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tau is a microtubule (MT)-associated protein that promotes
tubulin assembly and stabilizes MTs by binding longitudinally
along the MT surface. tau can aberrantly aggregate into patho-
logical inclusions that define Alzheimer’s disease, frontotempo-
ral dementias, and other tauopathies. A spectrum of missense
mutations in the tau-encoding gene microtubule-associated
protein tau (MAPT) can cause frontotemporal dementias. tau
aggregation is postulated to spread by a prion-like mechanism.
Using a cell-based inclusion seeding assay, we recently reported
that only a few tau variants are intrinsically prone to this type of
aggregation. Here, we extended these studies to additional tau
mutants and investigated their MT binding properties in mam-
malian cell-based assays. A limited number of tau variants
exhibited modest aggregation propensity in vivo, but most tau
mutants did not aggregate. Reduced MT binding appeared to
be the most common dysfunction for the majority of tau vari-
ants due to missense mutations, implying that MT-targeting
therapies could potentially be effective in the management of
tauopathies.

Pathogenic mutations in the MAPT gene that encodes the
microtubule (MT)2-associated protein tau directly cause some
forms of tauopathies, a heterogeneous group of disorders with
brain-laden pathological tau inclusions that includes Alzhei-
mer’s disease (AD), Pick’s disease, chronic traumatic encepha-
lopathy, and other conditions (1). AD, the most common form
of dementia, has two classical pathological lesions: A� senile
plaques and neurofibrillary tangles composed of hyperphos-
phorylated, aggregated tau (2). Of these two pathological fea-
tures, the presence of neurofibrillary tangles strongly correlates

with symptoms such as cognitive decline and other dementia
signs in patients with AD (3, 4). In addition, MAPT mutations
are directly associated with frontotemporal dementia with par-
kinsonism linked to chromosome 17 (FTDP-17t) (5, 6).

As an MT-associated protein, tau binds longitudinally along
the MT surface, providing MT stability and promoting tubulin
assembly (7–10). Physiologically, tau is primarily expressed in
neurons and is concentrated in the distal axon (11). In the
human brain, tau protein is alternatively spliced into six major
different isoforms based on inclusion or exclusion of exons 2, 3,
and 10 (12, 13). Inclusion of one or two N-terminal domains
generates 0N, 1N, and 2N isoforms due to alternative splicing of
exons 2 and 3. Varied forms of tau also result from the presence
of three (3R) or four (4R) MT-binding repeats of 31 or 32 amino
acids due to alternative splicing of exon 10 (14, 15).

More than 50 pathogenic MAPT mutations have been iden-
tified (5, 6, 16). Of note, many of these are intronic and silent
mutations that affect exon 10 splicing and thus the ratio of
3R/4R tau isoforms expressed. Missense mutations directly
alter the primary protein sequence, but in some cases they can
also affect exon 10 splicing (6, 16). Most tau missense mutations
are clustered within the MT-binding domain (MTBD) (6, 17),
suggesting that impairment of tau–MT interactions can be
directly involved in pathogenesis. Loss of MT mass due to MT
instability is a common feature of AD (18 –21). tau–MT dys-
function can affect synaptic plasticity and impair axonal trans-
port of vesicles and other molecules, causing cognitive deficits
in learning and memory (22–25). Defects in tau can also acti-
vate MT-severing proteins such as katanin and cause degrada-
tion of MTs (26). Predominantly in vitro studies indicate that
tau mutants can alter tubulin assembly and MT binding (17,
27). tau post-translational modifications such as phosphoryla-
tion can also decrease MT-binding activity (28 –30).

Because of the progressive nature of tauopathies, tau aggre-
gation has been hypothesized to propagate from neuron to neu-
ron by a prion-like mechanism (31). In clinical staging of AD
patients, it has been proposed that aggregated forms of tau may
spread from the hippocampus to the entorhinal region, and
eventually to the rest of the neocortex (32, 33). Experimentally,
tau can transfer from cell to cell and can be seeded by pre-
formed aggregated tau fibrils to induce aggregation (34 –36).
Transgenic mouse models of tau can be injected with tau seeds
of recombinant proteins, mouse brain lysate, and even human
brain lysate to induce neurofibrillary tangles with tau fibrillar
aggregates (37–41). Although there is no clinical evidence of
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iatrogenic spread between AD patients (42), experimental stud-
ies support the hypothesis that tau can spread in a prion-like
manner along anatomical connections to other neurons.

A previous study used a cell-based assay to examine prion-
like seeding in 19 missense pathogenic tau mutants and revealed
that only mutants at the Pro-301 position were uniquely prone to
seed induced aggregation (43). Building from this unexpected
finding, we investigated and characterized an extensive series of
tau mutants for MT binding using a mammalian cell-based assay,
and we extended the previous series of pathogenic tau mutants for
prion-like seeding. These studies show that most tau mutants
share a common mechanism of impaired MT binding with only
heterogeneous potential for aggregation.

