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Peroxisome proliferator-activated receptor � (PPAR�) is the
central regulator of adipogenesis, and its dysregulation is linked
to obesity and metabolic diseases. Identification of the factors
that regulate PPAR� expression and activity is therefore crucial
for combating obesity. Aryl hydrocarbon receptor (AhR) is a
ligand-activated transcription factor with a known role in xeno-
biotic detoxification. Recent studies have suggested that AhR
also plays essential roles in energy metabolism. However, the
detailed mechanisms remain unclear. We previously reported
that experiments with adipocyte-specific Cullin 4b (Cul4b)-
knockout mice showed that CUL4B suppresses adipogenesis by
targeting PPAR�. Here, using immunoprecipitation, ubiquiti-
nation, real-time PCR, and GST-pulldown assays, we report that
AhR functions as the substrate receptor in CUL4B-RING E3
ubiquitin ligase (CRL4B) complex and is required for recruiting
PPAR�. AhR overexpression reduced PPAR� stability and sup-
pressed adipocyte differentiation, and AhR knockdown stimu-
lated adipocyte differentiation in 3T3-L1 cells. Furthermore, we
found that two lysine sites on residues 268 and 293 in PPAR� are
targeted for CRL4B-mediated ubiquitination, indicating cross-
talk between acetylation and ubiquitination. Our findings estab-
lish a critical role of AhR in regulating PPAR� stability and sug-
gest that the AhR–PPAR� interaction may represent a potential
therapeutic target for managing metabolic diseases arising from
PPAR� dysfunction.

Exorbitant body fat in obese people is thought to be a
major reason for insulin resistance, cardiovascular diseases,
and diabetes (1). Obesity-related insulin resistance is associ-
ated with dysregulation of lipid storage and chronic inflam-
mation in adipose tissue (2). Insulin resistance is likely to be

induced by inappropriate regulation of gene expression
required for adipocyte differentiation or functions. Adi-
pocyte differentiation from preadipocytes is controlled by
a number of transcriptional cascades, particularly PPAR�2

(3). PPAR� proteins are expressed in two isoforms, PPAR�1
and PPAR�2. PPAR�1 is expressed in a number of tissues.
PPAR�2 is only observed in adipocytes and is crucial in
maintaining normal insulin sensitivity (4).

PPAR� protein is post-translationally regulated by several
modifications. Phosphorylation on Ser-273 of PPAR� is modi-
fied by Cdk5 to dysregulate the expression of specific genes,
such as adiponectin (5). Acetylation on Lys-268 and Lys-293 of
PPAR� is a signal of lipid storage and cell proliferation, whereas
deacetylation of these two sites results in energy expenditure
and promotes insulin sensitivity (6). PPAR� degradation is
linked to the regulation of its transcriptional activity. Recently,
several E3s have been identified in adipocytes, including seven
in absentia homolog 2 (SIAH2) (7), makorin ring finger protein
1 (MKRN1) (8), tripartite motif protein 23 (TRIM23) (9), and
neural precursor cell– expressed developmentally down-regu-
lated protein 4 (NEDD4) (10). These E3s are located predomi-
nantly in the cytoplasm, and not all of them target PPAR�
toward proteasomal degradation.

Cullin 4B (CUL4B) acts as a scaffold protein that assembles
DDB1, ROC1, and DDB1–CUL4 association factor (DCAF) to
form CUL4B-RING E3 ubiquitin ligases (CRL4B). CRL4B uses
a variety of DCAFs to assemble different E3 ligases to specifi-
cally target substrate (11). Thus, DCAF is correlated with sub-
strate selection and specificity. By targeting different substrates
for Ub-dependent degradation or modification, CRL4B has
been shown to participate in the regulation of diverse physio-
logically and developmentally controlled processes. Patients
with CUL4B mutations manifest mental and growth retarda-
tion as well as central obesity (12–15). Using adipocyte-specific
Cul4b-knockout mice, we previously showed that CUL4B func-
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tions as a negative regulator of adipogenesis (16). However, the
DCAF in CRL4B complex that recruits PPAR� remains
unknown.

AhR, also known as dioxin receptor, was reported to play
essential roles in xenobiotic and energy metabolism (17–20). In
this study, we identified AhR as a novel factor that negatively
regulates PPAR� protein stability via forming the CRL4B E3
ligase complex. The physiological function of AhR in adipocyte
differentiation was further demonstrated using AhR-overex-
pressing and -knockdown 3T3-L1 cell lines. Our study provides
a direct link between AhR and PPAR� and indicates that AhR–
PPAR� interaction is a potential therapeutic target in PPAR�-
related diseases.

Results

AhR negatively regulates adipocyte differentiation

To investigate the role of AhR in adipocyte differentiation,
we first examined the expression level of AhR in mouse adipose
tissues. Similar to CUL4B and PPAR�, AhR was detected in
white adipocyte tissues, including inguinal (subcutaneous) and
epididymal (visceral) fat pads. AhR was expressed highly in
brown adipose tissue (Fig. 1A). We also examined the mRNA
and protein levels of AhR, CUL4B, and PPAR� as well as its
target genes at different time points during differentiation.
mRNA levels and protein levels of PPAR� and adipogenic
markers were increased dramatically from day 0 postinduction.

