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Precise modification and processing of rRNAs are required
for the production of ribosomes and accurate translation of pro-
teins. Small nucleolar ribonucleoproteins (snoRNPs) guide the
folding, modification, and processing of rRNAs and are thus
critical for all eukaryotic cells. Bcd1, an essential zinc finger HIT
protein functionally conserved in eukaryotes, has been impli-
cated as an early regulator for biogenesis of box C/D snoRNPs
and controls steady-state levels of box C/D snoRNAs through an
unknown mechanism. Using a combination of genetic and bio-
chemical approaches, here we found a conserved N-terminal
motif in Bcd1 from Saccharomyces cerevisiae that is required for
interactions with box C/D snoRNAs and the core snoRNP pro-
tein, Snu13. We show that both the Bcd1–snoRNA and Bcd1–
Snu13 interactions are critical for snoRNP assembly and ribo-
some biogenesis. Our results provide mechanistic insight into
Bcd1 interactions that likely control the early steps of snoRNP
maturation and contribute to the essential role of this protein in
maintaining the steady-state levels of snoRNAs in the cell.

Ribosomes are essential and conserved macromolecular
machines that catalyze the production of proteins in all cells.
Ribosome integrity is extensively monitored through its bio-
genesis in a highly regulated process that involves nearly 200
assembly factors (1, 2). A critically important class of assembly
factors for ribosome biogenesis is small nucleolar ribonucleo-
proteins (snoRNPs)3 that ensure the proper folding, modifica-
tion, and processing of ribosomal RNAs for the coordinated
binding of ribosomal proteins (3, 4). snoRNPs fall into two
major groups based on their conserved RNA elements: box
H/ACA snoRNPs direct the isomerization of uridines into
pseudouridines, whereas box C/D snoRNPs guide the 2�-O-
methylation of target RNAs. In these complexes, a small nucle-
olar RNA (snoRNA) binds to a set of essential core proteins to
form the catalytically active snoRNP (5).

Eukaryotic box C/D snoRNPs contain four core proteins:
Snu13, Nop56, Nop58, and the methyltransferase Nop1 in yeast
(SNU13, NOP56, NOP58, and FBL/fibrillarin in humans).
These proteins are proposed to assemble on the snoRNA in a
hierarchal manner (6 –9), in a process that is regulated by the
action of several assembly factors (10). In yeast, these assembly
factors include the Hsp90/R2TP (Rvb1, Rvb2, Tah1, and Pih1)
chaperone/co-chaperone system and the proteins Rsa1, Hit1,
and Bcd1 (11–20). However, how these assembly factors drive
the biogenesis of snoRNPs is not understood.

Among the assembly factors linked to box C/D snoRNP bio-
genesis, Bcd1 is essential and specific to this process, whereas
others are implicated in the biogenesis of other RNPs (16,
21–23). Examples are the involvement of Rsa1 in assembly of
the large ribosomal subunits (24) and the participation of R2TP
in diverse cellular processes including transcription, chromatin
remodeling, phosphatidylinositol-3 kinase-related protein
kinase (PIKK) signaling, mitotic spindle assembly, and apopto-
sis (25–27).

The importance of Bcd1 as a factor required for box C/D
snoRNA accumulation was first revealed using a tetO7 shutoff
allele of the essential BCD1 gene in a microarray screen that was
designed to monitor the abundance and processing of noncod-
ing RNAs (22, 23). Later, RNAi-mediated depletion of the
human homologue of BCD1, ZNHIT6 indicated the conserva-
tion of Bcd1/ZNHIT6 function for maintaining box C/D
snoRNA levels in human cells (11). Several more recent studies
have identified the network of binding proteins for Bcd1 and
ZNHIT6 (11–13, 21) including Rvb2, Pih1, Rsa1, Nop58, and
Snu13 in yeast cells (11, 12) and RUVBL1/RUVBL2, PIH1,
NUFIP, ZNHIT3, NOP58, and SNU13 in human cells (13).
However, the mechanism of these interactions and the chro-
nology of the binding events remain largely unclear.

Bcd1/ZNHIT6 are thought to be involved at early steps dur-
ing the assembly of box C/D snoRNPs (13, 21). Using quantita-
tive proteomics in human cell lines, ZNHIT6 was identified as
part of an early protein-only complex together with assembly
factors RUVBL1/2, NUFIP, ZNHIT3, and the core proteins
SNU13 and NOP58 (13). More recently, depletion of Bcd1 was
shown to result in a significant loss of interactions between
Rsa1 and Nop58, suggesting that Bcd1 participates in loading of
Nop58 into an early pre-snoRNP complex (21). Furthermore,
Bcd1 controls the interaction of several snoRNP-related pro-
teins with C/D snoRNAs (21). Although depletion of BCD1 was
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shown to have minimal effect on the amount of Snu13 and Nop56
associated with box C/D snoRNAs, it significantly reduced the
snoRNA association of assembly factors Rvb2, Pih1 and Rsa1, and
the core proteins Nop58 and Nop1 (21). It is unclear how Bcd1
coordinates all these protein-protein and protein-RNA interac-
tions and regulates the steady-state level of snoRNAs. Intriguingly,
Bcd1 is reported to interact with RNAs directly in a nonspecific
manner, and to bind to longer RNAs with higher affinity (16).
Together, how Bcd1 gains specificity for assembly of box C/D
snoRNPs and the significance of Bcd1-RNA interaction for main-
taining snoRNA levels remain unclear.