Results

tau variants with mutations at the Pro-301 position severely
impaired MT binding compared with WT tau and several other
tau mutants in the R1 and R2 repeats

Although tau–MT associations can be visualized in the cyto-
plasm by immunofluorescent labeling, the amount of tau that is
directly bound to MTs cannot be quantified by this method (Fig.
S1). A previously established cell-based MT-binding assay (44–
46) was performed on diverse tau missense mutants (Fig. 1) to
assess changes in MT binding associated with a spectrum of tau
variants with missense tau mutations. Furthermore, most previous
studies investigated tau mutants with an in vitro MT-binding assay
that used recombinant tau expressed from bacteria and tubulin
assembled from bovine or porcine sources (Table 1). This cell-
based MT-binding assay is more physiologically relevant as it, at
least partially, incorporates the effects of post-translational modi-
fications such as phosphorylation (Fig. S2), differential tau folding
in mammalian cells, and interactions with human MT isotypes in
HEK293T cells. The 0N4R human tau isoform was used for all the
assays, but all the tau mutations are numbered according to the
2N4R human tau isoform, which is the longest tau isoform
expressed in the human brain.

First, to validate the MT-binding assay, wildtype (WT) tau
was expressed in HEK293T cells, and the assay was performed

with or without paclitaxel, a drug that hyperstabilizes and pro-
motes the formation of MTs (47, 48). Without paclitaxel, most
of the tubulin is not polymerized and soluble (Fig. 2A); hence,
the majority of tau (�87%) is also soluble. When paclitaxel is
present, tubulin polymerizes into MTs and shifts into the pellet
fractions. In the presence of paclitaxel-stabilized MTs, �41% of
WT tau is found in the MT pellet fraction (Fig. 2B). Therefore,
detection of tubulin in the insoluble fraction was used to con-
firm that paclitaxel was active in all the experiments that fol-
lowed. Notably, there are also several smaller tau bands
observed by immunoblot in this assay, and these are likely due
to some degradation from incubation at 37 °C required for
these MT-binding assays. However, the major bands are likely
full-length tau with other forms of post-translational modifica-
tions (Fig. S3).

Three tau mutants (P301L, P301S, and P301T) located at the
same amino acid residue within the PGGG motif of the R2
repeat (Fig. 2C) were assessed, because previous in vitro and cell
culture assays for P301L tau had shown significant decrease in
MT binding (49 –54). Likewise, studies using brain lysate of
P301S tau transgenic mice have confirmed a decreased MT
binding (55). In the cell-based assay, it was revealed that all
these mutants at Pro-301 reduced MT binding similarly and
significantly (Fig. 2, D–G). These findings show that the change
of a proline residue to a leucine, serine, or threonine have a
similar effect; thus, the Pro-301 position and disruption of this
PGGG motif is likely more important than the specific amino
acid change.

Mutants within the R1 and R2 repeats such as G273R,
�K280, L284R, and V287I were assessed for altered MT binding
(Fig. 3). Interestingly, G273R, a mutant in another PGGG motif
but within the R1 repeat, did not significantly affect MT binding
compared with WT tau (Fig. 3, C and G). Likewise, the V287I
mutant did not affect MT binding (Fig. 3, F and G). We observe
that both �K280 and L284R significantly decreased MT bind-
ing (Fig. 3, D, E, and G). The effects for �K280 are consistent
with previous in vitro studies that showed varied results but
generally indicated that �K280 decreased MT binding (51, 52,
56). Interestingly, G273R and V287I flank the other two muta-
tions, suggesting that only a restricted region of the R2 repeat is
responsible for most of the R2 binding activity. Overall, tau
mutants in the R1 and R2 repeats show mixed results for MT
binding (Fig. 3G).

Most tau variants with mutations in the R3 and R4 repeats
impaired MT binding

Many pathogenic tau variants with missense mutations are
clustered within R3 and R4 repeats, a region that prominently con-
tributes to tau MT binding (Fig. 1). Within the R3 repeat, tau
mutations are scattered in multiple locations (Fig. 4A). K317M, a
mutant near the center of the R3 repeat, significantly impaired MT
binding (Fig. 4, C and G). Both G335S and G335V also decreased
MT binding (Fig. 4, E–G). Surprisingly, S320F, a mutant at the
center of R3, did not alter MT binding (Fig. 4, D and G). This
mutant also appeared to have more degradative bands.

Similar to the majority of mutants in the R3 repeat, mutants
such as S352L, S356T, V363A, V363I, and G366R in the R4
repeat decreased MT binding (Fig. 5). Thus, most mutants in

Figure 1. Schematic of 4R tau protein depicting major structural
domains. tau is an MT-associated protein that consists of an N-terminal
region, a proline-rich domain, an MTBD composed of four MT-binding
repeats in the 4R isoforms, and a C-terminal region. Indicated are the loca-
tions of the pathogenic tau missense mutants that were investigated herein;
they were numbered relative to the longest 2N4R tau isoform expressed in
the human brain. Most tau missense mutants are clustered within the MTBD.
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the R3 and R4 repeats impaired MT binding, indicating that
impairment of binding in R3 and R4 repeats is not well-com-
pensated by the other repeats.

tau variants within the N- and C-terminal regions display
varying effects on MT binding

In addition to mutants within the MTBD, we also tested sev-
eral tau mutants clustered around the N- and C-terminal
regions of tau (Fig. 6A). Surprisingly, R5L and R5H were the
only mutants that depicted increased MT binding (Fig. 6, C and

D), suggesting that these N-terminal tau mutations likely cause
long-range conformational changes promoting the tau–MT
interactions, at least in a proportion of tau molecules.