Figure 1. Adipogenesis is negatively regulated by AhR. A, the levels of the indicated proteins in mouse adipose tissues. B, protein levels of CUL4B and its
related proteins were determined in 3T3-L1 cells. Upon differentiation with induction medium, cells were harvested and lysed for Western blotting. The protein
band of interest is marked with a star. Signals from the Western blots were analyzed by Volume Analysis of Quantity One software with volume background
subtraction. C, adipogenesis of AhR-overexpressing 3T3-L1 cells. Cells stably expressing empty vector or AhR were constructed using a lentivirus system. At day
9 postinduction, the cells were stained for lipid droplets using Oil Red O. D, adipogenesis of AhR-knockdown 3T3-L1. Stable cell lines were constructed using
a lentivirus expressing shRNA (sh) for scrambled sequences (control) or mouse Ahr. On day 9 after induction of differentiation, cells were stained with Oil Red
O. E, in AhR-overexpressing 3T3-L1 cells, total RNA samples were extracted at different time points upon induction. Samples were subjected to quantitative PCR
analysis of adipogenic markers (CD36, Adipsin, and Fabp4). F, in AhR-knockdown 3T3-L1 cells, total RNA samples were extracted at different time points.
Samples were subjected to quantitative PCR analysis of adipogenic markers (CD36, Adipsin, and Fabp4). Data are presented as mean � S.D. (error bars); n � 4
with * representing p � 0.05, ** representing p � 0.01, and *** representing p � 0.001 by Student’s t test. Ing-WAT, inguinal white adipose tissue; Epi-WAT,
epididymal white adipose tissue; BAT, brown adipose tissue.
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The transcriptional level of Cul4b was eventually reduced, and
its protein level was also decreased dramatically at late stages of
adipogenic differentiation, which is consistent with our previ-
ous study (16). Notably, the mRNA level of Ahr was also ulti-
mately decreased during the process of differentiation, consis-
tent with its protein level (Figs. S1 and 1B).

We next studied whether AhR negatively regulates adipocyte
differentiation like CUL4B does. Overexpression of AhR using
a retrovirus suppressed the adipocyte differentiation of 3T3-L1
cells, as demonstrated with Oil Red O staining (Fig. 1C and S2).
In contrast, knockdown of AhR expression led to increased
lipid accumulation (Fig. 1D and S2). Consistently, overex-
pressed AhR led to decreased expression of adipogenic
markers, such as CD36, Adipsin, and Fabp4 (Fig. 1E),
whereas knockdown of AhR induced increased expression of
adipocyte-specific genes (Fig. 1F).

AhR decreases the stability of PPAR� protein via a
proteasome-dependent mechanism

To determine whether AhR regulates adipogenesis via mod-
ulating the PPAR� level, we examined the expression of PPAR�
when AhR expression was knocked down or overexpressed.
Although transcriptional levels of PPAR� in 3T3-L1 cells were
not obviously changed by either AhR knockdown or overex-
pression (Fig. S3), knockdown of AhR expression significantly
increased the endogenous protein level of PPAR� (Fig. 2A).
Conversely, overexpression of AhR in 3T3-L1 cells induced a
decrease of endogenous PPAR�. Importantly, the decreased
PPAR� led by the overexpression of AhR was efficiently
blocked by the administration of MG132, a proteasome inhib-
itor, suggesting that AhR may down-regulate PPAR� by a pro-
teasome-dependent degradation mechanism (Fig. 2B). To fur-
ther confirm this notion, we measured the half-life of PPAR� in
AhR-overexpressing HEK293T cells. As expected, overexpres-
sion of AhR significantly increased PPAR� decay (Fig. 2, C and
D). Consistently, the administration of MG132 significantly
increased the accumulation of polyubiquitinated PPAR� in
HEK293T cells transfected with AhR and PPAR� plasmids (Fig.
2E). Knockdown of AhR in 3T3-L1 preadipocytes also resulted
in a reduction of polyubiquitinated PPAR� (Fig. 2F). Further-
more, in the presence or absence of leptomycin B (LMB) or
MG132, we observed that PPAR� was ubiquitinated and tar-
geted for proteasomal degradation in the nucleus (Fig. 2G). Im-
munofluorescence analysis results also showed that PPAR�
accumulated in the nucleus upon MG132 treatment (Fig. 2H).
Taken together, these results suggest that AhR decreases the
stability of PPAR� protein via a proteasome-dependent
mechanism.