Here we define the domain organization of Bcd1/ZNHIT6
and use a combination of genetic and biochemical approaches
to show that Bcd1 interacts with snoRNAs and Snu13 via a
conserved element near its N-terminal region. Further, we
demonstrate that perturbation of these interactions leads to a
significant decrease in steady-state levels of box C/D snoRNAs
as well as defects in ribosome biogenesis. Together, our data
provide insights into Bcd1-mediated interactions with box C/D
snoRNAs and reveal their significance for snoRNP production
and ribosome biogenesis.

Results

Bcd1 and ZNHIT6 share similar domains that are arranged
differently

Yeast Bcd1 is an essential protein (22, 28) with a zinc finger
HIT domain (Zf-HIT) at its N terminus (residues 1– 45) which
has high structural homology to the Zf-HIT domain of Hit1
(16). The Zf-HIT domain is important for the stability of Bcd1
(16) and mediates the interaction of ZNHIT6 with RUVBL1/2
(29). We reasoned that because deletion of Zf-HIT domain of
Bcd1 is not lethal in yeast (16), additional elements must con-
tribute to the essential function of the protein. To identify the
important domains of Bcd1, we first performed a sequence
alignment across eukaryotes using Clustal Omega, followed by
a domain analysis using IUPred and Phyre2 (30 –32). Bcd1 pro-
teins fall into two groups (Fig. 1A): the first group, exemplified
by human Bcd1 (ZNHIT6), contains an intrinsically disor-
dered region (IDR) at its N terminus (residues 1 to �70 of
ZNHIT6), a Zf-HIT domain in the middle (residues 215–
258), and a wheel domain (residues 304 – 452). The wheel
domain consists of a twisted five-stranded � sheet sur-
rounded by several � helices and was predicted based on
homology to a newly identified domain in Cns1, an essential
Hsp90 co-chaperone (33). The second group, exemplified by
yeast Bcd1 (Fig. 1A), contains a Zf-HIT domain at its N ter-
minus (residues 1– 45) (16), followed by a wheel domain
(123–288) and an intrinsically disordered region at the C
terminus (310 –366). Thus, Bcd1 and ZNHIT6 share similar
domains that are organized differently.

A conserved region in the N terminus of Bcd1 is essential for
yeast viability

Previous studies showed that expression of the Zf-HIT
domain of Bcd1 (residues 1– 45) alone does not support the
growth of yeast depleted of endogenous BCD1 (16). However, a
fragment encompassing residues 1–96 of Bcd1 is sufficient to
maintain cell viability in the absence of BCD1 (21). To investi-

gate the reason for this growth rescue, we first checked the
expression of Bcd1 fragments lacking either the Zf-HIT domain
(bcd147–366) or residues 1–97 (bcd197–366) in cells depleted of
the endogenous BCD1 via a doxycycline-repressible promoter
(tetO7::BCD1). As expected, the expression of bcd147–366 par-
tially rescued the lethality of BCD1-depleted cells. Cells
expressing bcd197–366 grew similarly to cells expressing an
empty vector, implicating that Bcd1 residues 47–97 are impor-
tant for cell viability (Fig. 1B). To confirm that the observed
growth defects are not because of lack of protein expression, we
assayed the expression of the two variant proteins (Bcd147–366

and Bcd197–366) by Western blotting (Fig. 1C). These data indi-
cated that the two Bcd1 variants were expressed and their levels
were similar to WT Bcd1.

To identify which Bcd1 residues are critical for function, we
individually mutated highly conserved amino acids within this
region to alanine (Fig. S1) and checked the effect of each muta-
tion on the growth of yeast cells depleted of their endogenous
BCD1 and supplemented with a plasmid expressing the variant
protein. Of all the conserved residues tested, the alanine substi-
tution of Asp-72 (bcd1-D72A) showed a strong growth pheno-
type that resembled the growth defect observed in cells express-
ing vector only (Fig. 1D). Mutation of Leu-76 to alanine (L76A)
also conferred a growth phenotype, albeit to a much lesser
extent than D72A, indicating the overall importance of the
region-spanning residues 72–76 (Fig. 1D). It is noteworthy that
mutating the highly conserved residue Tyr-73 within this
region did not show any effect on cell growth (Fig. 1D), indicat-
ing the specific importance of Asp-72, and to a lesser extent,
Leu-76 for Bcd1 function. Because the effect from D72A muta-
tion on cell growth was much greater than L76A, we focused on
this residue for further analyses.