Both C-terminal region mutants K369I and R406W dis-
played decreased MT binding (Fig. 6, E and F). Although
these tau mutations are not within the MTBD, they are both
close to this region. This finding suggests that the area adja-
cent to the repeats also can contribute to MT binding or that
these mutations induce conformational changes in the adja-
cent MTBD.

Table 1
Summary of findings on tau aggregation and MT binding or polymerization for tau variants with pathogenic mutations investigated
The new mammalian cell-based MT binding and tau aggregation results shown in this study are identified by asterisks. Data from previous studies are included with the
references. Impaired MT binding and MT dysfunction are the most common mechanisms for tau mutants. The aggregation propensity of tau mutants in vivo is more varied
and only observed for a subset of tau mutants.1� increase;2� decrease;7� unchanged.

tau
mutations

Cell-based MT
binding assay In vitro MT binding assay In vitro MT assembly In vitro tau aggregation In vivo tau aggregation

R5H 1* NA 2 (106) 1 (106) 7 (43)
R5L 1* NA 2 (107, 108) 7 or1 (82, 107–109) 7 (43)
G273R 7* NA NA NA 1*
L284R 2* NA NA NA 7*
V287I 7* NA NA NA 7*
�K280 2* (45) 2 or7 (51, 52) 2 (51, 52, 110) 1 (52, 111) 1 or7 (43, 45)
P301L 2* or7 (45, 53) 2 or7 (49–52) 2 (50–52, 108, 110, 112) 1 (52, 82, 108, 109, 113, 114) 1* as reviewed in Ref. 17
P301S 2* (55) NA 2 (112, 115, 116) 1 (114, 116) 1 as reviewed in Ref. 17
P301T 2* NA NA NA 1 (43)
K317M 2* NA NA NA 7*
S320F 7* NA 2 (82) 1 (82) 1 (43)
G335S 2* NA 2 (116) 7 (116) 7*
G335V 2* NA 2 (116, 117) 1 (116, 117) 1*
S352L 2* 2 (118) 2 (82, 118) 1 (82, 118) 7*
S356T 2* NA NA NA 1*
V363I 2* NA 7 (119) 7 (119) 1* (120)
V363A 2* NA 2 (119) 7 (119) 7* (120)
G366R 2* NA 2 (90) 7 (90) 7*
K369I 2* NA 2 (82, 89) 2 (82) 7*
R406W 2* or7 (45) 2 or7 (49, 50, 53) 2 (50, 108) 1 (108, 113) 7 (43)

Figure 2. tau mutants at the Pro-301 residue significantly impaired MT binding. A and B, cell-based MT-binding assay performed with HEK293T cells
transfected to express WT tau with or without the presence of paclitaxel as described under “Experimental procedures.” Antibody specific for �-tubulin (clone
TUB 2.1) was used to assay the polymerization of tubulins. 3026 is a polyclonal antibody against total tau. S � supernatants; P � pellet fractions. Without
paclitaxel, the majority of tubulin is not polymerized and soluble, whereas with paclitaxel, the majority of tubulin is polymerized as MTs in the pellet fraction.
C, P301L, P301S, and P301T tau mutants are in the PGGG motif of the R2 repeat. In the presence of paclitaxel, P301L (D), P301S (E), and P301T (F) all demonstrate
significantly decreased MT binding when compared with WT tau. The relative molecular masses of protein markers are indicated on the left. On the right, FL is
for full-length tau, and the brace indicates degradative tau bands. G, one-way ANOVA with Dunnett’s test was performed with n � 18 for WT tau and n � 3 for
each of these tau mutants. ****, p � 0.0001.
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tau mutants in the PGGG motifs and the R4 repeat have varied
aggregation propensities

We previously studied the aggregation properties of 19
FTDP-17 tau missense mutants with or without exogenous K18
seeds and found that only S320F moderately self-aggregated,
whereas all three mutants (P301L, P301S, and P301T) at Pro-
301 within the R2 PGGG motif were robustly permissive to
seed-induced aggregation with conformational templating
(43). These studies were extended to include new tau mutants
used for MT binding studies. First, additional mutants within
the PGGG sequences were assessed for their propensity to
aggregate: G273R in the R1 repeat; G335S and G335V in the R3
repeat; and G366R in the R4 repeat (Fig. 7A). As a baseline, WT
tau did not aggregate with or without K18 seeding (Fig. 7, B and
H). In contrast, P301L tau was used as a positive control that

normally does not intrinsically aggregate but will readily aggre-
gate when seeded with preformed exogenous K18 fibrils (Fig. 7,
C and H). The G273R and G335V tau mutants self-aggregated
at modest levels with or without seeding (Fig. 7, D, F, and H).
G366R within the R4 repeat negligibly aggregated, but this was
not statistically significant (Fig. 7, G and H). None of these
mutants within the PGGG motif aggregated more when seeded
with K18 preformed fibrils further highlighting the uniqueness
of Pro-301 tau mutants (Fig. 7 and Fig. S4).