AhR functions as a substrate receptor for CRL4B-mediated
PPAR� degradation

The fact that AhR decreases the stability of PPAR� protein
prompted us to determine whether AhR acts as a substrate
receptor for CRL4B-mediated PPAR� degradation. When
overexpression of CUL4B decreased PPAR� in 3T3-L1 cells,
knockdown of AhR could efficiently block the reduction of
PPAR� caused by CUL4B overexpression (Fig. 3A), suggesting
that AhR is required for the CRL4B-mediated PPAR� degrada-

tion. To further strengthen this notion, we performed coimmu-
noprecipitation assays in 3T3-L1 cells to determine possible
physical association among AhR, CUL4B, and PPAR�. As
shown in the figure, when AhR was immunoprecipitated from
3T3-L1 cells, both CUL4B and PPAR� were brought down as
well (Fig. 3B). Consistently, AhR was also coimmunoprecipi-
tated with antibodies against PPAR� or CUL4B (Fig. 3, C and
D). Interactions between PPAR� and AhR were also confirmed
in mouse adipose tissue using proximity ligation assay (PLA).
Consistent with increased PPAR� level led by CUL4B deletion,
more positive signals showing PPAR�–AhR interactions were
detected in adipose tissues of adipocyte-specific knockout mice
(Fig. 3, E and F). GSH S-transferase (GST) pulldown experi-
ments were performed to further examine whether AhR binds
PPAR�. Our results showed that AhR directly interacts with
PPAR� (Fig. 3G).

We next determined whether CUL4B–AhR complex repre-
sented an E3 ligase for PPAR�. To this end, His-Flag-AhR was
expressed in HEK293T cells, and cellular extracts were prepared
by affinity purification. As expected, the components of AhR com-
plex, including endogenous CUL4B, DDB1, and ROC1, were
detected in the affinity-purified fractions, thereby forming
CRL4BAhR E3 complex (Fig. 3H). Importantly, the affinity-purified
AhR complex significantly increased the amount of polyubiquiti-
nated PPAR�, as indicated by an in vitro ubiquitination assay (Fig.
3I). Taken together, these results suggest that AhR functions as the
substrate receptor in CRL4BAhR complex by recruiting PPAR�
and facilitating its ubiquitination.

Domain– domain interactions between PPAR� and AhR

To map out the region where PPAR� (isoform 2) binds AhR,
we designed several plasmids expressing truncated PPAR�.
Full-length AhR and PPAR� truncations were expressed in
Escherichia coli. Our results showed that PPAR� binds AhR
mainly on its DNA-binding domain (136 –232aa). The N-ter-
minal region of PPAR� (1–135aa) seemed to assist in binding
AhR, whereas the C-terminal region of PPAR�, including its
ligand-binding domain (233–505aa), did not contribute to
binding (Fig. 4A).

Meanwhile, we investigated the region of AhR that contrib-
utes in binding PPAR�. All truncated AhRs were expressed in
E. coli and purified separately. Because neither AhR nor GST
antibodies recognize all of the AhR truncations, we performed
two sets of experiments. AhR 403– 848aa was assayed in both
experiments. Our results demonstrated that the C-terminal
fragment of AhR (403– 848aa) does not pull down PPAR� (Fig.
4B). Instead of full-length AhR, AhR fragment (188 – 403aa),
including its ligand-binding domain, tends to pull down more
PPAR�, suggesting that this region mainly contributes to
recruiting PPAR� (Fig. 4C).

Two lysines located on the hinge domain of PPAR� are
targeted for ubiquitination by CRL4BAhR

Lys-184 and Lys-185 on PPAR� were previously reported as
ubiquitination sites mediated by MKRN1 (8). To examine
whether CRL4BAhR targets the same residues, we mutated Lys-
184/185 to alanines and performed a ubiquitination assay. Our
results showed that K184A/K185A mutant exhibited a level of
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ubiquitination similar to that of WT PPAR�, suggesting that
CRL4BAhR catalyzes PPAR� ubiquitination on novel site(s)
(Fig. 5A). PPAR� is a lysine-rich protein. To identify the amino
acid residue(s) targeted by CRL4BAhR, we first mapped the
ubiquitinated region using different PPAR� truncations. Trun-
cations 1–135aa, 136 –232aa, and 233–505aa were barely ubiq-
uitinated, suggesting that the targeted lysine was not located
within these regions. Truncations 136 –333aa and 136 –505aa
that contain the major AhR-binding region (136 –232aa) were

both ubiquitinated with levels similar to that of WT PPAR�,
indicating that the 233–333aa region of PPAR� is required for
ubiquitination by CRL4BAhR. Additionally, retaining the ability
to bind AhR, truncation 1–232aa was also ubiquitinated but
with a lower level compared with WT PPAR�, possibly due to
nonspecific modifications (Fig. 5B).