To check whether the observed phenotype in cells expressing
Bcd1-D72A was a result of protein destabilization because of
the mutation, we compared the expression levels of WT and
D72A proteins by Western blotting. These analyses confirmed
that the protein variant was expressed to similar levels as WT
Bcd1 (Fig. 1E). To compare the stability of the D72A variant and
WT Bcd1 proteins, we overexpressed and purified each protein
and measured their thermal unfolding (Fig. 1F). Bcd1 and Bcd1-
D72A show similar apparent melting temperatures (�Ti 2.6 °C,
Fig. 1F), suggesting the D72A mutation does not lead to a global
destabilization of the protein and instead likely affects Bcd1
function.

D72A disrupts the Bcd1 binding to the core snoRNP protein,
Snu13

Bcd1 interacts with core box C/D snoRNP proteins Nop58
and Snu13 and assembly factors Rvb2, Pih1, and Rsa1 (11, 12).
The interaction network of Bcd1/ZNHIT6 has been established
using in vitro pulldown experiments and quantitative pro-
teomic studies in cell culture (13). However, the coordination of
the events remains largely unknown (10). We reasoned that if
Bcd1 interactions with its binding partners are essential, the
growth defect observed upon expression of Bcd1-D72A may
arise from disruption of these important interactions. To test
this, we performed pulldown assays to compare the binding
interaction of WT and D72A variant of Bcd1 to its known bind-
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ing partners (Fig. 2). We purified the core proteins individually
and co-purified Rvb1 with Rvb2, Tah1 with Pih1, and MBP-
tagged Rsa1 with Hit1 (removal of the MBP moiety renders the
Rsa1/Hit1 complex unstable). Because the C terminus of
Nop58 is highly charged and intrinsically disordered, we could
not purify the protein to high purity and yield and therefore
used a Nop58 variant that lacks the last 73 amino acids of the
protein (Nop581– 437).

First, the complex of MBP-Rsa1/Hit1 was immobilized on
amylose resin and incubated with excess of either WT or D72A
variant of Bcd1. After extensive washing of the resin, the
retained proteins were eluted and analyzed on SDS-PAGE. We
did not observe any significant difference in the binding of
the D72A variant versus WT Bcd1 to MBP-Rsa1/Hit1 (Fig. 2A).
We next immobilized MBP-tagged Bcd1 or Bcd1-D72A on
amylose resin and incubated it with either Rvb1/Rvb2 complex
(Fig. 2B), Tah1/Pih1 complex (Fig. 2C), or Nop581– 438 (Fig.
2D). Rvb1/Rvb2 and Tah1/Pih1 demonstrated robust binding
to either MBP-Bcd1 WT or D72A (Fig. 2, B and C). In contrast,

Nop581– 437 bound weakly to both (Fig. 2D). To confirm these
findings, we performed the reciprocal pulldown by immobiliz-
ing GST-Nop581– 437 or GST-Tah1/Pih1 or GST alone on GSH
Sepharose beads and incubated them WT and D72A variant of
Bcd1. As expected, both WT and D72A variant of Bcd1 were
pulled down by GST-Nop581– 437 or GST-Tah1/Pih1 but not by
GST alone (Fig. S2, A and B). We did not perform the reciprocal
pulldown with Rvb1/2 as tagging these proteins can interfere
with their oligomeric state (34). Strikingly, when Bcd1 or Bcd1-
D72A were tested for their interaction with GST-Snu13, no
binding was observed for Bcd1-D72A (Fig. 2E). In the recipro-
cal pulldown, untagged Snu13 did not bind to either WT MBP-
Bcd1 or D72A variant (data not shown). It is likely that the
N-terminal region of Bcd1 is responsible for establishing its
transient interaction with Snu13 and hence a large tag such as
MBP could hinder this interaction. Collectively, these in vitro
binding assays indicate that the Bcd1-D72A variant abolishes
binding to Snu13, but does not impact interactions with
Rvb1/2, Tah1/Pih1, or Nop58.
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To confirm these results further, we expressed N-terminally
Strep-tagged BCD1 or Bcd1-D72A in yeast cells and purified
the protein from mid-log phase yeast total lysates and analyzed
the proteins that co-eluted using Western blotting. Although
WT Bcd1 co-purified both Rvb2 and Snu13 (Fig. 3A), the Bcd1-
D72A variant bound to Rvb2 but failed to co-purify Snu13 (Fig.
3A), further corroborating the results of pulldown assays per-
formed using recombinant proteins (Fig. 2E). To further support
this finding, we performed the reciprocal pulldown using an N-ter-
minally Strep-tagged Snu13 overexpressed in cells expressing HA-
tagged WT or D72A variant of Bcd1. Analysis of the eluted pro-

teins by Western blotting revealed that Strep-Snu13 can pull down
Bcd1 from WT, but not bcd1-D72A cells (Fig. S2C). Taken
together, these data confirm the results of in vitro binding assays
that D72A variant fails to interact with Snu13.