The tau mutants (S356T, V363A, and V363I) close to the R4
PGGG motifs within the R4 repeat were assessed for aggrega-
tion (Fig. 8A). S356T and V363I tau modestly aggregated even
without seeding, but this did not increase with the presence of
K18 seeds (Fig. 8, C and E). The V363A mutant in the same
location as V363I might modestly aggregate but was not statis-

Figure 3. tau mutants in the R1 and R2 repeats had varied effects on MT binding. A, tau mutants G273R, �K280, L284R, and V287I are present within the
R1 or R2 repeat as indicated. B–F, MT-binding assay was performed in the presence of paclitaxel as described under “Experimental procedures.” Relative to WT
tau, �K280 and L284R tau demonstrated decreased MT binding, whereas G273R tau and V287I tau did not have a significant effect. Immunoblots were probed
with anti-�-tubulin antibody TUB 2.1 or total tau antibody 3026 as indicated. S � supernatants; P � pellet fractions. The relative molecular masses of protein
markers are indicated on the left. On the right, FL is for full-length tau, and the brace indicates degraded tau bands. G, one-way ANOVA with Dunnett’s test was
performed with n � 18 for WT tau and n � 3 for each of these tau mutants. *, p � 0.05; ns, no statistical significance.
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tically significant (Fig. 8, D and F). Other tau variants with
mutations in various repeats (L284R, V287I, K317M, S352L and
K369I) did not aggregate with or without K18 seeding (Fig. 9).

P301L/S320F tau uniquely self-aggregated compared with
other tau double mutants

We previously discovered that the combined double tau
mutant P301L/S320F robustly self-aggregates without exoge-
nous seeding (43). From our additional screening, tau mutants
with some baseline ability to self-aggregate were combined to
P301L to create similar double mutants. Surprisingly, other
double mutants did not exhibit the enhanced aggregation
effect. P301L/G273R tau aggregated modestly compared with
P301L/S320F tau (Fig. 10, A, B, and E). Other double mutants
like P301L/G335V tau and P301L/S356T tau did not aggregate
(Fig. 10, C, D, and E). In fact, the addition of P301L to these
mutants did not change their ability to aggregate. This suggests

that P301L/S320F tau may form a unique conformation and
represent a different tau strain.

Discussion

Aggregation of tau to form pathological inclusions is a hall-
mark of tauopathies and is universally observed in postmortem
brains of patients with MAPT mutations, although variable
brain regional distribution can be observed even between
patients with the same MAPT mutation (57). In recent years,
prion-like conformational templating of aggregated tau has
gained significant attention as a mechanism in the progressive
spread of tauopathies in many experimental models (31,
58–61). Recently, we investigated the aggregation propensity of
19 FTDP-17 tau mutants in a cell-based tau-seeding assay and
demonstrated that except for three mutants at Pro-301 (i.e.
P301L, P301S and P301T), WT and the other assayed tau
mutants displayed relatively limited to no aggregation (43).

Figure 4. Most tau mutants in the R3 repeat decreased MT binding. A, tau mutants K317M, S320F, G335S, and G335V are located within the R3 repeat. B–F,
MT-binding assay was performed in the presence of paclitaxel as described under “Experimental procedures.” HEK293T cells were transfected with WT or the
indicated tau mutations. K317M, G335S, and G335V tau mutants significantly decreased MT binding, whereas the S320F tau had no major change. Immuno-
blots were probed with anti-�-tubulin antibody TUB 2.1 or total tau antibody 3026 as indicated. S � supernatants; P � pellet fractions. The relative molecular
masses of protein markers are indicated on the left. On the right, FL is for full-length tau, and the brace indicates degradative tau bands. G, one-way ANOVA with
Dunnett’s test was performed with n � 18 for WT tau and n � 3 for each tau mutant. ***, p � 0.001; ****, p � 0.0001; and ns, no statistical significance.
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Herein, we extend these studies to an additional 12 tau mutants
and demonstrated that none of them were prone to seeded
aggregation, although four mutants (G273R, G335V, S356T or
V363I) were identified that modestly and intrinsically aggre-
gated. Similarly, we had previously found that the S320F
mutant had a modest tendency to aggregate but was not
enhanced with exogenous K18 seeding (43). Combining the
P301L and S320F mutants resulted in tau that robustly aggre-
gated even without seeding. However, combining the P301L
mutant with either G273R, G335V, or S356T did not have a
synergistic effect of tau aggregation (Fig. 10). These findings
further support the notion that tau aggregation is tightly regu-
lated by global folding, such as the proposed paperclip-like

structure that is not intrinsically permissive to aggregation (62),
as well as key local molecule structures supported by recent
cryo-EM studies (63, 64). The synergistic aggregation of the
combined P301L/S320F tau double mutant is likely due to the
unique relative distance and locations of these two mutations
initiating and potentiating an amyloid-permissive stretch (43).
In this structure, S320F enhances the hydrophobicity of an
amyloid pocket, whereas the Pro-301 mutations disrupt a fold
that would otherwise suppress amyloid formation (43, 63). The
increased propensity of S320F tau to promote aggregation with
or without seeding is consistent with the notion that it has
greater property to aggregate with a lower nucleation threshold
and a moderate ability to elongate as amyloid structures. P301L

