
Drosophila, which lacks canonical transcription-coupled
repair proteins, performs transcription-coupled repair
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Previous work with the classic T4 endonuclease V digestion of
DNA from irradiated Drosophila cells followed by Southern
hybridization led to the conclusion that Drosophila lacks tran-
scription-coupled repair (TCR). This conclusion was reinforced
by the Drosophila Genome Project, which revealed that Dro-
sophila lacks Cockayne syndrome WD repeat protein (CSA),
CSB, or UV-stimulated scaffold protein A (UVSSA) homologs,
whose orthologs are present in eukaryotes ranging from Arabi-
dopsis to humans that carry out TCR. A recently developed in
vivo excision assay and the excision repair-sequencing (XR-Seq)
method have enabled genome-wide analysis of nucleotide exci-
sion repair in various organisms at single-nucleotide resolution
and in a strand-specific manner. Using these methods, we have
discovered that Drosophila S2 cells carry out robust TCR com-
parable with that observed in mammalian cells. Our findings
provide critical new insights into the mechanisms of TCR
among various different species.

Nucleotide excision repair (excision repair) is the main
mechanism used by many organisms to remove cyclobutane
pyrimidine dimers (CPDs)5 that are induced in DNA by UV
light (1, 2). The mechanism of excision repair has been investi-
gated in considerable detail in several model organisms includ-
ing Escherichia coli, Saccharomyces cerevisiae, mice, humans,
and more recently Arabidopsis thaliana (3, 4). In contrast,
although Drosophila melanogaster is an extensively used model
organism that has contributed significantly to the development
of modern views on ionizing radiation and chemical mutagen-
esis and to the development of double-strand break repair and

recombination models (5), there is rather limited information
on nucleotide excision repair in this organism.

Work on excision repair in Drosophila is of special interest
because, of all of the model organisms studied, ranging from
E. coli to humans, it is the only one that has been reported to
lack transcription-coupled repair (TCR) (6 –10). This conclu-
sion was further supported by genomic analyses that revealed
that the CSA and CSB proteins, which are necessary for TCR
(11) and are present in organisms ranging from yeast (Rad28
and Rad26, respectively) to humans, are missing in Drosophila
and other insects in the order Diptera (5, 12, 13). Considering
the importance of TCR in mutation avoidance (14), the appar-
ent absence of TCR in Drosophila is rather surprising. There-
fore, we decided to investigate this phenomenon with new bio-
chemical tools that have become available since the previous
experimental studies on the subject nearly 3 decades ago.

In transcription-coupled repair, damage in the template
(transcribed strand (TS)), but not the nontranscribed strand
(NTS), causes arrest of RNA polymerase (RNAP). The arrested
RNAP is recognized by Mfd in E. coli (15, 16) and by CSB in
eukaryotes (17). The bacterial TCR process is well-character-
ized and involves concerted removal of RNAP by the Mfd trans-
locase and Mfd-mediated delivery of repair proteins, resulting
in repair at an accelerated rate compared with repair of the NTS
(15). In contrast, TCR is not well-understood in higher organ-
isms. The mechanism is unlike that in E. coli, because the CSB
translocase does not remove the stalled RNAP (18). Neverthe-
less, CSB, along with CSA, a WD repeat– containing protein
with ubiquitin ligase activity (19), somehow enables the eukary-
otic basal repair proteins (which are not homologous to pro-
teins in E. coli) to produce a commonly 3–10-fold accelerated
rate of TS repair, which varies depending upon the level of
transcription (14, 16, 20).

In the classic TCR assay (14), UV-irradiated cells are incu-
bated for various times to allow repair and then harvested.
Genomic DNA is isolated and digested with appropriate restric-
tion enzymes, and then duplicate aliquots from each time point
are incubated with or without T4 endonuclease V, which
incises sites of CPDs. Following separation of the DNA on a
denaturing agarose gel, the gel is probed with gene-specific and
strand-specific probes. The level of damage at each time point is
calculated from the decrease in full-length fragment caused by
T4 endonuclease. The loss of damage with time represents
repair. Although this method has served to characterize essen-
tial properties of strand-specific repair, by its very nature, it is
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low-resolution and has the potential of missing TCR because it
is an indirect method that is based on subtracting two large
numbers from one another and because it is limited to analyz-
ing one gene at a time. In contrast, the recently developed XR-
Seq (excision repair-sequencing) assay directly captures and
identifies the excised oligomers, and thus it directly and simul-
taneously measures repair throughout the genome (4, 20).
Using XR-Seq, we find that Drosophila is proficient at TCR
despite the previous reports and the absence of CSA and CSB in
this organism.