We next characterized the specific ubiquitination site(s) on
PPAR� by mass spectrometry (MS). This can be accomplished
by affinity purification of Myc-tagged PPAR�, isolating the

Figure 2. AhR affects PPAR� protein level and stability. A, effect of AhR ablation on PPAR� protein level. 3T3-L1 cells were transfected with the indicated
siRNAs (si) for 8 h. Cells were harvested, lysed, and immunoprecipitated with the indicated antibodies followed by Western blotting. B, effect of AhR overex-
pression on PPAR� protein level. 3T3-L1 cells were transfected with the indicated plasmids expressing AhR-Flag-His in the absence or presence of MG132. Cells
were harvested, lysed, and immunoprecipitated with the indicated antibodies followed by Western blotting. C, effect of AhR on the protein stability of PPAR�.
HEK293T cells were transfected with the indicated plasmids expressing Myc-PPAR� in the absence or presence of AhR-Flag-His for CHX-chase assay. Cells were
harvested and lysed. The cell lysate was then detected with the indicated antibodies. D, turnover of PPAR� was determined by Western blotting. Signals from
immunoblots were analyzed using Quantity One. PPAR� protein signals were normalized with the actin protein signals, and the percentage of PPAR� protein
remaining was plotted against time. E, ubiquitination product mediated by CUL4B–AhR-associated complex was accumulated in the presence of proteasome
inhibitor MG132. HEK293T cells were transfected with plasmids expressing Flag-Cul4B, Myc-PPAR�, AhR-Flag-His, and HA-Ub. Cells were then treated with
DMSO or MG132 for 3 h. F, effect of CUL4B–AhR-associated complex on PPAR� ubiquitination. 3T3-L1 cells were transfected with the indicated siRNA for 5 h.
The cells were then transfected with plasmids expressing Flag-Cul4B, Myc-PPAR�, and HA-Ub. After MG132 treatment for 4 h, cells were harvested, lysed, and
immunoprecipitated with the indicated antibodies followed by Western blotting. G, HEK293T cells were transfected with plasmids expressing Flag-Cul4B,
AhR-Flag-His, HA-Ub, and Myc-PPAR�. Cells were treated with MG132 for 3 h and LMB for 4 h followed by immunoprecipitation and Western blotting. Input
(5%) was used for Western blotting. H, HEK293T cells were transfected with plasmids expressing Myc-PPAR� and AhR-Flag-His. Cells were treated with MG132
or DMSO for 6 h. Immunofluorescence against PPAR� was performed. Images were collected using a fluorescence microscope. IP, immunoprecipitation; IB,
immunoblotting.
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captured proteins by SDS-PAGE, extracting the high-molecu-
lar-weight modified protein, and performing in-gel tryptic
digestion. According to MS results, three peptide fragments
gave GG–K ubiquitin-modification signals (a mass shift of

�114.0429 Da) with high scores (experiments were done by
Applied Protein Technology Co.). These peptides contain Lys-
268, Lys-293, and Lys-329 individually (Fig. 5C), which are also
located in the 233–333aa region of PPAR� (Fig. 5D). Lys-268

Figure 3. AhR directly interacts with PPAR� and functions as a substrate receptor in the E3 ligase complex. A, CUL4B affects PPAR� stabilization
dependent on AhR. 3T3-L1 cells were transfected with the indicated siRNA and plasmids. Cells were harvested, lysed, and immunoprecipitated with the
indicated antibodies followed by Western blotting. B–D, interactions among CUL4B, AhR, and PPAR�. 3T3-L1 cells were transfected with the plasmids as
indicated. The transfected cells were then harvested and immunoprecipitated with the indicated antibodies individually. E, interactions between PPAR� and
AhR were tested in epididymal white adipose tissues from WT and knockout mice. PLA (Duolink, Sigma) was performed, and images were collected using a
fluorescence microscope. F, number of signals per nucleus was calculated and analyzed using Prism software. Data are presented as mean � S.D. (error bars);
n � 4 with ** representing p � 0.01 by Student’s t test. G, direct interactions between AhR and PPAR�. GST-AhR and His-PPAR� were expressed in E. coli
individually followed by protein purification and immunoprecipitation and pulldown. The proteins were detected using the indicated antibodies. Input (5%)
was used for Western blotting. H, HEK293T cells were transfected with AhR-Flag-His or Flag-His vector. Cells were then harvested and sonicated followed by
Flag pulldown. The coimmunoprecipitated products used in the ubiquitination assay were detected using the indicated antibodies. I, ubiquitination of PPAR�
targeted by the AhR complex in vitro. Purified human recombinant His-PPAR� (full-length) was incubated with E1, E2, Ub, and ATP in the absence and presence
of the AhR complex and the coimmunoprecipitated products obtained in F. Reactions were performed at 37 °C for 1 h followed by Flag pulldown. Ubiquiti-
nation of His-PPAR� was analyzed by Western blotting using anti-Ub antibody. IP, immunoprecipitation; IB, immunoblotting; OE, overexpressing.
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and Lys-293 were reported as two evolutionally conserved res-
idues in the hinge domain (6) (Fig. 5E). We then used point
mutation analysis to confirm the residue(s) that is polyubiquiti-
nated. As shown in the figure, mutation on a single site of these
three residues did not affect the substrate ubiquitination level
(Fig. 5F). However, the ubiquitination levels of K268A/K293A
double mutant or K268A/K293A/K329A triple mutant were
significantly decreased, suggesting that Lys-268 and Lys-293
were both targeted by CRL4BAhR (Fig. 5G). Consistently, in the
presence of AhR, mutations on Lys-268 and Lys-293 could
remarkably prolong PPAR� half-life in HEK293T cells (Fig. 5, H
and I). SirT1 was previously reported to deacetylate PPAR� on
its Lys-268 and Lys-293 (6). In the presence of NAM, an inhib-
itor of SirT1 (21), acetylation of PPAR� was increased, whereas
ubiquitination of PPAR� was decreased (Fig. 5J), suggesting
that acetylation on these two sites competes against ubiquitina-
tion. However, inhibiting ubiquitination by knockdown of AhR
does not increase the acetylation level of PPAR� (Fig. S4).

