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Patients with drug-resistant epilepsy often require surgery to become seizure-free. While laser ablation and implantable stimulation

devices have lowered the morbidity of these procedures, seizure-free rates have not dramatically improved, particularly for patients

without focal lesions. This is in part because it is often unclear where to intervene in these cases. To address this clinical need,

several research groups have published methods to map epileptic networks but applying them to improve patient care remains a

challenge. In this study we advance clinical translation of these methods by: (i) presenting and sharing a robust pipeline to

rigorously quantify the boundaries of the resection zone and determining which intracranial EEG electrodes lie within it;

(ii) validating a brain network model on a retrospective cohort of 28 patients with drug-resistant epilepsy implanted with intra-

cranial electrodes prior to surgical resection; and (iii) sharing all neuroimaging, annotated electrophysiology, and clinical metadata

to facilitate future collaboration. Our network methods accurately forecast whether patients are likely to benefit from surgical

intervention based on synchronizability of intracranial EEG (area under the receiver operating characteristic curve of 0.89) and

provide novel information that traditional electrographic features do not. We further report that removing synchronizing brain

regions is associated with improved clinical outcome, and postulate that sparing desynchronizing regions may further be beneficial.

Our findings suggest that data-driven network-based methods can identify patients likely to benefit from resective or ablative

therapy, and perhaps prevent invasive interventions in those unlikely to do so.
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Introduction
Epilepsy affects 65 million individuals, one-third of whom

are resistant to antiepileptic medications. In these cases,

surgery is often necessary to help reduce seizures (Kwan

et al., 2011). Resections can be generous, with a significant

amount of healthy tissue removed, frequently resulting in

post-surgical side effects, including neuropsychological def-

icits and reduced quality of life (Kwan and Sperling, 2009).

Unfortunately, some patients have seizure recurrence des-

pite removal of assumed critical seizure generators, as

mapped by extensive EEG, multimodal neuroimaging, and

neuropsychological evaluation prior to surgery (Kwan

et al., 2011). Because of the limitations of traditional epi-

lepsy surgery, clinicians are turning to other less destructive

therapeutic approaches. Specifically, responsive neurostimu-

lation, deep brain stimulation, and targeted laser ablation

techniques are increasingly being used to alleviate seizure

burden and improve quality of life (Willie et al., 2014;

Attiah et al., 2015; Thomas and Jobst, 2015). These inter-

ventions are hypothesized to act by disrupting connections

and pathways involved in seizure spread (Thomas and

Jobst, 2015). Identifying these important control regions

is a critical step toward realizing the potential of these

newer, less invasive techniques and for optimizing the use

of established resective surgery.

While focal brain lesions have long been a target of epi-

lepsy surgery with favourable success rates, patients with-

out clear lesions may have seizures that arise from

abnormal connectivity in broader networks that can be

measured at the scale of electrocorticography (ECoG).

Recent work supports the hypothesis that epilepsy can

arise from disordered brain networks (Kramer and Cash,

2012). In epileptic networks, the seizure onset zone (SOZ)

often not only drives seizure initiation and propagation, but

also recruits regions that extend well beyond it to act as

central hubs. These regions appear to strengthen in con-

nectivity to each other, while weakening in connectivity

to remaining regions (Khambhati et al., 2015; Besson

et al., 2017). Because the epileptic network may be char-

acterized by pathological foci embedded in this web of

structural and functional connections (Burns et al., 2014),

it is important to understand how aberrant cortical func-

tioning drives seizure dynamics and manifests in the diverse

roles of regions such as the epileptogenic, irritative, and

propagation zones. Thus, a network approach that quanti-

fies the complex synchronization and spread of neural ac-

tivity is well suited to studying epilepsy in which changes in

brain connectivity manifest across a wide range of spatio-

temporal scales.

Recent efforts to translate and extend methods originally

developed in network science have generated novel in silico

approaches to model epileptic networks (Burns et al., 2014;

Jirsa et al., 2017; Bassett et al., 2018) and identify import-

ant regions to target therapeutically with surgical

(Goodfellow et al., 2016; Khambhati et al., 2016; Lopes

et al., 2017; Sinha et al., 2017; Shah et al., 2019) or

non-surgical (Taylor et al., 2015; Muldoon et al., 2018)