Results

Excision by dual incision in Drosophila

Drosophila S2 cells were irradiated with 20 J m�2 of 254-nm
UV light and incubated for various times at 27 °C. Then cells
were lysed, and the low-molecular weight DNA was separated
from genomic DNA by the Hirt procedure (4). After immuno-
precipitation with anti-CPD antibodies, the samples were
mixed with an internal control 50-mer DNA oligonucleotide,
3�-end–labeled, and separated on a sequencing gel. As seen in
Fig. 1A, excision products in the range of 24 –30 nt were
detected with a median of 27–28 nt.

Irradiated S2 cells were also processed for XR-Seq, in which
the excision products are isolated, repaired by CPD photolyase,
sequenced by next-generation sequencing (NGS), and aligned
to the genome to create a map of the entire genome showing
sites of repair in both strands at single-nucleotide resolution.
The lengths of excision products sequenced (reads) after 10
min of repair were recovered with the frequency distribution
shown in Fig. 1B, which shows a peak at 27 and 28 nt, in agree-
ment with Fig. 1A results. Reads for products 26, 27, 28, and 29
nt in length were individually analyzed for nucleotide distribu-

tion as shown in Fig. 1C. The results show enrichment of pyrim-
idines 7–9 nt from the 3�-end. Thymines are more common
than cytosines, consistent with the prevalence of cyclobutane
thymine dimer photoproducts produced by UV. Thus, the loca-
tion of the dual incisions made by the excision nuclease with
respect to the CPD in S2 cells is essentially the same as in
humans (3, 20). This finding is not surprising, considering that
Drosophila possesses the complete set of orthologs to the basal
excision repair factors present in mammals (5). It is worth not-
ing that in human cells, it has been shown that the same exci-
sion pattern is produced by the transcription-coupled and
global repair pathways (20).

Processing of the excised oligomers

In humans (20, 21), yeast (22), and Arabidopsis (23, 24), the
CPD-containing oligomers are rapidly processed by exonu-
clease(s) such that the primary excision product has a half-life
of about 1 h. As repair progresses, two populations of excision
products, one ranging from 24 to 32 nt and centering at 26 –27
nt and a second in the range of 15–20 nt and centering at 17–18
nt, are observed. These products as produced in NHF1 cells are
illustrated in Fig. 2A. The 15–20-nt degradation products can
be seen even at the earliest time point of 30 min and become
prominent at 2 h. Thereafter, both the primary and secondary
excision products detectable by radiolabeling decline, presum-
ably due to low recovery and labeling efficiency of smaller
degraded CPD-containing oligonucleotides (not shown). A
comparison of the fate of excised oligomers in human and Dro-
sophila cells (Fig. 2B) reveals an interesting contrast; in S2 cells,
no degradation products are detectable in the first 2 h and, in
fact, up to at least 12 h (data not shown). This indicates that
Drosophila either lacks a nuclease that is present in organisms

Figure 1. In vivo excision assay and XR-Seq analysis in Drosophila. A, in vivo excision assay. S2 cells were irradiated with 20 J/m2 UV and incubated at 27 °C
for 0 –5 h. Then cells were lysed by the Hirt procedure, and low-molecular weight DNA in the supernatant was immunoprecipitated with anti-CPD antibodies.
The oligonucleotides recovered were mixed with a 50-mer internal control oligonucleotide, 3�-end–labeled, and separated on a DNA-sequencing gel along
with size markers. The excised oligomers are 24 –32 nt in length, as is the case in human excision repair. B, size distribution of excised oligonucleotides as
determined by XR-Seq analysis. A range of 24 –32 and median of 27–28 nt was found. C, dual incision site determination by the distribution of thymine
nucleotide in the reads. Frequency distribution of the 4 nucleotide bases in the 26-, 27-, 28-, and 29-nt-long reads as determined by XR-Seq is plotted. Potential
T-T dinucleotides peak �6 – 8 nucleotides from the 3�-end and 21–23 nucleotides from the 5�-terminus.
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ranging from yeast to Arabidopsis to humans and that gener-
ates a similar degradation pattern in all of these other species, or
this degradation intermediate is not stabilized in Drosophila as
it is in other organisms.

