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Abstract

The hypothalamic neuropeptide, orexin (or hypocretin), is implicated in numerous physiology and 

behavioral functions, including affective states such as depression and anxiety. The underlying 

mechanisms and neural circuits through which orexin modulates affective responses remain 

unclear. The objective of the present study was to test the hypothesis that the serotonin (5-HT) 

system of the dorsal raphe nucleus (DRN) is a downstream target through which orexin potentially 

manifests its role in affective states. Using a diurnal rodent, the Nile grass rat (Arvicanthis 
niloticus), we first characterized the expression of the orexin receptors OX1R and OX2R in the 

DRN using in situ hybridization. The results revealed distinct distributions of OX1R and OX2R 
mRNAs, with OX1R predominantly expressed in the dorsal and lateral wings of the DRN that are 

involved in affective processes, while OX2R was mostly found in the ventral DRN that is more 

involved in sensory-motor function. We next examined how the orexin-OX1R pathway regulates 

5-HT in the DRN and some of its projection sites using a selective OX1R antagonist SB-334867 

(10 mg/kg, i.p.). A single injection of SB-334867 decreased 5-HT-ir fibers within the anterior 

cingulate cortex (aCgC); five once-daily administrations of SB-334867 decreased 5-HT-ir not only 

in the aCgC but also in the DRN, oval bed nucleus of the stria terminalis (ovBNST), nucleus 

accumbens shell (NAcSh), and periaqueductal gray (PAG). HPLC analysis revealed that five once-

daily administrations of SB-334867 did not affect 5-HT turnover any of the five sites, although it 

increased the levels of both 5-HT and 5-HIAA in the NAcSh. These results together suggest that 

orexinergic modulation of DRN 5-HT neurons via OX1Rs may be one pathway through which 

orexin regulates mood and anxiety, as well as perhaps other neurobiological processes.
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Introduction

Orexin, also known as hypocretin, is a hypothalamic neuropeptide with a well-established 

role in regulating many important physiological functions including the sleep-wake cycle 

and energy homeostasis (Siegel, 2004; Tsujino and Sakurai, 2009). The orexin system has 

also been implicated in regulating mood and anxiety (Nollet and Leman, 2013; Pizza et al., 

2014). For example, narcoleptic patients have diminished central orexin levels, and have a 

higher likelihood of mood and anxiety disorders when compared to the general population or 

to individuals with other neurological disorders (Fortuyn et al., 2010; Ohayon, 2013; 

Vourdas et al., 2002). Similarly, lower orexin levels have been reported in patients suffering 

from major depressive disorders or comorbid depression and anxiety (Brundin et al., 2007a; 

Brundin et al., 2009; Brundin et al., 2007b; Johnson et al., 2010; Rotter et al., 2011). On the 

other hand, a positive correlation between orexin and positive emotions has been observed in 

both dogs and humans (Blouin et al., 2013; Wu et al., 2011). Although there is a clear 

association between orexin and affective state, the underlying neural pathways through 

which orexin regulates mood and emotion are not well understood.

One of the potential downstream targets of the orexinergic system in regulating affective 

state is the dorsal raphe nucleus (DRN), which contains the greatest number of midbrain 5-

HTergic neurons and is implicated in depression and anxiety among other functions (Graeff, 

1993; Michelsen et al., 2007). Orexin neurons project heavily to the DRN (Nixon and 

Smale, 2007; Peyron et al., 1998), where orexin peptides induce excitatory responses in vitro 
(Soffin et al., 2004) and stimulate 5-HT release in vivo (Tao et al., 2006). Manipulating the 

central 5-HT system is the basis of many popular pharmacotherapies for treating affective 

disorders, albeit controversial because the underlying mechanisms and effectiveness of such 

drugs are unclear (Cipriani et al., 2018; Harmer et al., 2017). Regardless, our previous 

findings in a diurnal rodent model of seasonal affective disorder (SAD) support for a role of 

the orexin-DRN pathway in regulating mood and anxiety (Deats et al., 2014; Ikeno et al., 

2016; Leach et al., 2013).