Bcd1-D72A variant is impaired in binding to RNA

Bcd1 interacts with RNAs in a nonspecific manner (16),
yet it contributes specifically to the maintenance of box C/D
snoRNA levels in the cell (22, 23). To test if the severe growth
defect observed upon expression of Bcd1-D72A may par-
tially arise from the loss of interaction of Bcd1 with RNA, we
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compared the RNAs co-purified with WT Strep-tagged Bcd1
and D72A variants (see above) using Northern blotting.
Although the levels of purified WT Bcd1 and Bcd1-D72A are
similar, significantly less U3 and U24 snoRNAs were bound
to Bcd1-D72A as compared with Bcd1-WT (Fig. 3, A and B).
To corroborate this in vivo finding, we in vitro transcribed a
box C/D snoRNA (snR51) and compared its affinity for Bcd1
and Bcd1-D72A using EMSAs. Although WT Bcd1 binds to
snR51 with a Kd of 0.47 � 0.05 �M, the D72A variant binds
more weakly (Kd 3.90 � 0.79 �M) (Fig. 3, C and D). Taken
together, these data suggest that Bcd1 Asp-72 affects the
ability of the protein to interact with snoRNAs.

Bcd1D72A abolishes production of box C/D snoRNAs
Bcd1 is essential for the maintenance of box C/D snoRNA

levels (22, 23). We therefore reasoned that the severe growth
phenotype observed upon expressing Bcd1-D72A may be a
result of perturbing box C/D snoRNA levels. To test this
hypothesis, we used Northern blotting to analyze the steady-
state levels of six box C/D snoRNAs in mid-log phase cells

expressing WT BCD1, bcd1-D72A, or an empty vector (Fig. 4, A
and B). These were compared with levels of scR1, the RNA com-
ponent of the signal recognition particle, and three box H/ACA
snoRNAs as controls (Fig. 4). As previously observed in the cells
depleted of BCD1 (21–23), lower levels of the tested box C/D
snoRNAs, and unchanged levels of H/ACA snoRNAs and scR1
RNA were observed when an empty vector was expressed (Fig. 4).
Similarly, in the cells expressing Bcd1-D72A, the levels of the
tested box C/D snoRNAs decreased (Fig. 4). This change was
unique to box C/D snoRNAs as the three box H/ACA snoRNAs
tested did not show significant variations in cells expressing Bcd1-
D72A. Because the expression level of Bcd1 and Bcd1-D72A is
similar (Fig. 1E), the significant drop in the level of box C/D snoR-
NAs strongly suggests that the conserved Bcd1 Asp72 is critical for
maintaining the cellular levels of box C/D snoRNAs.

Dysregulation of Bcd1 impairs ribosome biogenesis

Box C/D snoRNAs are active players in the assembly of ribo-
somes and direct the folding, processing, and 2�-O-methylation
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of rRNAs during transcription and ribosomal protein binding
(5). Because of their critical role in ribosome assembly, altera-
tion of snoRNA levels can have profound effects on cell viabil-
ity, especially in rapidly dividing cells such as cancer cells (35,
36). To assess the significance of Bcd1 interactions with Snu13
and snoRNAs for snoRNP biogenesis and ribosome produc-
tion, we grew cells expressing Bcd1 or the Bcd1-D72A variant
to mid-log phase and stalled translation by addition of cyclo-
heximide. Polysome profiles on 10 –50% sucrose gradients
revealed a significant decrease in polysomes and an increase in
the amount of free 60S subunit in cells expressing Bcd1-D72A
compared with WT (Fig. 5A). Western blot analysis of gradient
fractions (Fig. 5B) revealed that in WT cells, RpS10, a small
ribosomal subunit (SSU) protein, was mainly in fractions cor-
responding to the monosomes and the polysomes. Rpl3, a large
ribosomal subunit protein, was also found mostly in fractions
corresponding to the monosomes and the polysomes. Utp13, a
ribosome assembly factor and a subunit of the UTPB complex,
which is involved in the biogenesis of SSU processome (37) was
found in fractions corresponding to 90S. Rrp5, a protein
involved in the assembly of both 40S and 60S subunits (38), was
found in fractions corresponding to maturing 60S as well as
SSU processome. However, in bcd1-D72A cells RpS10 was
mainly found in 40S and 80S fractions (Fig. 5B). There was also
a significant decrease in RpS10 in the polysomes, indicating a
drop in the pool of translating ribosomes. Similarly, RpL3 was
mostly found in 60S and 80S fractions. Some Rpl3 was also
detected in early polysome fractions, albeit to a much lesser
extent than WT. Interestingly, both Utp13 and Rrp5 shifted
toward lighter fractions in cells expressing Bcd1-D72A, indicat-
ing a defect in the formation of SSU processome and perturba-
tion of ribosome assembly.

