this occurred alongside a reduction in the ΔΨm (Visch et 

al., 2004). We, on the other hand, show that a reduction of either complex I or complex II in 

absence of an altered ΔΨm, establishes a new Ca2+ “set-point” (Mallilankaraman et al., 

2012b; Nicholls, 2017). The entrance of Ca2+ to mitochondria is mainly through the 

mitochondrial calcium uniporter (MCU) complex, which is immersed in the inner 

mitochondrial membrane. It is composed by several functional and regulatory subunits, 

MCU being the pore-forming subunit (Baughman et al., 2011; Csordás et al., 2013; De 

Stefani et al., 2011; Mallilankaraman et al., 2012a; Mallilankaraman et al., 2012b; Patron et 

al., 2014; Perocchi et al., 2010; Plovanich et al., 2013; Sancak et al., 2013). The intake of 

Ca2+ through MCU is regulated by the MCUb (Raffaello et al., 2013) MICU1 (Patron et al., 

2014) (Hoffman et al., 2013), MICU2 (Plovanich et al., 2013), MCUR1 (Mallilankaraman et 

al., 2012a) and EMRE (Sancak et al., 2013). MICU1 and MICU2 inhibit the pore-

conformation of the complex, while MCUR1, regulates positively the pore activity (Woods 

et al., 2019). Since a decrease in MCU protein levels was not detected in our KD cell lines 

(data not shown), the possibility of the existence of a spatial and/or functional interaction 

between ETC proteins and MCU-regulatory subunits should be not dismissed. Additionally, 

the MCU complex is post-transcriptionally regulated by phosphorylation and chemical 

modification such S-glutathionylation (Pallafacchina et al., 2018), which may explain the 

phenomenon observed in NDUFAF3 and SDHA KD cells. New experiments are necessary 

to determine the exact mechanism responsible for the reduction of mCa2+ flux observed in 

these cells.

In many cellular contexts, a reduction in mCa2+ uptake/accumulation allows cells to resist 

insults that would otherwise cause cell death mediated by activation of the mitochondrial 

permeability transition (MPT) (Angelova et al., 2019; Kon et al., 2017; Luongo et al., 2015; 
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Oropeza-Almazan et al., 2017). Therefore, it is not surprising that NDUFAF3 and SDHA 

KD cells show resistance to death upon stimulation with known inductors of cell death 

mediated by mCa2+ overload such as ionomycin (Nemani et al., 2018) and ceramide (Parra et 

al., 2013). Interestingly, a decrease of either complex I or II activity due to subunit mutations 

can generate cancer mainly by increasing resistance to apoptosis (Kluckova et al., 2013; 

Urra et al., 2017). Therefore, in the context of cancer mediated by either complex I or II 

impaired activity, it is possible to speculate that at least the resistance to apoptosis could be 

the result of low mCa2+ uptake/accumulation.

The lack of mitochondrial respiration does not affect proliferation, as shown here for both 

NDUFAF3 and SDHA KD cell lines, as long the ΔΨm is sustained by an upregulation of 

glycolysis and the reverse activity of the F0F1-ATP synthetase. Martinez-Reyes et al., 2016, 

elegantly demonstrated that restoring the reverse activity of the F0F1-ATP synthetase by 

knocking out its endogenous physiological inhibitor ATPIF1, was sufficient to restore the 

ΔΨm and proliferative capability of cells lacking mtDNA. On the other hand, restoring TCA 

cycle oxidative metabolites by ectopic expression of S. cerevisae NDI1 and C. intestinalis, 

which does not recover the ΔΨm, was not sufficient to maintain proliferation (Martinez-

Reyes et al., 2016), highlighting the importance of the ΔΨm in proliferation. Cell migration 

is a pivotal step in metastasis (Yilmaz and Christofori, 2010), and is responsible for most 

patient deaths from solid tumors (Steeg, 2016). Several reports show that down-modulation 

of certain complex I subunits by genetic or pharmacologic means generates an enhanced 

migratory behavior of cancer cells and metastasis (He et al., 2013; Ishikawa et al., 2008; Li 

et al., 2015; Yuan et al., 2015), through a ROS-mediated mechanism that involves 

modulation of extracellular matrix proteins. In NDUFAF3 KD cells we observed an increase 

in cell migration, however, this was independent of ROS generation. On the other hand, 

germline complex II mutations that cause pheochromocytoma/paraganglioma syndrome type 

4 (PGL4), which is characterized by the presence of pheochromocytoma and paraganglioma, 

two types of cancer that very rarely metastasize (Angelousi et al., 2015), and gastrointestinal 

stromal tumors and renal tumors, which have the potential to metastasize, act through a 

mechanism mediated by ROS (Shanmugasundaram and Block, 2016; Shi et al., 2017). 

However, SDHA knockdown cell lines did not show any increase in their migrative behavior 

compared with control cells. These results that seem controversial remind us there are many 

factors that regulate complex cellular phenomena such as cellular migration.

5. Conclusions

Overall, our data demonstrate that decreasing complex I and II levels affects Ca2+ 

homeostasis, leading to a decrease in the mCa2+ set-point independent of ΔΨm. This could 

have some interesting implications, as until now, the mitochondrial Ca2+ homeostasis has 

been overlooked as related to the array of diseases that involve mutations of the ETC that 

impair mitochondrial function without loss of the ΔΨm. Thus, the modulation of the mCa2+ 

offers a new window of intervention in cancer and other diseases related to either complex I 

or II downregulation activity.
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HIGHLIGHTS

• Knockdown of NDUFAF3 and SDHB altered mitochondrial Ca2+ efflux and 

influx rates in absence of ΔΨm loss.