Figure 5. Most of the tau variants mutants in the R4 repeat significantly reduced MT binding. A, tau mutants S352L, S356T, V363I, V363A, and G366R are
located within the R4 repeat. B–G, MT-binding assay was performed in the presence of paclitaxel as described under “Experimental procedures.” HEK293T cells
were transfected with WT or the indicated tau mutations. S352L, S356T, V363I, V363A, and G366R tau mutants significantly decreased MT binding. Immuno-
blots were probed with anti-�-tubulin antibody TUB 2.1 or total tau antibody 3026 as indicated. S � supernatants; P � pellet fractions. The relative molecular
masses of protein markers are indicated on the left. On the right, FL is for full-length tau, and the brace indicates degradative tau bands. H, one-way ANOVA with
Dunnett’s test was performed with n � 18 for WT tau and n � 3 for each tau mutant. ***, p � 0.001; ****, p � 0.0001.
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tau displays a greater potential for amyloid elongation but is
limited by the lack of significant nucleation to initiate aggrega-
tion. Thus, the combination of both S320F and P301L yields an
aggressive tau strain that can self-aggregate and is highly per-
missive to amyloid aggregation. Similar to this double mutant,
other structural alterations such as post-translational modifi-
cations can result in unique tau strains permissive to aggrega-
tion as suggested by some experimental models (38, 65, 66).

One limitation of our seeding studies is that we used in vitro
polymerized K18 tau as preformed fibrils to induce intracellular
tau aggregation. Some studies have shown that tau aggregates
isolated from brain lysates have higher-seeding potencies than
recombinant tau fibrils (67). In addition, our in vitro generated
tau fibrils likely do not comprise all of the misfolded tau strains
that can occur in vivo (68, 69). Therefore, seeding of WT and
other tau mutant could occur with more virulent seeds. Never-
theless, our data further highlight the uniqueness of Pro-301
tau mutants.

tau is an “intrinsically disordered” protein that can assume a
variety of different conformations (6, 70, 71). When tau associ-
ates with MTs, it adopts a more stable conformation but tran-
siently binds to MT (8, 9, 72, 73). The tau–MT interaction is
very flexible and allows tau to readily move between the MT-
bound and -unbound states (73, 74) and can be regulated by tau
phosphorylation (29, 30, 75–78). This interaction allows tau to
maintain MT homeostasis by stabilizing MTs, regulating their
dynamic instability, and promoting tubulin assembly (6, 7, 10,
79). Different tau mutants also impair physiological dynamic
instability and tubulin assembly (17, 49, 80 –82), both of which
are likely regulated by the MT-binding affinity of tau. Com-
pared with the small subset of tau mutants that presented
enhanced prion-like seeded aggregation, most tau mutants
investigated so far display reduced activity of tubulin polymer-

ization activity or MT binding (Table 1) (17). However, most
studies investigating the impact of tau mutants on MT binding
used in vitro MT binding with recombinant tau expressed from
bacteria that lack the folding and post-translational modifica-
tions associated with mammalian expression. Herein, we con-
ducted a survey of FTDP-17 tau mutants present in various
regions of tau for effects on MT binding using a cell-based
assay. When compared with previous in vitro studies of MT
binding or tubulin polymerization assays, our cell-based find-
ings for �K280 and P301L, P301S, G335S, G335V, S352L,
V363A, G366R, K369I, and R406W consistently demonstrate
reduced MT interactions (Table 1). Furthermore, we showed
that L284R, P301T, K317M, and S356T also reduce MT bind-
ing, supporting the overarching notion that impaired MT bind-
ing is the most common altered property of pathogenic tau
mutants due to missense mutations. Surprisingly, and at odds
with in vitro MT assembly assays, both the R5H and R5L
mutants increased MT interaction in the cell-based assay. The
reasons for these differences are not clear, but mammalian
expression of these tau mutations must confer long-range con-
formational differences allowing potentiated MT interaction.

A few missense mutants such as G273R and V287I did not
appreciably affect tau MT binding. It is likely that these could
primarily influence exon 10 splicing due to their close proxim-
ity to other splicing mutations that impact key RNA sequence
elements that regulate splicing (83, 84). Many intronic, silent,
and even missense MAPT mutations affect the splicing of exon
10, altering the normal ratio of 3R to 4R tau isoforms (6, 57, 83,
84). How this altered ratio of WT tau isoforms results in neu-
rodegeneration is still unclear, but altered isoform-specific cel-
lular localization and MT-binding properties could be involved.
Generally, 3R tau isoforms bind MTs with lower affinity and
promote MT polymerization less than 4R tau isoforms (14, 85,