To reveal how this mutation impairs ribosome biogenesis, we
analyzed rRNA processing in WT and bcd1-D72A cells. To
avoid possible effects from the addition of doxycycline on rRNA
processing, we used CRISPR-Cas9 genome engineering to
introduce bcd1-D72A mutation into BY4741 yeast strain. We
isolated total RNA from BY4741 or bcd1-D72A cells in the log
phase and subjected them to Northern blotting.

In yeast the majority of rRNA processing occurs co-tran-
scriptionally (39, 40), where A0 and A1 cleavages in 5�-ETS are
followed by the A2 cleavage in ITS1, resulting in the formation
of 20S as the major 18S precursor (reviewed in Ref. 41). In an
alternative pathway, shown to happen under unfavorable
growth conditions, 35S is cleaved further downstream of the A2
site at the so-called A3 site, resulting in the formation of 23S
(40 –47). Our analysis revealed a reduction in the levels of both
18S and 25S rRNAs in bcd1-D72A cells (Fig. 6), explaining the
decrease in their polysome levels (Fig. 5). The levels of 20S and
27S A2, the products of the A2 cleavage in ITS1 were also low-
ered in bcd1-D72A cells compared with WT. This reduction
was accompanied by an increase in the unprocessed 35S as well
as 23S suggesting a switch from co-transcriptional A2 pro-
cessing to posttranscriptional A3 processing pathway.

Collectively, these data indicate the critical role of Bcd1-me-
diated interactions during snoRNP assembly and their impact
on ribosome biogenesis.

Discussion

snoRNAs regulate the biogenesis and modification of ribo-
somes and are thus critically important for control of the
cellular translational output. Despite their importance, little is
currently known about how snoRNA levels are controlled
posttranscriptionally. This is an important question because
snoRNA level changes can lead to a decrease in ribosome bio-
genesis as well as the alteration of the rRNA modification pat-
tern, which impacts translation fidelity and the choice of
mRNAs translated (48 –51). Indeed, alteration of snoRNA lev-
els is commonly observed in various human cancers, including
breast, brain, lung, and prostate cancers (35).

The abundance of snoRNAs is controlled by the binding to a
set of core proteins for the formation of catalytically active
snoRNPs. Complex formation protects snoRNAs from degra-
dation by nucleases, thus regulating their turnover rate (10, 52).
Assembly factors assist in binding of the core proteins to
snoRNAs, but their mechanism of function is poorly under-
stood (10). Here, we show that the interactions of the assembly
factor Bcd1 with the core protein Snu13 and snoRNAs are crit-
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ical for maintaining box C/D snoRNA levels. Furthermore, our
mutational analyses revealed a critical region of Bcd1 (residues
72–76) which is important for the essential function of the pro-
tein for interaction with Snu13 and snoRNAs.

Based on previous proteomic experiments in human cell
lines, a model for snoRNP assembly was suggested (13). In this
model, ZNHIT6 associates with an early protein-only pre-
snoRNP complex and is proposed to stay bound during
maturation to be part of a complex that recruits the box C/D
snoRNAs. ZNHIT6 is thought to leave the maturing pre-
snoRNP concomitantly with the binding of fibrillarin and
Nop56 (13). Whether ZNHIT6 presence is required for snoRNA
recruitment and how it controls the steady-state level of box
C/D snoRNAs has so far remained elusive.

In yeast, an N-terminal fragment (residues 1–97) of Bcd1 is
sufficient for growth and maintenance of steady-state expres-
sion levels of box C/D snoRNAs, although it associates poorly
with snoRNAs (21). In vitro, full-length Bcd1 and a viable N-ter-
minally truncated form of Bcd1 that lacks the Zf-HIT domain
(residues 1– 45) interact with snoRNAs but their binding can be
competed out in presence of longer RNAs (16). These data sug-
gested that the key function of Bcd1 is independent of its ability
to bind to RNA (16, 21). Our mutational screening approach
enabled us to define the effect of single amino acid substitutions
in the region of Bcd1 that is associated with its essential func-
tion (residues 45–97) and to reassess the ability of the protein to
interact with RNAs in its full-length form. We show that the
D72A mutation significantly weakens the binding of Bcd1 to
RNA and Snu13, causing a severe growth defect in yeast cells
and altering the steady-state levels of snoRNAs. Our data
strongly suggest that the ability of Bcd1 to interact with Snu13
and snoRNAs is important for its essential function in snoRNP

assembly and for maintenance of box C/D snoRNA steady-state
levels.