Discussion

In adipocytes, PPAR� protein has a short half-life (22). Sev-
eral E3s were found to target PPAR� for proteasomal degrada-
tion. MKRN1 and SCFFBXO9 promote PPAR� proteasomal deg-
radation in the cytoplasm (8, 23). SIAH2 has been shown to be
localized in the nucleus and to promote PPAR� ubiquitination
dependent on thiazolidinedione (24). Some E3s were not asso-
ciated with PPAR� degradation. TRIM23 regulates PPAR�
ubiquitination and stabilizes it (9). NEDD4 has been reported
to induce both Lys-48 – and Lys-63–linked polyubiquitination
of PPAR� (10, 25). Although WDTC1 binds PPAR� in adi-
pocytes, CRL4BWDTC1 complex promotes histone H2A Lys-
119 monoubiquitination and plays a role in transcriptional
repression (26). However, our previous study demonstrated
that knockdown of CUL4B and DDB1 resulted in a significant
increase in the half-life of PPAR�, indicating that CRL4B com-
plex might use a different DCAF rather than WDTC1 to pro-
mote PPAR� ubiquitination and degradation. AhR, a nuclear
receptor, has been shown to recruit estrogen receptor-� for
proteasomal degradation in a ligand-dependent manner (27).

In this study, we have shown here that AhR functions as the
substrate receptor and recruits PPAR� onto CRL4BAhR E3
complex. Up-regulation of AhR shortens the PPAR� protein
half-life via forming the CRL4BAhR E3 complex to facilitate
Lys-268 – and Lys-293–linked polyubiquitination of PPAR�,
thereby blocking adipocyte differentiation. Knockdown of AhR
stabilizes PPAR� and promotes adipocyte differentiation in
3T3-L1 cells.

PPAR� plays a central role during adipocyte differentiation
(28, 29). Increasing attention has been paid to PPAR� post-
translational modifications (30 –32). Despite the fact that
PPAR� binds its E3 ligases through its N-terminal (8) or C-ter-
minal region (10, 23), our data showed that PPAR� interacts
with AhR mainly on its DNA-binding domain and part of the
hinge region. The hinge region has been reported to regulate
subcellular distribution (33) and to interact with many nuclear
receptors, such as androgen receptor (34, 35), estrogen receptor
(36, 37), glucocorticoid receptor (38), and PPAR� (39).

PPAR� is a nuclear receptor with a nuclear localization signal
region between amino acids 181 and 224 (40, 41). The nuclear
localization signal in CUL4B is located in its N terminus
between amino acids 37 and 40 (42). Upon binding with ligand
and interaction with HSP90, AhR translocates to the nucleus
(43). Other components in CRL4BAhR E3 complex were all
reported to localize mainly in the nucleus (44 –46). Although
ubiquitin, E1, E2, E3s, and proteasomal subunits were found in
the nucleus, some studies suggest that nuclear export is
required for the degradation of nuclear substrates (43, 47–49).
However, other studies indicated that a nuclear ubiquitin–
proteasome system may also be responsible for the degradation
of several transcription factors (50 –53). In our case, PPAR�
was ubiquitinated and targeted for proteasomal degradation in
the nucleus.

Acetylation, which modifies the lysine residue of target pro-
teins, including histone and nonhistone proteins, is now recog-
nized as a critical step in transcriptional regulation (54). Inter-
estingly, many of these identified acetylated substrates are
involved in ubiquitin-dependent proteolysis. Several identified

Figure 4. AhR recruits PPAR� upon domain– domain interactions. A, mapping of the PPAR� domain responsible for binding AhR. GST-AhR (full length (FL))
and His-PPAR� truncations were expressed in E. coli individually followed by protein purification. Proteins were mixed for Ni2� pulldown followed by Western
blotting. Input (5%) was detected using the indicated antibodies. Protein bands of interest are marked with stars. B and C, mapping of the AhR domain
responsible to interact with PPAR�. His-PPAR� (full length) and GST-AhR truncations were expressed in E. coli individually followed by protein purification.
Proteins were mixed followed by immunoprecipitation with the indicated antibodies and Western blotting. Input (5%) was detected using the indicated
antibodies. Protein bands of interest are marked with stars. IP, immunoprecipitation; IB, immunoblotting.
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acetylated lysine residues are also potential ubiquitination sites
in proteins (55, 56). For example, the same lysine residues at the
C terminus of p53 can be modified by both acetylation and
ubiquitination, implicating a role of acetylation in regulating
p53 stability (57). Acetylation is also integrated with other post-
translational modifications to regulation PPAR� activity (58,
59). PPAR� acetylation on Lys-268 and Lys-293 is a signal of
lipid storage and cell proliferation. Conversely, deacetylation of
PPAR� induces energy expenditure and promotes insulin sen-
sitivity (6). We used MS analysis on trypsin-digested peptides to
identify three ubiquitinated lysines at residues 268, 293, and