Figure 6. tau mutants in the N and C termini had differential effects on MT binding. A, diagram shows N- and C-terminal tau mutants. B–F, MT-binding
assay was performed in the presence of paclitaxel as described under “Experimental procedures.” HEK293T cells were transfected with WT or the indicated tau
mutations. Both the R5H and R5L tau mutants in the N terminus significantly increased MT binding, whereas the mutants near the C terminus, K369I and R406W,
decreased MT binding. Immunoblots were probed with anti-�-tubulin antibody TUB 2.1 or total tau antibody 3026 as indicated. S � supernatants; P � pellet
fractions. The relative molecular masses of protein markers are indicated on the left. On the right, FL is for full-length tau, and the brace indicates degradative
tau bands. G, one-way ANOVA with Dunnett’s test was performed with n � 18 for WT and n � 3 for each tau mutant. **, p � 0.01; ****, p � 0.0001.
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86). As a result, 3R tau isoforms are less potent regulators of MT
dynamics (80, 87). Furthermore, 3R and 4R tau appear to have
different binding sites and interactions with MTs (81, 88). It is
possible for some missense tau mutants to affect both MT bind-
ing and tau exon 10 splicing, resulting in a change in the 3R/4R
ratio that causes dysregulation of MT dynamics (81).

Based on our results and recent studies on tau prion-like
seeding and propagation (17, 31, 43, 58 –61), we propose an
integrated paradigm of tau pathogenesis to highlight different
but not mutually exclusive mechanisms that can lead to tauopa-
thies (Fig. 11). The majority of tau missense mutants can affect
MT binding and cause MT dysfunction by impairing MT sta-

Figure 7. tau mutants in the PGGG motif showed varied susceptibility to prion-like seeding. A, diagram depicts tau mutations in the PGGG motif within
R1, R2, R3, and R4 repeats. HEK293T cells were transfected with WT or tau mutants and assessed for aggregation with or without exogenous K18 seeds. B, WT
tau did not aggregate by itself or in the presence of K18 seeds. C, P301L did not aggregate without seeding but had robust induced aggregation in the presence
of K18 seeds. D and F, G273R and G335V demonstrated modest levels of self-aggregation with or without exogenous K18 seeds. E, interestingly, G335S did not
aggregate, despite being at the same location as G335V. G, G366R showed low levels of aggregation, but this was not statistically significant. Immunoblots
were probed with total tau antibody 3026. The relative molecular masses of protein markers are indicated on the left. H, one-way ANOVA with Dunnett’s test
was performed with n � 9 for WT tau and n � 3 for each tau mutant. ****, p � 0.0001; **, p � 0.01; and ns, no statistical significance.
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bilization, tubulin assembly, and regulation of dynamic insta-
bility (Fig. 11A). These changes in MT associations may also
result in altered cellular localization. Although tau is mainly an
axonal protein (11), tau pathology in AD occurs predominantly
in somatodendritic compartments such as neurofibrillary tan-
gles and neuropil threads with a paucity of white matter pathol-
ogy (6, 32, 91), likely a result of improper cellular trafficking of
pathogenic tau. For many forms of mutant tau, decreased MT
binding leads to an increased pool of soluble tau, although tau
phosphorylation at specific residues can also contribute to
reduced MT binding, possibly in sporadic cases of AD and
other tauopathies (29, 30, 75–78). Furthermore, in AD A� olig-
omers or aggregates may be the primary driver of tau toxicity by
promoting hyperphosphorylation of different tau isoforms
(92–94). For WT tau and tau mutants that are not intrinsically
prone to aggregation, unbound tau may slowly convert into new
conformers that aggregate over time. The combined events of
impaired MT binding, MT dysfunction, soluble tau conform-
ers, and eventual tau aggregates can all contribute to toxicity

and cell death. Consistent with this model, several MT-based
drugs have been shown to have some benefits in animal models
of tauopathies (95–97).

For tau mutants such as those involving the Pro-301 residue
that have robust impacts on aggregation, the best approach is
likely to be a combination of MT-based and aggregation inhib-
itors therapies (Fig. 11B). However, due to the unique robust
aggregation-driven nature of models based on Pro-301 tau
mutants, it would be prudent to cautiously assess the universal-
ity of experimental studies and translational therapies based
solely on these models for AD and other tauopathies. Neverthe-
less, it is possible that some of the many post-translational
modifications linked to pathogenic tau (6, 91, 98, 99) might
mimic the impact of these mutations on tau aggregation pro-
pensity and prion-like conformational templating.

Although familial tau mutations are responsible for only a
minority of cases with tauopathies, the wide spectrum of tau
mutants provide information on the diverse pathomechanisms
that can provide invaluable insight to understanding sporadic

Figure 8. Some tau mutants in the R4 repeat modestly aggregated without exogenous seeding. A, tau mutants S356T, V363A, and V363I are located
within the R4 repeat. HEK293T cells were transfected with WT or tau mutants indicated and assessed for aggregation with or without exogenous K18 fibrillar
seeds. Compared with WT tau (B), S356T (C) and V363I (E) mutants modestly self-aggregated without and with seeding. D, V363A did not significantly
aggregate with or without K18 seeds. Immunoblots were probed with total tau antibody 3026. The relative molecular masses of protein markers are indicated
on the left. One-way ANOVA with Dunnett’s test was performed with n � 9 for WT tau and n � 3 for each tau mutant (F). *, p � 0.05; **, p � 0.01; and ns, no
statistical significance.
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Figure 9. Additional tau mutants did not show any propensity to aggregate. A, diagram depicts tau mutations L284R, V287I, K317M, S352L, and K369I
within R2, R3, and R4 repeats. HEK293T cells were transfected with WT or tau mutants and were assessed for aggregation with or without exogenous K18
fibrillar seeds. Compared with WT tau (B), L284R (C), V287I (D), K317M (E), S352L (F), and K369I (G) did not aggregate with or without exogenous K18 seeds.
Immunoblots were probed with total tau antibody 3026. The relative molecular masses of protein markers are indicated on the left.