SAD is a major depressive disorder with a seasonal pattern, in which patients experience 

recurring depression episodes in fall and winter followed by spontaneous remission in spring 

and summer (Rosenthal et al., 1984). The symptoms of SAD can be alleviated by bright light 

therapy, suggesting a causal link between reduced light exposure and depression in winter 

months. Bright light exposure promotes arousal and wakefulness in diurnal mammals 

including humans; but induces sleep in in nocturnal ones (Smale et al., 2003). Therefore, a 

diurnal model is advantageous for understanding the neuropathology of SAD (Yan et al., 

2019). Previous work from this laboratory utilized diurnal Nile grass rats (Arvicanthis 
niloticus) that were housed in a winter-like lighting condition with reduced daytime light 

intensity (Leach et al., 2013). After four weeks, the animals showed higher depression- and 

anxiety-like behaviors compared to the controls housed in a summer-like condition with 
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bright light during the day. The increased depression- and anxiety-like behaviors were 

accompanied by attenuated orexin-ir fibers and fewer 5-HT-ir neurons in the DRN, and a 

lower density of 5-HT-ir fibers/terminals in the anterior cingulate cortex (aCgC) (Deats et 

al., 2014; Leach et al., 2013). We also found a functional connection between light, 

hypothalamic orexin cells and the DRN using the neural activity marker Fos (Adidharma et 

al., 2012). Bright light exposure increased Fos-ir in both orexin cells and in the DRN, and 

pretreating grass rats with a selective orexin receptor 1 (OX1R) antagonist, SB-334867, 

prevented light-induced Fos in the DRN. Furthermore, treating grass rats with SB-334867 

led to increased depressive-like behaviors even when the animals were housed in a summer-

like bright light condition (Deats et al., 2014). These results collectively suggest that in 

diurnal grass rats, orexinergic inputs to the DRN underlie light-dependent changes in 

behavioral paradigms modeling aspects of depression and anxiety. It should be noted that 

although the distribution of orexin receptors is generally similar between diurnal and 

nocturnal rodents, there are species-specific expression in brain regions implicated in 

regulating sleep, emotion and cognition (Ikeno and Yan, 2018). For example, OX1R mRNA 

has been detected in the caudate putamen and ventral tuberomammillary nucleus only in 

diurnal grass rats, but not in nocturnal mice (Ikeno and Yan, 2018). Thus, elucidating 

orexinergic regulation in 5-HT system in diurnal grass rats will contribute to a better 

understanding on how the two systems interact in humans.

In the present study we first characterized the expression of orexin receptors in the DRN of 

grass rats. The results revealed a distinct pattern in the distribution of OX1R and OX2R, one 

that suggests OX1R plays a dominant role in the DRN for modulating affective behaviors. 

We then assessed 5-HT-ir in the DRN and in several 5-HT neuron projecting sites involved 

in mood and anxiety, including the aCgC, oval bed nucleus of the stria terminalis (ovBNST), 

nucleus accumbens shell (NAcSh), and periaqueductal gray (PAG) following either acute 

(single administration) or subchronic (five daily administrations) orexin receptor antagonism 

with SB-334867. As discussed above, we previously found that a single administration of 

SB-334867 increased depression-like behaviors in grass rats housed in a summer-like 

condition (Deats et al., 2014), and demonstrating changes in the 5-HT system following the 

same treatment would support it as a downstream target through which orexin regulates 

affective state. The subchronic paradigm was intended to induce a more sustained 

attenuation of OX1R-mediated signaling, as in our grass rat SAD model that displays 

depression-like behaviors when animals are housed under low-intensity daylight (Deats et 

al., 2014; Leach et al., 2013). Following OX1R antagonism, we measured 5-HT-ir as well as 

levels of 5-HT and its metabolite 5-HIAA in the DRN and in projecting sites. The results 

demonstrate that OX1R-mediated signaling regulates the 5-HT system of the DRN, as well 

as some DRN projection sites, and provide insights into the pathways through which orexin 

neurons modulate affective functioning in a diurnal species.

Methods

Animals and housing conditions:

Adult male grass rats (Arvicanthis niloticus) were produced from a breeding colony 

originally established with animals imported from sub-Saharan Africa in 1993 and since 
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maintained at Michigan State University (for details see McElhinny et al., 1997). The 

animals in the colony were housed in a 12hr light:12hr dark (LD) cycle with food (Prolab 

2000 #5P06, PMI Nutrition LLC, MO, USA) and water available ad libitum. The time of 

lights-on was defined as Zeitgeber time (ZT) 0. All procedures were conducted in 

accordance with the National Institutes of Health Guide for the Care and Use of Laboratory 

Animals (NIH Publication No. 80–23) and were approved by the Institutional Animal Care 

and Use Committee of Michigan State University.