• Shifting the equilibrium toward lower concentration of mitochondrial Ca2+ 

accumulation renders cells resistant to death.

• Our findings reveal an unexpected relationship between complex I and II with 

the mitochondrial calcium homeostasis independent of ΔΨm.

Jaña et al. Page 16

Mitochondrion. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Knockdown of NDUFAF3 and SDHA subunits affects global cellular bioenergetics.
A. Representative Western blots of NDUFAF3, ATP5A in total lysates from MCF7 cells 

stable expressing either a non-target shRNA or a shRNA against NDUFAF3 (clones 271 and 

564). B. Representative Western blots of SDHA, and ATP5A in total lysate from MCF7 cells 

stable expressing either a non-target shRNA (neg) or a shRNA against SDHA (clones 2, 3 

and 5). C. Analysis of NDUFAF3 expression normalized over mitochondrial marker ATP5A 

and expressed as average fold increase over control cells (neg). D. Analysis of SDHA levels 

normalized over mitochondrial marker ATP5A and expressed as average fold increase over 

control cells. E. Co-immunoprecipitation of complex I and NDUFB8. F. Co-

immunoprecipitation of complex II and SDHB. G. Determination of complex I activity at 

450 nm over time. At the straight portion of the progression curve, slope (mOD/min) was 

calculated. H. Determination of complex II activity at 600 nm over time. At the straight 

Jaña et al. Page 17

Mitochondrion. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



portion of the progression curve, slope (mOD/min) was calculated. I. Representative traces 

of oxygen consumption rate (OCR) in neg shRNA, NDUFAF3–564 and SDHA-2 MCF7 

cells exposed sequentially to oligomycin (oligo, 1 μM), FCCP (0.125 μM) and antimycin A 

plus rotenone (A+R, 1 μM each). J. Basal respiration calculated by subtracting the non-

mitochondrial OCR (after A+R) from the OCR measurement before oligomycin. K. 

Maximal respiration calculated by subtracting non-mitochondrial OCR (after A+R) to the 

OCR after FCCP. L. ATP coupled OCR calculated by subtracting OCR after and before 

oligomycin. M. Representative traces of extracellular acidification rate (ECAR) in cells 

exposed sequentially to glucose (10mM), oligomycin (oligo, 1 μM) and 2-deoxyglucose 

(2DG, 100 mM). N. Glycolysis calculated by subtracting ECAR measured before glucose 

from ECAR after 2-DG. O. Glycolytic capacity calculated by subtracting ECAR measured 

before 2-DG from ECAR measured after oligomycin. All data shown represent mean ± SEM 

of at least three independent experiments. * = p<0.05, ** = p <0.01, *** = p < 0.001, ns = 

not significant.
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Figure 2. Effects of NDUFAF3 and SDHA knockdown on mitochondrial membrane potential and 
Ca2+ influx and efflux rates.
A. Representative confocal images of neg shRNA, NDUFAF3–564 and SDHA-2 MCF7 cell 

lines loaded with mitochondrial membrane potential indicator TMRE. B. Quantification of 

TMRE fluorescence C. Representative Ca2+ traces of neg shRNA, NDUFAF3–564 and 

SDHA-2 MCF7 cell lines permeabilized with 40 μg/mL of digitonin and loaded with the 

ratiometric Ca2+ indicator Fura 2-FF. A pulse of 10 μM Ca2+ was added at 350 s to measure 

mitochondrial Ca2+ uptake, followed by the addition of 1 μM Ru360 at 550 s, 10 μM 

CGP37157 at 610 s, and 2 μM uncoupler FCCP, at 750 s. D. Quantification of Ca2+ uptake 

rate. E. Magnification of Ca2+ efflux from panel A (between 525 and 650 s). F. 
Quantification of Ca2+ efflux rate after addition of RU360. G. Magnification of Ca2+ release 

after FCCP addition from panel A (between 700 and 900 s). H. Quantification of FCCP-
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induced release of mitochondrial Ca2+. All data shown represent mean ± SEM of three 

independent experiments. *p<0.05, **p<0.01, ***p<0.001. ns = not significant.
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Figure 3. Effects of NDUFAF3 and SDHA knockdown on proliferation, migration and 
mitochondrial ROS generation.
A. Representative images of proliferating cells stained with crystal violet at 0, 24, 48 and 72 

hrs. B. Cell proliferation rates were determined by absorbance of crystal violet stain. C. Cell 

death determine as the percentage of cells that incorporated propidium iodide (PI). D. 
Representative images of a wound healing assay of neg shRNA, NDUFAF3–564 and 

SDHA-2 cells. E. Migration was determined as the percentage of cells covering the 

scratched area. F. Representative images of neg shRNA, NDUFAF3–564 and SDHA-2 cells 

stained with MITOSOX red. Scale bar represents 10 μm. G. Quantitation of MITOSOX red 

fluorescence. H. quantification of MITOSOX red fluorescence by flow cytometry. All data 

shown represent the mean ± SEM of three independent experiments. *p<0.05, **p<0.01, 

***p<0.001.

Jaña et al. Page 21

Mitochondrion. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Effects of NDUFAF3 and SDHA knockdown on mitochondrial Ca2+ overload-induced 
cell death.
Quantification of dead cells was determined by propidium iodide incorporation measured 

with flow cytometry (10,000 events) in cells treated either with ionomycin or ceramide for 

24 h. All data shown represent the mean ± SEM of three independent experiments. *p<0.05, 

**p<0.01, ***p<0.001.
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