Figure 10. P301L/S320F tau was uniquely capable of robust self-aggregation compared with other double tau mutants. HEK293T cells were transfected
with different tau double mutations and were fractionated into Triton-soluble and Triton-insoluble fractions as described under “Experimental procedures.” A,
P301L/S320F tau double mutant presented extensive intrinsic aggregation. B, P301L/G273R tau modestly aggregated but did not show an enhanced effect
from the addition of P301L. P301L/G335V tau (C) and P301L/S356T tau (D) did not significantly aggregate. Immunoblots were probed with total tau antibody
3026. The relative molecular masses of protein markers are indicated on the left. E, one-way ANOVA with Dunnett’s test was performed with n � 9 for WT tau
and n � 3 for each tau mutant. ****, p � 0.0001; and ns, statistical significance.
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cases of tauopathies. Since numerous diverse tau missense
mutants lead to a similar outcome of impaired MT interaction,
other tau modifications in patients with sporadic tauopathies
might also result in a similar aberrant outcome that leads to
neurodegeneration. Our findings presented here in addition to
the observed MT changes in AD (18 –21) underscore that a
greater emphasis on understanding and targeting MT changes
in tauopathies should be considered. MT function is associated
with numerous cellular functions that can result in many
modes of cell injury and toxicity. It is also important to gain
further insights into the relative involvement of MT dysfunc-
tion versus tau aggregation in the pathobiology of tauopathies.
Even if several pathogenic mechanisms are involved, MT-based
therapy will likely be important in treating Alzheimer’s disease
and other tauopathies.

Experimental procedures

tau protein purification

The tau protein fragment K18, which consists of the MT-
binding repeats from Gln-244 to Glu-372 relative to the 2N4R
human tau with an added methionine at the N terminus, was
expressed from the bacterial plasmid pRK172 in BL21 (DE3)/
RIL Escherichia coli (Agilent Technologies, Santa Clara, CA).
K18 tau protein and K18 with tau mutations were purified
as described previously (43, 100). Protein concentration was
measured by the bicinchoninic acid assay with albumin as a
standard.

Preparation of tau amyloid seeds

K18 tau protein or K18 with mutations were diluted in sterile
PBS at 1 mg/ml with 50 �M heparin and shaking at 1050 rpm at
37 °C for at least 2 days. As described previously, amyloid for-
mation was confirmed by K114 or thioflavin T assays (101). K18
fibrils were centrifuged and resuspended in sterile PBS to
remove heparin. The purified K18 fibrils were placed in bath
sonication for 60 min to produce short fibrils for seeding exper-
iments, as described previously (43, 102).

Plasmids for mammalian expression and site-directed
mutagenesis

The 0N4R human tau cDNA isoform was cloned into mam-
malian expression vector pcDNA3.1(�). The different mis-
sense MAPT mutations were created with QuikChange site-
directed mutagenesis (Agilent Technologies, Santa Clara, CA)
using mutation-specific oligonucleotides. All mutations and
the entire cDNA tau sequence were confirmed by Sanger
sequencing performed as a service by Genewiz (South Plain-
field, NJ).

Cell culture and transfection

HEK293T cells were maintained in Dulbecco’s modified
Eagle’s media with 10% fetal bovine serum and antibiotics (100
units/ml penicillin, 100 �g/ml streptomycin) at 37 °C and 5%
CO2. HEK293T cells were transfected by calcium phosphate
precipitation. Cells were plated at 20 – 40% confluence in
12-well plates. For each well, 1.5 �g of DNA was added to 18.75
�l of 0.25 M CaCl2. This DNA/CaCl2 mix was further added to
an equal amount of 2� BES buffer (50 mM BES, 280 mM NaCl,
1.5 mM Na2HPO4, pH 6.96) and left at room temperature for
15–20 min. The final solution was added dropwise to each well.
For cell-seeding studies, 1 �M K18 was added 1 h after transfec-
tion as described previously (102). At 16 h after transfection,
cells were washed with PBS, and fresh Dulbecco’s modified
Eagle’s medium in 3% FBS was added. Cells were harvested 48 h
after media change or at a final time of 64 h.