Secondary structure prediction of Bcd1-D72A using PSIPRED
and its comparison to the WT protein indicates that Asp-72 is
located in a short loop between two helices (Fig. S1). The D72A
mutation could result in the disappearance of the short loop
and formation of a long helix by combining the two helices.
Thus, we suggest that the Bcd1-D72A mutation weakens the
interaction of the protein with Snu13 and RNA by a conforma-
tional change between the Zf-HIT and wheel domains of the
protein. Structural analysis of Bcd1 will be essential to clarify its
interactions that are critically important for its role in snoRNP
biogenesis.

snoRNAs are produced as larger precursors that are trimmed
by exonucleases for maturation in a process that is linked to the
assembly of the snoRNP core proteins (52). The conserved box
C/D RNA elements, which form Kink(K)-turns, are essential for
snoRNP assembly and serve as the binding site for the recruit-
ment of Snu13 that is followed by ordered recruitment of other
core proteins (9, 53–55). Thus, the association of Snu13 with
pre-snoRNAs is required for establishing the hierarchy of
binding of the other core proteins and is thought to be the first
step in commitment of snoRNAs to assembly (10). Similarly,
Bcd1 is found to associate with pre-snoRNAs at an early stage,
and likely co-transcriptionally (21). We therefore anticipate
that our identified Bcd1-mediated contacts with Snu13 and
snoRNAs will be essential and critical for early engagement of
the snoRNP assembly machinery to protect snoRNAs from
rapid turnover.

Eukaryotes transcribe their major ribosomal RNAs (18S,
5.8S, and 25S/28S) as a large polycistronic precursor (35S) (1).
In yeast, this precursor can undergo processing either co-tran-
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scriptionally (�70%) or posttranscriptionally (�30%) (39). The
hallmark of the co-transcriptional route is the cleavage at site
A2 within ITS1, resulting in the formation of 20S and 27SA2,
whereas the posttranscriptional route is marked by the produc-
tion of 35S precursor and the A3 cleavage, resulting in the for-
mation of 23S and 27SA3. It was shown that under stress, yeast
cells switch their rRNA processing toward posttranscriptional
route (40, 46, 47). This route is considered for most part to be
nonproductive (46). However, there is evidence of 23S pro-
cessing to make new 18S rRNA (47). The bcd1-D72A cells,
which are impaired in snoRNP biogenesis, show the features of
posttranscriptional rRNA processing: accumulation of 35S
accompanied by an increase in 23S and a drop in 20S levels.
They grow and make new ribosomes, albeit at a lower rate. It is
therefore tempting to speculate that hypomethylation of the
rRNA pushes the balance between co-transcriptional and post-
transcriptional rRNA processing toward the latter. It remains
to be examined whether or not the new ribosomes made in

these cells are the products of the A3 cleavage pathway or the
co-transcriptional pathway.

Bcd1 is conserved from yeast to human. Because the Bcd1
mutation analyzed in this study is conserved in ZNHIT6, we
used the cBioPortal (56, 57) to investigate the common cancer
mutations in ZNHIT6 (Fig. S3). Interestingly, the most com-
mon form of mutation observed in ZNHIT6 is a truncation at
residue Arg-258, which likely results in the production of a
truncated form of the protein that lacks the conserved region
encompassing Asp-277, and thus fails to interact with Snu13
and snoRNAs. Thus, modulation of the Bcd1/ZNHIT6 essen-
tial interactions by a single point mutation may be exploited by
cancer cells and effectively contribute to the alteration of
snoRNA levels and perturbation of ribosome biogenesis. This
may be an effective means to unbalance the level of snoRNAs in
cancer cells, or perhaps modulate the cellular translational pro-
gram under certain stress conditions. Confirmation of this
awaits the future analyses of ZNHIT6 function in human cells.
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Materials and methods

Yeast strains and plasmids

S. cerevisiae strains used in this study are listed in Table S1.
Oligonucleotides and plasmids used in this study are listed in
Table S2 and Table S3, respectively.

Making bcd1-D72A yeast strain using CRISPR-Cas9

Genome editing was carried out as described previously (58).
A primer was designed for guide recognition sequence mu-
tagenesis (Table S2) and used to amplify the pCAS9 vector
(Addgene 60847) (59). A double-stranded 160-mer repair DNA
was generated using oligos listed in Table S2. The D72A
CRISPR was carried out by transforming pCAS9-Bcd1 and the
PCR product into the WT BY4741 strain. Transformants were
plated onto G418 and allowed to grow for 72 h at 37 °C. Indi-
vidual colonies were selected and restreaked onto YPD. Muta-
tions in individual colonies were confirmed by PCR and
sequencing.