Transcription-coupled repair in Drosophila

Previous work using strand-specific Southern hybridization
did not detect a difference in the rates of repair of TS and NTS
in individual Drosophila genes (6 –8), and it was concluded that
Drosophila does not perform TCR. This notion was further
strengthened by genome analyses, which revealed that Dro-
sophila and other Dipteran insects lacked CSA and CSB (5, 12,
13) and UVSSA (25) orthologs. However, it was also pointed out
that in the absence of TCR, RNAPII stalled at damage sites in
the TS would be expected to interfere with excision repair, as
has been shown in E. coli (26), resulting in preferential repair of
the NTS (5), which was not observed (6 –10). To clarify these
conflicting observations and theoretical expectations, we ana-
lyzed our XR-Seq data from S2 cells to obtain a global view of
strand-specific repair of the Drosophila genome.

From our genomic repair maps of Drosophila, we initially
focused on the betaTub60D and ade3 genes for TCR analysis
because the lack of strand-specific repair in these genes, as
determined by Southern blotting, was considered definitive evi-
dence for lack of TCR in Drosophila (6 –8). Fig. 3A shows

screenshots of repair of the betaTub60D and ade3 genes in
Drosophila as well as the human orthologues of these genes
(TUBB3 and GART, respectively) in NHF1 and CSB cells, and
Fig. 3B shows quantitative analysis of the TS and NTS repair of
these genes. As is visually apparent from the screenshots, the
TS of betaTub60D is repaired more efficiently than the NTS. A
similar result is seen with repair of ade3. The quantitative data
for TS and NTS reads in Fig. 3B clearly show that Drosophila
performs TCR similar in magnitude to that seen in NHF1
human cells. A gene-by-gene survey of the genomic repair map
(not shown) reveals varied levels of TCR in many but not all
Drosophila genes, presumably reflecting varied levels or absence
of transcription. For comparative purposes, Fig. 3 shows a screen-
shot and quantitation of repair for a Drosophila gene, CG10348, in
which TCR is essentially absent.

Interestingly, in CSB cells (Fig. 3), there is not only a lack of
TCR, but a preferential repair of the NTS in both the TUBB3
and GART genes. This result parallels the preferred NTS repair
seen in E. coli cells lacking the TCR factor Mfd (27). This result
in CSB cells is consistent with inhibition of repair by the stalled
polymerase and merits more systematic investigation.

Genome-wide TCR in Drosophila

To examine TCR in a large sample of Drosophila genes, we
analyzed the CPD repair of all nonoverlapping genes over 1 kbp
(5,706 genes). The results are shown in Fig. 4A, with results for
different repair time points for S2 cells in the top row, and cor-
responding time points for NHF1 cells (10,100 genes over 5
kbp) in the row below. Each panel illustrates the averaged repair
from the transcription start site (TSS) to the transcription end
site (TES) for all of the genes considered, plus the average repair
2 kbp upstream and downstream. As is clear from this figure, in
both species, TCR across the gene bodies appears to have begun
by 10 min, and TS repair is dominant at 30 –36 min. The mag-
nitudes of TCR in human and Drosophila cell lines are at com-
parable levels. At later time points, after the TS is cleared of
damage, the preference shifts to the NTS strand. It takes longer
to clear TS damage (over 8 h) in human cells, probably due to
longer genes in humans. The robust TCR signal exhibited by S2
cells, which lack CS proteins, contrasts starkly with the com-
plete absence of TCR in mutant human CSB cells, which are
compared with NHF1 cells in Fig. 4B. In fact, the CSB cells
exhibit a trend toward preferential NTS repair, as seen in the
individual TUBB3 and GART genes (Fig. 3).