329. Among them, two evolutionally conserved residues, Lys-
268 and Lys-293, were main ubiquitinated sites verified by the
following ubiquitination and cycloheximide (CHX)-chase
assays. In some cases, acetylation competes with ubiquitination
for the same lysine sites to prevent protein degradation (60).
Deacetylation of PPAR� makes Lys-268 and Lys-293 available
for ubiquitination by CRL4BAhR and subsequent proteasomal
degradation. Therefore, it is important to explore the mecha-
nism of post-translational modifications on PPAR�.

Previously, we reported that scaffold protein CUL4B of
CRL4B E3 ligase complex functions as a negative regulator of
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adipogenesis. We observed that depletion of CUL4B im-
proves adipose function and protects against glucose intol-
erance and insulin resistance (16). A similar phenotype was
observed in AhR-knockout mice. Exposing AhR�/� mice to
a high-fat diet showed lower fasting glucose levels and
improved glucose tolerance (61). In addition to AhR�/�

mice, AhR�/� mice, which express about 30% of the AhR
levels, also exhibited significantly improved glucose toler-
ance and insulin sensitivity (62).

Recent studies revealed that AhR plays critical roles in energy
metabolism (17, 18). Suppression of AhR activity can improve
metabolic function to avoid obesity (62). Unlike the low-affinity
direct or indirect interaction between SIAH2 and PPAR� (24),
AhR functions as a substrate receptor, directly recruits sub-
strate PPAR�, facilitates its ubiquitination, and promotes sub-
sequent proteasomal degradation (Fig. 6). Further studies are
certainly required to reveal the precise mechanism of substrate
selection, cross-talk between acetylation and ubiquitination,
and detailed AhR–PPAR� interactions for the treatment of
obesity and metabolic diseases.

Experimental procedures

Plasmids

Full-length cDNAs of AhR and PPAR� were inserted into
either pcDNA3.1 (Invitrogen), pGEX4T1 (GE Healthcare), or
pRsfduet-1 (Novagen) vectors as indicated. Truncated mutants
of AhR (1–187aa, 188 – 403aa, and 403– 848aa) and truncated
mutants of PPAR� (1–135aa, 136 –232aa, 1–232aa, 136 –505aa,
233–505aa, and 136 –333aa) were amplified by PCR and cloned
into vectors as indicated. Different point mutations in PPAR�
or AhR were generated by site-directed mutagenesis. Other
plasmids were generated and described previously (16, 63).

Antibodies and chemicals

For Western blotting, the following antibodies were used:
PPAR� (C26H12, Cell Signaling Technology), AhR (ab2769,
Abcam), CUL4B (HPA011880, Sigma), HA (rabbit D110004
and mouse D199961, BBI Life Sciences Corp. (BBI), and
600401384, Rockland), Myc (rabbit D110006 and mouse
D153566, BBI), �-actin (sc-69879, Santa Cruz Biotechnology),

Figure 5. Identification of ubiquitination site(s) in PPAR�. A, CRL4BAhR targets PPAR� for ubiquitination at a novel site(s). HEK293T cells were transfected
with plasmids expressing Flag-Cul4B, AhR-Flag-His, HA-Ub, and Myc-PPAR� variants. Cells were treated with MG132 for 3 h and harvested for the following
immunoprecipitation and Western blotting. Input (5%) was used for Western blotting. B, domain– domain interactions are required for PPAR� ubiquitination.
HEK293T cells were transfected with plasmids expressing Flag-Cul4B, AhR-Flag-His, HA-Ub, and Myc-PPAR� truncations. Cells were treated with MG132 for 6 h
and harvested for the following immunoprecipitation and Western blotting. Input (5%) was used for Western blotting. C, list of PPAR� ubiquitination sites
determined by MS. HEK293T cells were transfected with plasmids expressing Flag-Cul4B, AhR-Flag-His, HA-Ub, and Myc-PPAR�. Cells were treated with MG132
for 10 h and harvested for immunoprecipitation using anti-Myc antibody. D, schematic structure of PPAR�. Arrowheads indicate potential ubiquitinated sites.
E, the model of PPAR� isoform 2 (created from Protein Data Bank code 1PRG (65)) is demonstrated in cartoon. The AhR-binding region is colored green, and the
ubiquitination region is colored yellow. Potential ubiquitination sites are shown as red spheres. F, single mutations on PPAR� barely affect ubiquitination.
HEK293T cells were transfected with plasmids expressing Flag-Cul4B, AhR-Flag-His, HA-Ub, and Myc-PPAR� variants. Cells were treated with MG132 for 3 h and
harvested for the following immunoprecipitation and Western blotting. Input (5%) was used for Western blotting. G, effect of dual mutations on PPAR�
ubiquitination. HEK293T cells were transfected with plasmids expressing Flag-Cul4B, AhR-Flag-His, HA-Ub, and Myc-PPAR� variants. Cells were treated with
MG132 for 3 h and harvested for the following immunoprecipitation and Western blotting. Input (5%) was used for Western blotting. H, effect of dual mutations
on PPAR� stability. HEK293T cells were transfected with the indicated plasmids expressing AhR-Flag-His and Myc-PPAR� variants for CHX-chase assay. The final
concentration of CHX used in the treatment was 60 �g/ml. The cell lysate was then detected with the indicated antibodies. I, turnover of WT and mutated
PPAR� was determined by Western blotting. Signals from immunoblots were analyzed using Quantity One software. Protein signals of PPAR� variants were
normalized with the actin protein signals, and the percentage of PPAR� variants remaining was plotted against time. J, SirT1 inhibitor NAM reduced PPAR�
ubiquitination level. HEK293T cells were transfected with plasmids expressing Flag-Cul4B, AhR-Flag-His, HA-Ub, and Myc-PPAR�. Cells were treated with
MG132 (20 �M; 1.5 h) in the absence or presence of NAM (100 �M; 48 h). Cells were then harvested for the following immunoprecipitation and Western blotting.
Input (5%) was used for Western blotting. IP, immunoprecipitation; IB, immunoblotting.