Experiment 1: Distribution of orexin receptors in the DRN—To determine the 

distribution of orexin receptors in the DRN, male grass rats (n = 5) were transcardially 

perfused with saline followed by 4% paraformaldehyde around midday between ZT5–7. The 

brains were post-fixed with 4% paraformaldehyde and cryoprotected in 20% sucrose before 

being processed for in situ hybridization using cRNA probes for OX1R and OX2R mRNA 

(details below).

Experiment 2: Effects of acute OX1R antagonism on 5-HT immunoreactivity 
(ir)—Male grass rats (4–6 month old) received a single intraperitoneal (i.p.) injection of 

either the selective OX1R antagonist, SB-334867 (10 mg/kg, Tocris Biosciences, Bristol, 

UK), or vehicle (60:40 DMSO/saline, 0.4 ml) at ZT2. This dose was based on our previous 

study of grass rats (Adidharma et al., 2012; Deats et al., 2014), with effects on their brain 

and behaviors observed at 3 to 4 hr post-injection. Animals were overdosed with 

pentobarbital, then transcardially perfused with saline followed by 4% paraformaldehyde at 

ZT5 (i.e., 3 hr post-injection, n = 6/group). Brains were post-fixed and cryoprotected, and 

sectioned at 40 μm for immunostaining of 5-HT.

Experiment 3: Effects of subchronic OX1R antagonism on 5-HT-ir, 5-HT 
content and turnover—Similar to above, male grass rats received an i.p. injection of 

either the selective OX1R antagonist, SB-334867 (10 mg/kg), or vehicle (60:40 DMSO/

saline, 0.4 ml), but once a day for five consecutive days. 24 hours after the last injection, one 

cohort of animals (n = 6/group) was overdosed with pentobarbital and perfused. Their brains 

were prepared for immunostaining of 5-HT as in Experiment 2. Another cohort of animals 

(n = 8–9/group) was injected once a day for five days with SB-334867 or vehicle, overdosed 

and rapidly decapitated the next day, and the brains used for HPLC analysis of 5-HT system 

measures in the DRN, aCgC and NAc. Fresh-frozen brains were sliced coronally at 200 μm. 

Micropunches (0.5-mm diameter) through the sites of interest were made bilaterally and 

stored at −80° C until being processed for HPLC.

In situ hybridization:

Antisense and sense cRNA probes for OX1R and OX2R were produced and in situ 
hybridization was performed as described previously (Ikeno and Yan, 2018). In brief, 

coronal sections (40 μm) containing the DRN were treated with proteinase K and acetic 

anhydride prior to incubation with DIG-labelled OX1R or OX2R antisense (0.5 μg/ml) or 

sense probes (0.5 μg/ml) overnight at 60 °C. After a series of washes, sections were treated 

with RNase A, then incubated in an alkaline phosphatase-conjugated DIG antibody (1:5000, 
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Sigma-Aldrich) for 3 d. Sections were then incubated in NBT/BCIP solution (Roche) 

overnight at room temperature.

Immunohistochemistry (IHC):

Single-label IHC for 5-HT was conducted using methods similar to those described in our 

previous study (Leach et al., 2013). Briefly, coronal sections containing the DRN and four of 

its target regions of interest were rinsed in 0.1 M phosphate buffer before incubation in a 

primary rabbit antiserum against 5-HT (1:10,000, NT-102 5HTrab, Protos Biotech, NY) at 

4°C for 2 days. This antiserum was raised against a formaldehyde 5-HT-hemocyanin 

conjugate, and specificity was established by abolishment of immunostaining following 

preabsorption with the immunogen (Chalazonitis et al., 2008). Sections were rinsed in 

phosphate buffer before incubation in a secondary antibody (biotinylated goat anti-rabbit, 

1:1000, Vector lab, CA) at 4° C overnight. Processing was completed with the avidin-biotin-

immunoperoxidase technique (VECTASTAIN Elite ABC System, Vector lab, CA) per the 

manufacturer’s protocol. Finally, the 5-HT containing cell bodies and fibers were stained 

brown using 3’3-diaminobenzidine (Sigma-Aldrich, St. Louis, MO) as chromogen.