An interesting difference between the human and Drosoph-
ila repair profiles is seen in Fig. 4. As reported previously for
NHF1 cells (20), and seen here at the 36-min and 1-h time
points, there is a switch in strand preference for repair, from TS
within the gene body to the NTS immediately upstream of the
TSS. This is because of the well-known fact that upstream of
the mammalian TSS, there is promoter- and enhancer-spe-
cific transcription “antisense” relative to the gene body (28).
These “antisense” transcripts are not found in Arabidopsis
(24), and our data suggest that they are absent in Drosophila
as well. Instead, a dip in repair of both strands is observed
immediately upstream of the TSS in Drosophila, presumably
because of interference by transcription factors bound
immediately upstream of coding sequences.

Figure 2. Nucleolytic processing of the excised oligonucleotides in
human and Drosophila cells. Human NHF1 and Drosophila S2 cells were
irradiated with 10 Jm�2 of 254-nm UV and incubated at 37 °C (human) or
27 °C (Drosophila) for the indicated times. Then the excised oligonucleotides
were isolated, mixed with a 50-mer internal control, 3�-end labeled, and sep-
arated on DNA-sequencing gels. Shown are NHF1 (A) and S2 (B) cell excision
products. Note that in NHF1 cells, the excised oligomers are degraded signif-
icantly by 2 h so that at this time point two classes of oligomers are seen, those
centering at 26 –27 nt (primary excision product) and those centering at
18 –19 nt (degradation products). In contrast, in S2 cells, the size distribution
of the excision products does not change with time.
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Discussion

Contrary to the view held for nearly 3 decades, we show that
Drosophila performs TCR. In fact, the magnitude of the
TS/NTS repair ratio in transcribed genes is comparable to
the ratios of corresponding genes in human cells. We ascribe
the previous failure to observe TCR in Drosophila partly to the
limitation of the T4 endonuclease V digestion/Southern assay
used in previous studies. An important additional consider-
ation is the particular time points at which repair was analyzed.
The earliest repair time point commonly used in the previous
studies was 4 h post-UV treatment (6 –10). TCR may be
detected in mammalian cells following 4 h of repair (Fig. 4);
however, in yeast, which have much smaller genes, TCR is com-
plete within 1 h (22). It appears that a similar rapid kinetic

profile in Drosophila, which also has relatively small genes,
likely contributes to the discrepancy between our findings and
previous studies.

Our finding of TCR in Drosophila raises a new question:
analysis of the Drosophila genome and the genomes of other
Dipteran insects has failed to reveal CSA, CSB, or UVSSA
orthologs, which are known to be essential for TCR in organ-
isms ranging from plants to humans. The E. coli TCR factor
Mfd, which has a different evolutionary history than CSB,
exhibits considerable sequence homology in the ATPase/trans-
locase domain of the protein. It is possible that another trans-
locase with great sequence divergence from all known TCR
translocases couples transcription to repair upon the encounter
of RNAP with a transcription-blocking DNA lesion in Drosoph-

Figure 3. Transcription-coupled repair in human NHF1 and Drosophila S2 cells at the single gene level. Screenshots (A) of XR-Seq data of select genes are
shown along with quantitative analysis (B) of the read numbers. Genes analyzed include the betaTub60D gene from Drosophila and the human ortholog TUBB3,
as well as the Drosophila ade3 gene and the human ortholog GART. Preferential repair in the TS as compared with the NTS of these genes is seen in the S2 and
NHF1 cells but is absent in CSB cells, which in fact show the opposite preference, perhaps due to inhibition of TS repair by RNAP stalled at the damage. The
Drosophila CG10348 gene is also analyzed in the bottom panels of A and B to illustrate an example of the absence of TCR. The y axis in each case is RPKM. The
repair signal for Drosophila appears stronger because it has a much smaller genome and thus more reads per kbp per million reads. Time points are 30 min (S2
cells), 36 min (NHF1), and 1 h (CSB).
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ila. In fact, in Caenorhabditis elegans, other chromatin-remod-
eling factors have been suggested to function in place of CSB for
TCR during certain developmental stages (29). There is a need
for further work to identify such potential transcription-cou-
pled repair factors in Drosophila.