Yeast growth assays

tetO7::BCD1 cells containing ZNHIT6 or Bcd1 expression
plasmids were grown to saturation in synthetic glucose liquid
culture lacking histidine (His�). Cultures were diluted in sterile
water to a final concentration of 107 cells/ml, followed by four
successive cascade dilutions in a 1:10 ratio. Dilutions were spot-
ted onto synthetic His� medium plates with and without doxy-
cycline and grown at 30 °C.

Protein expression and purification

All proteins were expressed in Escherichia coli Rosetta2
(DE3) cells (Novagen). Cells were grown at 37 °C to A600 of 0.6
in 2	 YT media supplemented with the appropriate antibiotics
and then transferred to 18 °C. Protein expression was induced
by addition of 0.3 mM or 1 mM isopropyl �-D-1-thiogalactopy-
ranoside (IPTG) for pGEX-6-P2 or pET23/pSV272 harboring
cells, respectively. Cultures were harvested 18 h after induction.

Bcd1 and Bcd1-D72A were expressed as His-tagged proteins
and purified on Ni-NTA resin in buffer A. The protein was
eluted with 250 mM imidazole. The tag was cleaved overnight
and the protein was further purified over a MonoS ion
exchange column in buffer B and eluted with a linear gradient of
150 mM to 1 M NaCl over 20 column volumes. Final purification
was performed on a Superdex S-200 gel filtration column (GE
Healthcare) equilibrated in 150 mM NaCl, 20 mM Tris/HCl, pH
7.5, 5% glycerol, 40 �M ZnCl2, and 1 mM DTT. His-MBP–
tagged Bcd1 and Bcd1-D72A were purified on Ni-NTA in
buffer A and eluted as above. The proteins were buffer
exchanged overnight in buffer B and further purified over
MonoQ and Superdex 200 columns and stored in 150 mM NaCl,
20 mM Tris/HCl, pH 7.5, 5% glycerol and 40 �M ZnCl2 and 1 mM

DTT. Rvb1/2 were expressed and purified as published previ-
ously (60). MBP-Rsa1/GST-Hit1 were co-expressed and puri-
fied using Ni-NTA in 200 mM NaCl, 50 mM HEPES/NaOH, pH
7.5, 5% glycerol. The complex was eluted by increasing the con-
centration of imidazole to 200 mM, and further purified on a
GSH Sepharose column (GE Healthcare). The GST tag of Hit1
was removed overnight using PreScission protease (GE Health-

care) in buffer B. The GST tag and the protease were removed
using a MonoQ ion exchange column. The complex was further
polished using a Superdex 200 gel filtration column equili-
brated in 200 mM NaCl, 20 mM HEPES/NaOH, 5% glycerol, and
1 mM DTT. GST-Snu13 was purified using GSH Sepharose in
buffer C. The protein was further purified using a Superdex 75
gel filtration column in buffer D. Nop581– 437 was purified as a
GST-tagged protein in buffer C. The GST-tag was cleaved off
overnight using PreScission protease in 150 mM NaCl, 30 mM

Tris/HCl, pH 7.5, 5% glycerol, and 2 mM 2-mercaptoethanol.
Both GST-tagged and untagged proteins were further purified
using MonoQ and Superdex 200 and stored in buffer D. Tah1
and His-tagged Pih1 were co-expressed and purified on Ni-
NTA resin in 100 mM NaCl, 25 mM sodium phosphate, 5% glyc-
erol, and 30 mM imidazole. The complex was eluted by increas-
ing the concentration of imidazole to 200 mM. The His tag of
Pih1 was cleaved overnight using tobacco etch virus protease in
100 mM NaCl, 25 mM sodium phosphate, and 10% glycerol. The
uncleaved His-Pih1 and the tobacco etch virus protease were
removed by a second step of Ni-NTA. The complex was further
purified using a Superdex 200 gel filtration column equilibrated
in 100 mM NaCl, 25 mM sodium phosphate, 5% glycerol, and 1
mM DTT. GST-tagged Tah1 and His-MBP–tagged Pih1 were
co-expressed and purified as above with the exception that after
the first Ni-NTA, the complex was further purified on GSH
Sepharose. His-MBP tag was cleaved overnight. The complex
was polished on S-200 gel filtration column.