Quantitative analysis of IHC results:

Images of the brain sections were captured using a CCD video camera (CX9000, MBF 

Bioscience, VM, USA) attached to a light microscope (Nikon Instruments Inc., NY, USA). 

The camera and microscope settings were kept constant for all images. 5-HT-ir was analyzed 

in the DRN, NAcSh, ovBNST, aCgC and PAG. Sections containing the brain regions of 

interest (4–8 sections per region) correspond to the following plates in the rat brain atlas 

(Paxinos and Watson, 2004): planes 92 to 97 (Bregma −7.08 to −7.68 mm) for DRN, planes 

20 to 24 (Bregma 1.56 to 1.08 mm) for NAcSh, planes 30 to 33 (Bregma 0.36 to 0 mm) for 

ovBNST, planes 14 to 33 (Bregma 2.28 to 0 mm) for aCgC and planes 86 to 93 (Bregma 

−6.36 to −7.20 mm) for PAG. In the DRN, sections from the rostral two-thirds of the DRN 

were analyzed, with sections containing 5-HT-ir cell bodies clustered at the center defining 

the rostral subregions (dorsal, ventrolateral, ventral), while the cell bodies spreading laterally 

defined the middle DRN (dorsal, ventral, ventrolateral “wings”) (Coomans et al., 2013). 

Observers blind to the animals’ experimental conditions analyzed the cell number and 

optical density measurements using NIH Image as described in previous studies (Adidharma 

et al., 2012; Deats et al., 2014). Student’s t-tests were used to determine differences between 

animals injected with the OX1R antagonist or vehicle on both the number of 5-HT cell 

bodies and 5-HT fiber density, with ps < 0.05 indicating statistical significance and effect 

size estimated using Cohen’s d.

HPLC-EC Analysis of Monoamines:

Biogenic amines were quantified as described elsewhere (Perez et al., 2005; Spieles-

Engemann et al., 2010b; Kanaan et al., 2015; Chen et al., 2019). Brain punches were 

sonicated in 200 μl of antioxidant solution (0.4 N perchlorate, 1.34 mM EDTA, and 0.53 

mM sodium metabisulfite), and total protein concentration was determined using BCA 

assays (Pierce). Samples were centrifuged at 10,000 g for 10 min at 4° C. The supernatant 

was separated on a 150 × 4.6 mm Microsorb MV C18 100–5 column (Agilent 

Technologies), and simultaneously examined for 5-hydroxytryptamine (5-HT), 5-hydroxy-

Adidharma et al. Page 5

Horm Behav. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indoleacetic acid (5-HIAA), dopamine (DA), homovanillic acid (HVA), and 3,4-

dihydroxyphenylacetic acid (DOPAC). Analytes were quantified on a 12-channel 

coulometric array detector (CoulArray 5200, ESA) attached to an autosampler/solvent 

delivery system (Waters Alliance 2695) under the following conditions: flow rate of 1 ml/

min; detection potentials of 25, 85, 120, 180, 220, 340, 420, 480mV; and scrubbing potential 

of 750 mV. The mobile phase consisted of 100 mM citric acid, 75 mM Na2HPO4, 80 μM 

heptanesulfonate monohydrate, pH 4.25, in 11% methanol. Sample values were calculated 

based on a minimum six-level standard curve of the analytes with quality control samples 

interspersed within the sample run. Data were expressed in ng/mg protein. Student’s t-tests 

were used to determine differences between groups of animals injected with the OX1R 

antagonist or vehicle for each measure, with ps < 0.05 indicating statistical significance and 

effect size estimated using Cohen’s d.

Results

Distribution of OX1R and OX2R mRNA in the DRN of grass rats

In the DRN, hybridization signals for OX1R and OX2R mRNA showed distinct distribution 

patterns. Particularly strong signal for OX1R mRNA was detected in the dorsal subregion of 

the rostral DRN, while there was only moderate expression in the ventral subregion at that 

level (Fig. 1A). There was also very dense OX1R mRNA in the in the lateral wings of the 

middle DRN (Fig. 1A). On the other hand, only weak OX2R signal was found in the rostral 

DRN in either the dorsal and ventral subregions, but very dense OX2R expression was found 

in the ventral part of the middle DRN (Fig. 1A). A sense probe for OX1R or OX2R mRNA 

revealed no specific labeling in the DRN (Fig. 1B).