A passive mechanism for TCR has been suggested in which
the stalled RNAPII reveals to the basal repair factors lesions
that would otherwise be concealed by nucleosomes. This
mechanism is based partly upon observations of inhibition of
repair by nucleosomes, seen in vitro (30), and repair of tran-
scription-blocking lesions unimpeded by the presence of the
stalled RNAPII, also seen in vitro (11, 31–33). This particular
model as related to Drosophila is attractive in its indepen-
dence of CS proteins. Further work is needed to clarify the
involvement of CS proteins in TCR as well as in the develop-
mental deficiencies associated with Cockayne syndrome
(34).

Experimental procedures

Excision and XR-Seq assays

S2-DGRC cells were obtained from the Drosophila Genetic
Resources Center. Cells were cultured at 27 °C in Schneider’s
medium with heat-inactivated fetal bovine serum at 10% (v/v).
For UV treatments, cells were inoculated into R-150 plates and
grown to about 25– 80% confluence. Medium was gently

removed from the semi-adherent monolayer, cells were irradi-
ated with UV-C, and then fresh medium containing sterilized,
conditioned medium was added to cells, and cells were incu-
bated at 27 ºC. Excision assays employed 20 J m�2 (Fig. 1) or 10
J m�2 (Fig. 2), and XR-Seq assays employed 20 J m�2. Following
predetermined repair times, plates were placed on ice, and
cooled cells were harvested by scraping and rinsing with ice-
cold PBS. Cells were pelleted, transferred to Eppendorf tubes,
washed with cold PBS, and resuspended in 320 –340 �l of cold
TE. Samples were processed for excision and XR-Seq assays
as described (27), using 5 �l of RNase A and proteinase K and
using 9.2% sequencing gels. For both assays, samples were
immunoprecipitated with anti-CPD antibody and then
either radiolabeled (excision assay) or ligated to adapters and
processed for sequencing (XR-Seq). Approximately 13% of
the input CPD-containing excision products are recovered
using this standard excision assay/XR-Seq immunoprecipi-
tation procedure. One plate of S2 cells per repair time point
was sufficient for excision or XR-Seq assay. Drosophila pos-
sesses photolyases, so cells were kept in the dark or under
dim yellow illumination from the time of irradiation to the
time of addition of NaCl to cell lysates. XR-Seq of NHF1
(normal human fibroblast) cells was performed as described
previously (4). XR-Seq analysis of CSB cell repair utilized
data deposited in a prior study (20).

Figure 4. Genome-wide analysis of TCR of transcribed genes in Drosophila and human cells. A, comparison of Drosophila S2 and human NHF1 cells. XR-Seq
data from the indicated time points are plotted as average repair reads RPKM (y axis) along the length of a “unit gene.” For constructing a unit gene, a Drosophila
data set of 5,706 genes was selected to include all genes �1 kbp with no genes that overlap or have a distance of less than 100 bp between adjacent genes. The
human gene set includes 10,100 genes of �5 kbp in length with no overlaps and with a distance of at least 5 kbp between genes. For each species, the “unit
gene” is 100 bins in length, and values for average repair were obtained by dividing each gene into 100 bins and averaging the repair values for each successive
bin from 1 to 100. B, comparison of WT human NHF1 cells with cells from a patient with CSB. Data were analyzed as in A.
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Data analysis

At least 6 million unique mapped reads were obtained for
each sample. Analysis of sequencing reads and data visualiza-
tion were as described previously (35). The alignment genome
version was dm6_UCSC for S2 cells and hg38_UCSC for human
cell lines. For plotting average repair profiles as a unit gene, we
chose the genes with length �1 kbp for Drosophila and �5 kbp
for Homo sapiens, and the distance between genes was at least
100 bp for Drosophila and 5 kbp for Homo sapiens. With these
criteria, the total number of genes selected was 5,706 for Dro-
sophila and 10,100 for Homo sapiens. Each gene was evenly
divided into 100 bins from the TSS to the TES, and 2 kbp (25
bins) upstream of TSS, 2 kbp (25 bins) downstream of TES, and
for each bin, from first to last, an average value for each of the
selected genes was obtained and plotted. The y axis average
reads per kbp per million total reads (RPKM) for each bin was
plotted with R. The raw data and alignment data have been
deposited in the Gene Expression Omnibus under accession
numbers GSE76391, GSE67941, and GSE138846.
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