Figure 6. CRL4BAhR-mediated PPAR� ubiquitination regulates adipocyte differentiation.
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and acetylated lysine (9441, Cell Signaling Technology). The
following reagents were used to culture cells or perform exper-
iments: X-tremeGene HP DNA transfection reagent (Roche
Applied Science), X-tremeGene siRNA transfection reagent
(Roche Applied Science), polyethylenimine (23966, Poly-
sciences Inc.), CHX (HY-12320, MedChemExpress (MCE)),
MG132 (HY-13259, MCE), LMB (S1726, Beyotime), N-ethyl-
maleimide (NEM; EB0450, BBI), DMSO (A503039, Sangon
Biotech), 4�,6-diamidino-2-phenylindole (ab104139, Abcam),
GSH reduced (A600229, BBI), and phenylmethylsulfonyl fluo-
ride (PB0425, BBI).

Cell culture and adipocyte differentiation

HEK293T and 3T3-L1 cells were grown in DMEM (Gibco)
with 10% bovine serum (Sigma-Aldrich). Adipocytes differen-
tiated from 3T3-L1 cells were first maintained in DMEM with
10% bovine serum (Gibco) for 2–3 days. Cells were then differ-
entiated in DMEM containing 10% fetal bovine serum, 1 �M

dexamethasone, 520 �M isobutylmethylxanthine, and 1 �g/ml
insulin for 7 days. Differentiated cells were stained using Oil
Red O (Sigma-Aldrich). The stained cells were photographed
using a camera-connected microscope (Olympus).

Generation of AhR knockdown and overexpression stable cell
lines

AhR shRNA construct (LV3(H1/GFP&Puro)) and AhR over-
expression plasmid (LV5(EF-1aF/GFP&Puro)) were purchased
from GenePharma. Lentivirus packaging was done at Gene-
Pharma. Lentiviral supernatants of shRNA and AhR overex-
pression plasmids were used to infect 3T3-L1 cells following
the manufacturer’s instructions. Infected cells were selected by
puromycin (1.5 �g/ml) treatment for 6 days.

Protein stability assay and analysis

HEK293T cells were cotransfected with Myc-PPAR� (2 �g)
and AhR-Flag-His (4 �g) or the empty vector (4 �g). After 20 h,
cells were treated with 60 �g/ml CHX to inhibit protein syn-
thesis. CHX-treated cells were harvested at different time
points (0, 4, and 8 h) and processed for immunoblotting with
anti-PPAR� antibody. Anti-actin antibody was used as an inter-
nal control. Signals from the Western blots were analyzed by
Volume Analysis of Quantity One software with volume back-
ground subtraction (Bio-Rad).

Protein purification and binding assays

pGEX4T1-AhR and pRsfduet-PPAR� (isoform 2) were
expressed in E. coli and purified using GSH-Sepharose 4B (GE
Healthcare) or Ni2�-NTA (GE Healthcare) separately. The
purified GST-AhR and His-PPAR� were further purified by
size-exclusion chromatography (Superdex 200 or Superdex 75,
GE Healthcare) and stored in protein buffer containing 25 mM

Tris, pH 7.6, 150 mM NaCl, and 1 mM DTT. The binding assays
were performed by mixing His-PPAR� and GST-AhR. The
mixture was then incubated with AhR antibody and protein
A/G-Sepharose (Santa Cruz Biotechnology) for 2 h at 4 °C.
Immunoprecipitates were boiled in sample loading buffer for
5 min.