Acute OX1R antagonism increased 5-HT-ir in the DRN and reduced 5-HT-ir fiber density in 
aCgc

Following a single IP injection of the OX1R antagonist, SB-334867, the numbers of 5-HT-ir 

neurons in the rostral DRN did not differ between the antagonist- and vehicle-treated groups 

(Fig. 2A, t8 = −0.38, p = 0.713, Cohen’s d = 0.24), but in the middle DRN, the antagonist-

treated group had a small but significantly higher number of 5-HT-ir cells compared to 

controls (Fig. 2B, t8 = −2.76, p = 0.025, Cohen’s d = 1.75). Antagonist-treated animals also 

showed significantly lower 5-HT-ir fiber density in the aCgC (Fig. 3, t8 = −3.01, p = 0.017, 

Cohen’s d = 1.78), but not in the BNST, NAcSh or PAG (ps > 0.05, Cohen’s d = 0.32, 1.75 

and 0.0 respectively).

Subchronic OX1R antagonism reduced 5-HT-ir in the DRN and its targets

Five daily treatments of SB-334867 significantly reduced the number of 5-HT-ir neurons in 

the DRN compared to the number found in the DRN of vehicle-treated animals; this was 

true for both the rostral (Fig. 4A, t9 = 2.85, p = 0.046, Cohen’s d = 1.99) and middle DRN 

(Fig. 4B, t9 = 8.38, p < 0.001, Cohen’s d = 4.85). SB-334867-treated animals also showed a 

marked reduction in 5-HT-ir fiber density in the aCgC (t8 = −6.22, p < 0.001, Cohen’s d = 

2.26, Cohen’s d = 1.99), BNST (t9 = 3.58, p = 0.006, Cohen’s d = 1.63), NAcSh (t9 = 8.80, p 
< 0.001, Cohen’s d = 5.32) and PAG (t9 = 5.75, p < 0.001, Cohen’s d = 3.37) (Fig. 5).
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HPLC analysis revealed no significant difference between the SB-334867- and vehicle-

treated groups in 5-HT turnover within the three brain sites analyzed (i.e., DRN, aCgC, 

NAcSh) (Table 1). However, the levels of 5-HT and its metabolite 5-HIAA (normalized by 

total protein) were higher in the NAcSh of the OXR1 antagonist treated group compared to 

controls. The antagonist-treated animals also had higher levels of DOPAC and HVA in the 

NAc, as well as in the DRN. While these measures were all corrected for total protein per 

sample, it should be noted that total protein per sample measured in the NAc itself was 

unexpectedly affected by OXR1 antagonist treatment, with total protein lower in the NAc 

(but not in the DRN or aCgC) of the antagonist-treated group compared to the controls 

(Table 1).

Discussion

The results of the present studies reveal that in diurnal grass rats, orexin-OX1R signaling has 

a significant impact on the central 5-HT system and therefore likely plays a role in 

regulating 5-HT-mediated processes, including affective behaviors. This is probably not 

exclusive to diurnal grass rats because expression of OX1R and OX2R mRNA has also been 

found in the DRN of laboratory mice and rats (Greco and Shiromani, 2001; Marcus et al., 

2001; Mieda et al., 2011; Trivedi et al., 1998), although subregional difference in abundance 

of each receptor has not been previously reported. In the present study, a closer look of the 

distribution of each receptor subtype revealed a distinct spatial pattern in the DRN, such that 

OX1R was predominantly expressed in the dorsal and lateral wings while OX2R was mainly 

expressed in the ventral subregion (Fig. 1). The DRN subregions are not only defined by the 

cytoarchitecture and distribution of 5-HT neurons, but also their afferent and efferent 

projections, together suggesting functional differences (Hale and Lowry, 2011). For 

example, the dorsal subnucleus and the lateral wings are considered part of the neural 

system involved in the behavioral and physiological responses related to stress and anxiety, 

while the ventral subregion regulates sensory-motor functions (Hale and Lowry, 2011). The 

distinct distribution pattern of OX1R and OX2R mRNA in the DRN suggest that OX1R 

predominantly influences the dorsal and lateral DRN for orexin’s effects on mood and 

emotional behaviors in grass rats. This is consistent with existing literature suggesting 

distinct functions of OX1R and OX2R, including a genetic study that found a significant 

association between unipolar depression and a polymorphism of OX1R, but not OX2R 

(Rainero et al., 2011). OX2R has instead been primarily implicated in narcolepsy and 

catalepsy (Hasegawa et al., 2014; Lin et al., 1999; Willie et al., 2003).