In vitro interaction studies

5 �M of the untagged proteins were mixed with 3 �M tagged
protein (or control) in 150 mM NaCl and 20 mM Tris/HCl, pH
7.5, 5% glycerol, and 40 �M ZnCl2, and preincubated on ice for
15 min. 10% of the reaction was set aside as the input control
before addition of 25 �l of equilibrated amylose resin (New
England Biolabs) or GSH Sepharose. The mixture was incu-
bated for 30 min at 4 °C, washed, and eluted with binding buffer
supplemented with either 20 mM maltose (amylose resin) or
reduced glutathione (GSH Sepharose). Input, final wash, and
the eluate from each binding study were analyzed on a
SDS-PAGE.

In vitro RNA-protein– binding assay

In vitro transcribed RNA was labeled using [�-32P]ATP.
Trace amount of labeled RNA was folded and mixed with
appropriate protein and incubated for 20 min in 20 mM Tris, pH
7.5, 100 mM KCl, 5 mM MgCl2 at 30 °C before mixing with the
heparin loading dye (1 mg/ml final concentration) and loading
on a running 8% acrylamide/TBE gel at 4 °C. Protein-bound and
unbound fractions were quantified using Quantity One (Bio-
Rad), and data were fit to a single binding isotherm using Prism
(GraphPad).

Measuring the thermal stability of Bcd1 and its variant

3 �M of Bcd1-WT or D72A variant were loaded as triplicates
into glass capillaries (NanoTemper Technologies) and intrinsic
protein fluorescence at 330 and 350 nm was monitored
between 35 and 95 °C in the Tycho instrument (NanoTemper
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Technologies). Temperature inflection values (Ti) were ob-
tained by automated data analysis using the accompanying
software.

Analysis of the steady-state levels of snoRNAs

Cells were grown in selective media in the presence of doxy-
cycline, to A600 � 0.6. Total RNA from three biological repli-
cates of each strain was isolated using the hot phenol method.
snoRNAs were separated on 10% acrylamide/urea gels, trans-
ferred to Hybond nylon membrane (GE Healthcare) and
probed as indicated. Bands were quantified using Image Lab
software (Bio-Rad).

Analysis of the steady-state levels of pre-rRNAs

BY4741 or bcd1-D72A cells were grown in YPD to mid-log
phase. Total RNAs from three biological samples of each yeast
strain were isolated using the hot phenol method. rRNAs were
separated on a 1% agarose/formaldehyde gel and transferred
by capillarity overnight in 20	 saline sodium citrate on a ny-
lon membrane (GE Healthcare). Membranes were probed as
indicated. Band were quantified using Image Lab software
(Bio-Rad).

Pulldown assay from yeast cells

tetO7::BCD1 yeast cells were grown for 16 h in YPD while
constitutively expressing a twin-Strep–tagged Bcd1 from a TEF
promoter. Strep-tagged protein was purified using Strep-Tac-
tin (IBA Lifesciences) in 150 mM NaCl, 50 mM Tris/HCl, pH 7.5,
5% glycerol, and 5 mM MgCl2, and eluted in the same buffer
supplemented with 2.5 mM desthiobiotin. Eluted proteins were
analyzed by Western blotting. Eluted RNA was precipitated and
analyzed by Northern blotting as described above with the
exception that 1 fmol of an in vitro transcribed random RNA
was spiked into each tube to serve as the control for precipita-
tion efficiency.

Twin-Strep–Snu13 was expressed from GPD promoter in
tetO7::BCD1 cells expressing endogenous Bcd1 as well as HA-
tagged WT or D72A variant of Bcd1. Strep purification and data
analysis were performed as described above.

Sucrose density gradient analysis

Yeast cells were grown to mid log phase in YPD supple-
mented with 10 mg/liter doxycycline and harvested after addi-
tion of 0.1 mg/ml cycloheximide, washed, and lysed in ice-cold
gradient buffer (20 mM HEPES, pH 7.4, 5 mM MgCl2, 100 mM

NaCl, and 3 mM DTT) supplemented with 0.1 mg/ml cyclohex-
imide and cOmplete Protease Inhibitor mixture (Roche).
Lysate was cleared by 10 min of centrifugation at 10,000 	 g,
applied to 10 –50% sucrose gradients in gradient buffer, and
centrifuged for 2 h at 40,000 rpm in a SW 41 Ti rotor. Gradients
were fractionated and scanned by UV 260 nm absorbance. Frac-
tions were analyzed for their protein content by Western
blotting.

Antibodies

HRP-conjugated anti-rabbit and anti-mouse secondary anti-
bodies were obtained from Rockland Immunochemicals. The
Utp13, Rrp5, and Rps10 antibodies (a gift from K. Karbstein,

Scripps, FL) and the Rvb2 (a gift from W. Houry) were raised in
rabbits. Bcd1 was detected using an anti-HA antibody obtained
from BioLegend or HRP-conjugated anti-Strep (IBA Biosci-
ence). Rpl3 was detected by an antibody obtained from the
Developmental Studies Hybridoma Bank, The University of
Iowa, deposited by J.R. Warner.
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