Biochemical cellular aggregation assay

Cells were lysed in 200 �l of Triton Lysis Buffer (25 mM Tris-
HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 20
mM NaF) with a mix of protease inhibitors. Cell lysates were
centrifuged at 100,000 � g and 4 °C for 30 min (36, 43, 103). The
soluble fractions were collected. The insoluble fraction was
washed with additional Triton Lysis Buffer and centrifuged
again at 100,000 � g and 4 °C for 30 min. After the wash step,
the pellet was resuspended in Triton Lysis Buffer. Sample buffer
(10 mM Tris, pH 6.8, 1 mM EDTA, 40 mM DTT, 0.005% bro-

Figure 11. Proposed mechanisms of tau pathogenesis. A, model for the majority of tau variants due to missense mutations that predominantly impair MT
binding, resulting in increased unbound tau as depicted by arrows with solid lines. These altered tau properties may result in aberrant tau cellular distribution,
reduced MT assembly/stability, and MT dynamics. An increased pool of unbound tau can convert into new conformers/oligomers that can be toxic and/or
permissive to aggregated pathological inclusions. For these mutants, therapies that directly target MT dysfunctions and restore function are more likely to be
beneficial. B, model associated with tau variants due to missense mutations that robustly potentiate tau aggregation, but also impair MT interactions. These
mutants can lead to neuronal demise through two independent pathways depicted by arrows with solid lines and dashed lines. Therapies that target MT
dysfunctions and tau aggregation are likely to have an impact on disease course for these types of mutants, but it is still unclear which would be the most
beneficial.
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mphenol blue, 0.0025% pyronin yellow, 1% SDS, 10% sucrose)
was added to both soluble and insoluble fractions and were
boiled for 10 min. The insoluble fraction was probe-sonicated
and boiled again for 10 min to ensure homogeneity.

MT-binding assay

Cells were lysed in 200 �l of PEM buffer (80 mM PIPES, pH
6.8, 1 mM EGTA, 1 mM MgCl2) supplemented with 0.1% Triton
X-100, 2 mM GTP, 20 �M paclitaxel, and a mix of protease
inhibitors as described previously (44 –46). Cell lysates were
incubated in a 37 °C water bath for 30 min and then centrifuged
at 100,000 � g for 30 min to pellet MTs. Supernatant was trans-
ferred to a new tube, and the pellet (MT fraction with bound
proteins) was resuspended in PEM buffer. The pellet fraction
was homogenized, and SDS gel loading buffer was added to
both fractions. Equivalent amounts of supernatant and pellet
were loaded on SDS-polyacrylamide gels for Western blot anal-
ysis. Percent MT bound tau was calculated as pellet/(superna-
tant � pellet) � 100.

Antibodies

Anti-�-tubulin (clone TUB 2.1) is a mouse mAb (Sigma). tau
3026 is a rabbit polyclonal antibody against recombinant full-
length 0N3R human tau (90). AT8 is an antibody specific for tau
phosphorylated at Ser-202/Thr-205 (Invitrogen), and PHF-1
antibody is specific for tau phosphorylated at Ser-396/Ser-404
(generously provided by Peter Davies, Albert Einstein Univer-
sity, New York). T14 is an antibody against the N-terminal part
of tau (83–120 amino acids), and T46 is an antibody against the
C-terminal part of tau (404 – 441 amino acids) (104).

Western blot analysis

Equal proportions of each sample were loaded on 10% poly-
acrylamide gels and resolved by SDS-PAGE. After transfer, the
membranes were blocked in 5% milk dissolved in TBS for 1 h.
Membranes probed with phosphorylation-specific antibodies
were blocked in 5% BSA dissolved in TBS for 1 h. The mem-
branes were incubated in primary antibody overnight at 4 °C at
dilutions of 1:1000 for 3026 tau antibody, �-tubulin antibody,
and tau phosphorylation-specific antibodies AT8 and PHF-1.
The membranes were washed in TBS and incubated in goat
anti-rabbit or anti-mouse secondary antibodies conjugated to
horseradish peroxidase (Jackson ImmunoResearch) at 1:4000
dilution for 1 h. After TBS washes, the membranes were
exposed and imaged after adding Western Lightning Plus ECL
reagents (PerkinElmer Life Sciences).

Statistical analysis

The specific signals in each lane were quantified based on
densitometric analysis with ImageJ. Statistical comparison tests
were performed on GraphPad Prism for one-way or two-way
analysis of variance (ANOVA), with post hoc analysis using
Dunnett’s test to compare each group to the control.

Immunofluorescence of fixed cells

Double immunofluorescence was performed on cells similar
to previous studies except for the fixation step (102, 105). Cell
fixation was performed at �20 °C in 95% acetic acid and 5%

methanol for 30 min. After PBS washes, the cells were blocked
in PBS with 2% FBS and 0.1% Triton X-100 for 30 min. Primary
antibody such as 3026 at 1:4000 and �-tubulin 1:1000 were
incubated for 1 h. After the PBS wash, the slides were incubated
in the dark for 1 h in Alexa-fluor 488- or 594-conjugated sec-
ondary antibodies (Invitrogen). Afterward, the slides were
incubated in 4	,6-diamidino-2-phenylindole (Invitrogen) for 5
min to stain nuclei and mounted with Fluoromount-G (South-
ern Biotech, Birmingham, AL). Immunofluorescent images
were captured with an Olympus BX51 fluorescence microscope
Olympus, Center Valley, PA).
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