Orexin peptides have been shown to regulate 5-HT neurons in nocturnal laboratory rats (Liu 

et al., 2002; Soffin et al., 2004; Tao et al., 2006). Both peptides can excite 5-HT neurons 

directly, as well as indirectly by inhibiting local GABAergic inputs to 5-HT neurons (Liu et 

al., 2002). The excitatory effects of orexin A can be blocked by the selective OX1R 

antagonist, SB-334967 (Soffin et al., 2004). Orexins can also induce the release of 5-HT. 

Infusion of orexin A (30 μM) into the DRN leads to a 2–3-fold increase in local extracellular 

5-HT, while orexin B only leads to 20–30% of increase in 5-HT even at a much higher dose 

(100 μM), suggesting OX1R plays a more important role in regulating DRN 5-HT neurons 

(Tao et al., 2006). Three hours following a single intraperitoneal injection of an OX1R 

antagonist we found a small, but statistically significant, increase in the number of 5-HT-ir 
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neurons in the middle portion of the DRN. We also found a significant decrease in 5-HT-ir 

fiber density in the aCgC when compared to the fiber density found in vehicle-treated 

animals. Such a seemingly rapid change in immunoreactivity for 5-HT itself (rather than its 

precursors or metabolizing enzymes) is consistent with the fact that brain SB-334867 

concentrations after an IP injection reach peak levels within 30 minutes post-injection and 

remain high for at least 4 hours (Ishii et al., 2005). In addition, at least one other study found 

similarly rapid changes in 5-HT immunoreactivity in neural somata and fibers after a single 

experimental event (Lorenzi and Grober, 2012).

There was no significant effect of a single OX1R antagonist injection on 5-HT-ir fiber 

density in the other three brain regions examined (BNST, NAcSH or PAG), though, but did 

so after five daily injections of the OX1R antagonist. These results may collectively suggest 

that antagonism of orexin-OX1R signaling impedes 5-HTergic output from the DRN to some 

of its target regions, resulting in accumulation of 5-HT within the somata and less at the 

terminals. Conversely, the results could indicate that OX1R antagonism causes rapid 

neurotransmitter release that depletes 5-HT from the fibers. The former case may be more 

likely, as previous studies have found that damaging raphe serotonergic cells or their 

ascending projections at least initially reduces rather than increases 5-HT fiber density in 

numerous forebrain targets (e.g., Holschbach et al., 2018; MacLean and Shipley, 1987; 

Mayer-Berstein et al., 1997; Zhou and Azmitia, 1986).

Our HPLC analysis of 5-HT turnover after repeated OX1R antagonist injections aimed to 

address this issue, but we did not find a significant effect on 5-HT turnover in the DRN or in 

the aCgC and NAcSh. However, levels of both 5-HT and 5HIAA were higher in the NAcSh 

of the antagonist-treated group, which was unexpected given their lower 5-HT-ir fiber 

density compared to controls. We do not have a simple explanation for this finding, 

especially in light of the fact that the amount of total protein in the NAcSh (but not the DRN 

or aGgC from the very same animals) used to standardize the neurochemical measurements 

in each sample was unexpectedly lower in the antagonist-treated group than in the controls. 

Perhaps the reduction in total protein levels in the NAcSh of SB-334867-treated animals 

reflects an inhibition of orexin-induced neurotrophic factors involved in mesolimbic function 

(Harada et al., 2013; Winrow et al., 2010; Yamada et al., 2009). In any case, previous work 

from our group has shown that acute antagonism of OX1R signaling with SB-334867 

provokes a depressive phenotype in the forced-swim test in diurnal grass rats (Deats et al., 

2014), which may at least partly due to a change in 5-HTergic inputs to the aCgC, as 

indicated by a reduction in 5-HT-ir fiber density. The aCgC has long been implicated in 

regulating emotion and mood (Etkin et al., 2011; Pizzagalli, 2011). Patients with unipolar 

and bipolar depression show reduced neural activity in the aCgC (Drevets et al., 1997), and 

lesions of the aCgC in rats significantly increase immobility time in a forced swim test, 

reflecting greater behavioral despair (Bissiere et al., 2006). 5-HT modulates activity of 

aCgC, with the antidepressant effects of deep brain stimulation in the aCgC nullified by 5-