Immunoprecipitation

HEK293T cells were lysed using lysis buffer (50 mM Tris-
HCl, pH 7.6, 150 mM NaCl, 0.5% sodium desoxycholate, and
0.5% Nonidet-P40) with protease inhibitor mixture (Roche
Applied Science) followed by sonication (8 s, 12 cycles). Cell
lysate supernatants were incubated with the indicated antibod-
ies and protein A/G-Sepharose (Santa Cruz Biotechnology) for
2 h at 4 °C. Immunoprecipitates were boiled in sample loading
buffer for 5 min.

PLA

Adult male mice (WT and adipocyte-specific Cul4b knock-
out) were housed at the animal unit at the Department of
Genetics, Shandong University. Mouse adipose tissues were
extracted and fixed for embedding in paraffin. 4-�m samples of
the paraffin tissue array were stained against the indicated anti-
bodies according to the Duolink� in situ PLA (Sigma) protocol.
Antibodies used in this experiment include PPAR� (mouse
95128S, Cell Signaling Technology; 1:400), AhR (rabbit 83200S,
Cell Signaling Technology; 1:50), and CUL4B (HPA011880,
Sigma; 1:600). Images were collected using a fluorescence
microscope (Olympus BX51).

Ubiquitination assay

HEK293T or 3T3-L1 cells were first transfected with the
indicated plasmids or siRNAs and treated with the indicated
chemicals, including MG132 (20 �M), NAM (100 �M), and
LMB (10 ng/ml). Cells were then harvested with PBS containing
10 �M NEM to prevent deubiquitination. Cells were lysed in 2%
SDS by boiling the samples for 10 min followed by sonication (8
s, one cycle). Lysed-sample supernatants were incubated with
Myc antibody (D153566, BBI) and mixed with protein A/G-
Sepharose (Santa Cruz Biotechnology) for 2 h at 4 °C followed
by Western blotting or Coomassie Blue staining for MS.

In vitro ubiquitination assay

His-PPAR� was expressed in E. coli and purified with Ni2�-
NTA (GE Healthcare) followed by size-exclusion chromatogra-
phy (Superdex 75, GE Healthcare). His-PPAR� was incubated
with 200 ng of E1 (UBE1), 500 ng of E2 (UbcH5c), 10 �g of
His-Ub, and 2 mM ATP (Enzo Life Sciences) as described pre-
viously (8). The reaction was performed in the absence and
presence of AhR-Flag-His coimmunoprecipitation products.
After 1-h incubation at 37 °C, samples were quenched in 6 M

guanidinium HCl, pH 8, containing 5 mM NEM. His-ubiquiti-
nated proteins were pulled down with Ni2�-NTA (GE Health-
care) followed by washing and elution in sample buffer (64).
The mixture was then boiled in loading dye at 95 °C for 10 min
to disrupt protein–protein interactions.

Mass spectrometry

Mass spectrometry experiments were done by Applied Pro-
tein Technology Co. LC-MS/MS analysis was performed on a Q
Exactive mass spectrometer (Thermo Fisher Scientific) for 60
min. MS data were acquired using a data-dependent top 10
method dynamically choosing the most abundant precursor
ions from the survey scan (300 –1800 m/z) for higher-energy
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collisional-dissociation fragmentation. Survey scans were ac-
quired at a resolution of 70,000 at m/z 200, the resolution for
higher-energy collisional-dissociation spectra was set to 17,500
at m/z 200, and the isolation width was 2 m/z. The instrument
was run with peptide recognition mode enabled. The raw data
are available in the supporting information.

The MS search parameters used were as follows. The peak
list– generating software and search engine used was Mas-
cot2.2. The UniProt database was used for sequence searching.
We actually searched 161,584 entries in the database. Trypsin
was used in our experiments with specificity sites Lys/Arg. Two
missed and/or nonspecific cleavages were permitted. The fixed
and variable modifications (including residue specificity) used
include carbamidomethyl (Cys) and oxidation (Met) and Gly-
Gly (Lys), respectively. Mass tolerance for precursor ions was
20 ppm, and that for fragment ions was 0.1 Da. The threshold
score/expectation value for accepting individual spectra was no
less than 20.

Immunofluorescence analysis

HEK293T cells were cotransfected with Myc-PPAR� (2 �g)
and AhR-Flag-His (4 �g) and treated with DMSO or MG132 for
6 h. Cells were fixed (P0098, Beyotime) for 30 min at room
temperature and washed with PBS buffer three times. Cells
were stained with anti-PPAR� antibody (1:100). Images were
collected using a fluorescence microscope (Olympus BX51).

RT-PCR analysis

RNAs were extracted using TRIzol (Invitrogen) according to
the manufacturer’s directions. cDNAs were synthesized from
total RNA using reverse transcriptase (EP0441, Thermo),
amplified, and analyzed using a SYBR Green PCR kit and real-
time PCR. The primers used in this study are described in the
supporting information. Each gene expression level was nor-
malized by the glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) gene.

Statistical analysis

Statistical analyses on RT-PCR and PLA were performed
using Prism software. Measurement data were expressed as
mean � S.D. A paired, two-tailed Student’s t test was used to
determine the significance between two groups. p � 0.05 was
regarded as the threshold value for statistical significance. Sta-
tistical analyses on protein level and stability were performed
using Quantity One software.
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