interventions. While some of these models quantify brain

dynamics through data-driven network models (Burns

et al., 2014; Goodfellow et al., 2016; Khambhati et al.,

2016; Shah et al., 2019), others integrate network architec-

ture estimated by intracranial EEG or imaging with genera-

tive mathematical models that parameterize behaviour at

each node (Lopes et al., 2017; Sinha et al., 2017). The

virtual epileptic patient (VEP) (Jirsa et al., 2017) is one

notable model that uses structural connectivity estimated

from diffusion-weighted MRI to parameterize coupled

‘Epileptor’ oscillators (Jirsa et al., 2014), which predict seiz-

ure propagation and spread. The VEP framework is cur-

rently being studied in a prospective clinical trial to

augment clinician decision-making in epilepsy surgery (US

National Library of Medicine, 2018). Previous studies have

established the potential of modelling to enhance our

understanding of epileptic networks, but their translation

to clinical care has been challenging. There are multiple

potential reasons for this. Some approaches, such as the

VEP, use models that generate synthetic seizures that look

remarkably similar to clinical events, but because they are

synthetic there is concern that they may not capture the

complex interplay between brain regions with inherently

different control properties. Many studies do not use

expert clinical annotations from interictal, pre-ictal, and

seizure epochs to evaluate the full spectrum of epileptic

activity in each patient. Finally, validation has been chal-

lenging, particularly for studies that use clinical data. For a

variety of reasons, most groups have not openly shared

their methods and data so that other centres can reproduce

and extend their studies. Specifically, we aim to overcome

each of these shortcomings in this study using the virtual

resection framework developed by our group.

Virtual resection (Khambhati et al., 2016) implements a

brain network model in which the regions measured by

individual intracranial electrode contacts are defined as

nodes, and the statistical relationships between pairs of

nodes known as functional connectivity are defined as

edges (Bassett et al., 2018). This approach focuses on cal-

culation of synchronizability, which describes the ease with

which neural activity can propagate through the network.

Virtual resection uses a push-pull framework in which syn-

chronizing nodes dynamically oppose desynchronizers and

thus the properties of the network are modulated as a func-

tion of time. By virtually removing nodes and recalculating

synchronizability, we quantify each node or region’s con-

trol centrality (Khambhati et al., 2016) and thus estimate

how well dynamic brain activity such as seizures would

spread throughout the network if a given region were

removed. While this framework has been shown to ro-

bustly characterize the spatiotemporal regulators of seizure

dynamics (Khambhati et al., 2016), in our prior work we

did not engage in any effort to predict surgical outcomes,

nor did we investigate whether control centrality within the

resection zone played a key role in accurately predicting
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that outcome. In the work presented here, we hypothesize

that removing synchronizing versus desynchronizing brain

regions as determined by the virtual resection method is

predictive of good versus poor outcomes. In addition, we

hypothesize that control centrality within the resection zone

is predictive of epilepsy surgical outcomes.

In this multicentre retrospective cohort study, we seek to

determine whether virtual resection network features can

predict surgical outcome in 28 patients with drug-resistant

epilepsy who underwent surgical therapy. Specifically, we

ask: What is the spatiotemporal evolution of synchroniz-

ability during a seizure? Is there a relationship between

network synchronizability and important clinical variables

used to guide therapy? What is the accuracy of predicting

surgical outcome from the control centrality of combined

group nodes overlying resection cavities? We hypothesize

that virtual resection will uncover important seizure dy-

namics as measured by network metrics that can separate

patients based on post-surgical outcome and that network

metrics will be sensitive to clinical variables such as seizure

type.

Materials and methods

Patient dataset

All patients included in this study gave written informed con-
sent in accordance with the Institutional Review Board of the
University of Pennsylvania. All patients from both the Hospital
of the University of Pennsylvania and the Mayo Clinic gave
consent to have anonymized full-length electrophysiology
recordings and brain MRI and CT scans available to the
public on the open online portal IEEG.org (Kini et al.,
2016a, b).

Twenty-eight patients undergoing surgical treatment for
medically refractory epilepsy (Table 1) underwent implantation
of subdural and depth electrodes to localize the SOZ after
presurgical evaluation with scalp EEG recording of ictal
epochs, MRI, fluorodeoxyglucose-PET (FDG-PET), and neuro-
psychological testing. The results of the presurgical studies sug-
gested that focal cortical resection might be a therapeutic
option. Patients were then implanted with intracranial elec-
trodes including grid, strip and sparse depth electrodes, to
define the epileptic network better. De-identified patient data
were retrieved from the online International Epilepsy
Electrophysiology Portal (IEEG Portal). Patients were excluded
from the study if they (i) did not undergo resection; (ii) did not
have complete post-resection imaging; or (iii) did not have
complete electrophysiology data.

ECoG signals for patients from the Hospital of the
University of Pennsylvania were recorded and digitized at
500 Hz sampling rate and preprocessed to eliminate line
noise. Cortical surface electrode configurations, determined
by a multidisciplinary team of neurologists and neurosurgeons,
consisted of linear and 2D arrays (2.3-mm diameter with 10-
mm intercontact spacing) and sampled the neocortex and
mesial cortex for epileptic foci. Signals were recorded using a
referential montage with the reference electrode, chosen by the

clinical team, distant to the site of seizure onset and spanned
the duration of a patient’s stay in the epilepsy monitoring unit.
All EEG recording systems and intracranial electrodes used
were FDA approved and commercially available.