HT depletion (Hamani et al., 2012), and decreased 5-HT transporter binding in the aCgC 

found after human subjects are treated with bright light therapy (Harrison et al., 2015). Our 

results show that a single injection of OX1R antagonist significantly reduces 5-HT-ir fibers 

in the aCgC within 3 hrs, highlighting a potential pathway through which the orexinergic 

activity can acutely and relatively rapidly regulate affective state. Determining some of the 
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cellular mechanisms through which natural or pharmacological changes in orexin receptor 

activity can rapidly affect aspects of the 5-HT system that underlie our broader assessments 

of immunoreactivity and turnover - such as 5-HT cell expression and activity of the TPH2 

and AADC enzymes, cell firing rate and pattern, and rates of terminal 5-HT packaging and 

release - under particular conditions that influence affective state (e.g., different lighting 

conditions, stress levels, or social environments) would be valuable in future studies.

Following five-days of OX1R antagonism with SB-334867, we found an even more marked 

change of 5-HT-ir, involving a widespread decrease in the number of 5-HT-ir cells in the 

DRN and a decrease in 5-HT-ir fiber density not only in the aCgC but also in the NAcSh, 

BNST and PAG. The latter sites have also been implicated in regulating mood and anxiety 

(Bennett, 2011; Graeff, 2004; Puig and Gulledge, 2011). For instance, the NAcSh is well 

known to provide motivational salience to a given stimulus and is tightly linked to the 

feeling of pleasure, which is a key parameter affected in mood disorders (Ito et al., 2004; 

Shirayama and Chaki, 2006). 5-HT release in the mesolimbic system is associated with 

reduced motivated behavior, so one could have expected OX1R antagonism to promote 5-

HT signaling (possibly increase 5-HT-ir fiber density in the NAc rather than decrease it). 

However, optogenetic stimulation of 5-HT release in the NAc does not alone affect 

responding for saccharine reward in mice (Browne et al., 2019), so perhaps our decrease in 

5-HT-ir fiber density is unrelated to orexin’s effects on accumben’s control of affective 

behaviors. The BNST has been implicated in stress and anxiety, with 5-HT 1A receptor 

activation associated with an anxiolytic response (Garcia-Garcia et al., 2018; Gomes et al., 

2011; Levita et al., 2004) and 2C receptor activity associated with an anxiogenic response 

(Marcinkiewcz et al., 2016). Furthermore, electrical stimulation of the BNST produces 

behaviors similar to those caused by a stressful stimulus (Casada and Dafny, 1991). Reduced 

5-HT input onto 1A receptors in the BNST may therefore impede the ability to cope with 

stressful stimuli, generating an anxiogenic response as similarly exhibited by diurnal grass 

rats treated with OXR1 antagonist or housed in dim light during the daytime (Deats et al., 

2014; Ikeno et al., 2016). Lastly, OX1R activation disinhibits the PAG (Ho et al., 2011), 

which depending on the PAG subregion involved is associated with fearful or anxious 

behaviors (Brandao et al., 2008; Fendt, 1998; Miller et al., 2010; Morgan and Clayton, 

2005), and OX1R receptor antagonism in the PAG can reduce anxiety-related behaviors in 

laboratory rats (Pourrahimi et al., 2019).

Previous research on our grass rat model of SAD found that dim daylight intensity led to 

decreased 5-HT-ir fiber density in the DRN, aCgC and PAG; these animals also shows more 

depression- and anxiety-like behaviors compared to animals housed under conditions of 

bright daylight intensity (Ikeno et al., 2016; Leach et al., 2013). The dim-daylight animals 

also had fewer orexin-ir neurons in the hypothalamus and lower orexin-ir fiber density in the 

DRN compared to controls housed in bright light during the day (Deats et al., 2014). The 

results from the present study support a causal link between the attenuated OXergic activity 

and 5-HTergic outputs observed in the grass rat model of SAD, and suggest that the 5-

HTergic dorsal raphe is one of the downstream targets for orexin’s modulation of affective 

behaviors in diurnal grass rats and other animals.
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Highlights

• OX1R and OX2R show distinct distribution in the dorsal raphe of grass rats.

• OX1R antagonism alters 5-HT-ir within the dorsal raphe and its target sites.

• The dorsal raphe is a downstream site of orexin for regulating affective 

behaviors.
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Figure 1: 
Distribution of OX1R and OX2R mRNA in the rostral and middle DRN. DRD, DR dorsal; 

DRV, DR ventral; DRVL, DR ventrolateral wings. Scale bar, 100 μm.
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Figure 2: 
Representative photomicrographs and quantitative analysis of 5-HT-ir cells in the rostral (A) 

and middle (B) DRN following a single injection of OX1R antagonist SB-33486 or vehicle. 

Data are shown as Means ± SEMs (n = 5). *indicates p < 0.05. Scale bar, 100 μm.
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Figure 3: 
Representative photomicrographs (A) and quantitative analysis (B) of 5-HT-ir fibers in the 

anterior cingulate cortex (aCgC), oval bed nucleus of the stria terminalis (ovBNST), nucleus 

accumbens shell (NAcSh), and periaqueductal grey area (PAG) following a single injection 

of OX1R antagonist SB-334867 or vehicle. Data are shown as Means ± SEMs (n = 5). 

*indicates p < 0.05. Scale bar, 100 μm.
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Figure 4: 
Representative photomicrographs and quantitative analysis of 5-HT-ir cells in the rostral (A) 

and middle (B) DRN following five daily injections of the selective OX1R antagonist, 

SB-334867 or vehicle. Data are shown as Means ± SEMs (n = 6 vehicle/n = 5 antagonist). 

*indicates p < 0.05. Scale bar, 100 μm.
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Figure 5: 
Representative photomicrographs (A) and quantitative analysis (B) of 5-HT-ir fibers in the 

anterior cingulate cortex (aCgC), oval bed nucleus of the stria terminalis (ovBNST), nucleus 

accumbens shell (NAcSh), and periaqueductal grey area (PAG) in animals receiving either 5 

daily injection of the OX1R antagonist SB-334867 or vehicle. Data are shown as Means ± 

SEMs (n = 6 vehicle/n = 5 antagonist). *indicates p < 0.01. Scale bar, 100 μm.
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Table 1:

Intracellular serotonin and dopamine measures indicated by HPLC analysis of the dorsal raphe nucleus 

(DRN), anterior cingulate cortex (aCgC), and nucleus accumbens (NAc) of male Nile grass rats that received 

five daily injections of the OXR1 antagonist (SB-334867; Antag) or Vehicle (Veh). Significant differences 

between groups indicated in bold font.

5HIAA (pg/μg 
protein)

5-HT (pg/μg 
protein)

5HIAA/5-HT DOPAC (pg/μg 
protein)

HVA (pg/μg 
protein)

Total Protein 
(μg/sample)

DRN Veh (Mean ± 
SEM)

23.46 ± 1.57 9.92 ± 0.76 2.42 ± 0.15 0.81 ± 0.03 1.09 ± 0.03 11.48 ± 0.90

Antag (Mean ± 
SEM)

26.24 ± 1.41 11.15 ± 0.76 2.39 ± 0.11 0.95 ± 0.06 1.26 ± 0.06 11.82 ± 0.86

T-test (p; Cohen’s 
d)

0.27; 0.59 0.33; 0.52 0.91; 0.07 0.05; 0.98 0.04; 1.14 0.81; 0.12

aCgC Veh (Mean ± 
SEM)

1.59 ± 0.12 0.82 ± 0.03 1.93 ± 0.14 0.26 ± 0.03 0.44 ± 0.07 57.13 ± 3.46

Antag (Mean ± 
SEM)

1.53 ± 0.07 0.86 ± 0.03 1.79 ± 0.08 0.28 ± 0 .03 0.41 ± 0.03 59.91 ± 2.38

T-test (p; Cohen’s 
d)

0.70; 0.29 0.41; 0.54 0.34; 0.74 0.64; 0.13 0.75; 0.21 0.51; 0.37

NAc Veh (Mean ± 
SEM)

2.39 ± 0.15 1.43 ± 0.11 1.73 ± 0.17 1.55 ± 0.11 1.58 ± 0.09 35.11 ± 2.28

Antag (Mean ± 
SEM)

3.40 ± 0.21 2.20 ± 0.16 1.56 ± 0.06 2.61 ± 0.30 2.43 ± 0.18 22.86 ± 2.17

T-test (p; Cohen’s 
d)

0.00; 1.98 0.00; 1.99 0.34; 0.49 0.01; 1.58 0.00; 2.07 0.00; 1.92
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