Clinical marking of seizure events

SOZ was marked on ECoG according to the standard clinical
protocol in the Penn Epilepsy Center. Initial clinical markings
are made on IEEG by board-certified staff epileptologist
attendings (F.M., A.K., K.D., B.L.). These IEEG markings
were made by clinicians blinded to surgical outcome but pro-
vided with available surgical conference notes that contained
patient clinical data related to other multimodality testing,
such as brain MRI, PET scan, neuropsychological testing,
and ictal single-photon emission computed tomography
(SPECT) scanning, used to finalize surgical approach and plan-
ning. The following seizure times were annotated for each
seizure: (i) earliest electrographic change (EEC) (Litt et al.,
2001); (ii) unequivocal electrographic onset (UEO); and (iii) ter-
mination of seizure (END). A pre-seizure state that spanned a
period equal in duration from EEC to END was used to mark
the baseline pre-ictal period for any given seizure. An epilep-
tologist involved in the study (F.M.) examined the patient’s
primary seizure type for the presence of localizing factors
such as low voltage fast activity (LVFA), DC shift, and a
clearly focal SOZ, which are known to predict outcome
(Noe et al., 2013; Jin et al., 2016; Lagarde et al., 2016;
Vakharia et al., 2018). If a disagreement regarding annotation
arose, at least two epileptologists discussed the seizure in ques-
tion until reaching consensus. All seizures were identified ac-
cording to the current International League Against Epilepsy
(ILAE) classification system, as focal aware seizures, focal im-
paired awareness seizures, or focal to bilateral tonic-clonic
seizures. When clinical notes were unclear, the reviewing epi-
leptologist made a decision on seizure type based on all avail-
able clinical data. In order to support the potential
generalizability of our methods to any new patient, network
measures were computed on all seizures, interpolated to fit into
10 sequential time bins spanning the pre-seizure and seizure
epochs, and averaged within a patient’s group of seizures.

Surgical outcome

Surgical outcome was measured at a minimum of 1 year after
surgery and determined based on medical records from the last
available follow-up with a clinician. Patients who had surgical
outcome of Engel I or ILAE 1–2 were marked as having favour-
able outcome and patients who had Engel II–IV or ILAE 3–6
were marked as having poor outcome (Wieser et al., 2008).

Image processing

All patients, as part of their clinical neuroradiological
work-up, underwent a clinical epilepsy neuroimaging protocol.
Pre-implant T1-weighted MPRAGE MRI, post-implant
T1-weighted MPRAGE MRI, and post-implant CT images
were acquired to localize electrodes. In addition, patients
underwent a post-resection imaging protocol acquired on aver-
age 6–8 months after implant and resection, which consisted of
T1-weighted MRI and axial FLAIR MRI sequences. All images
were stripped of headers, anonymized and registered to
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patient’s native pre-implant T1 MRI space for localization and
segmentation (Fig. 1).

Electrode localization

In-house software (Azarion et al., 2014) was used to assist in
localizing electrodes after registration of pre-implant and post-
implant neuroimaging data. All electrode coordinates and
labels were saved and matched with ECoG electrode names
on IEEG.org. All electrode localizations were verified by a
board-certified neuroradiologist (J.S.).

Resection zone segmentation

Pre-implant MRI was registered diffeomorphically using the
Advanced Normalization Toolkit (ANTs) (Avants et al., 2011)

to post-resection imaging to accurately segment the resection
zone. Resection zones were estimated semi-automatically with
the use of a random forest classifier and region-growing algo-
rithm as part of the ITK-SNAP toolkit (Yushkevich et al.,
2006). All resection estimates were confirmed by a board-cer-
tified neuroradiologist (J.S.).

Network methods

The virtual resection method (Fig. 2) is described in greater
detail in Khambhati et al. (2015). Electrodes in which the
ECoG signal was obscured by artefact, as noted by an attending
epileptologist, were removed from analysis to avoid biasing our
results. A common average reference was applied to all neural
signals by first computing a time-varying signal averaged across
all electrodes and then by subtracting this signal from each

Table 1 Summary of patient cohort demographics

Good surgical outcome

(Engel I or ILAE 1–2)

Poor surgical outcome

(Engel II-IV or ILAE 3–6)

P-value

Total number of subjects 17 11

Age at surgerya 0.99b

Mean � SD 36.2 � 11.1 33.1 � 18.6

Sex 0.93c

Male 9 6

Female 8 5

Resected/ablated region 0.11c

LTL 3 6

RTL 8 1

LFL/LPL/LFPL 4 2

RFL/RFTL/RFPL 2 2

MRIa 0.97c

Lesional 7 4

Non-lesional 9 5

Pathologya 0.02c

HS/MTS 6 2

Gliosis 3 8

Malformations of cortical development 5 0

Tumour/vascular/infection 2 0

Seizure typea 0.20c

Aura/focal aware 14 3

Focal impaired awareness 51 30

Focal with generalization 31 11

Type of resection 0.68c

Anterior temporal lobectomy and/or

amygdalohippocampectomy

3 (left), 7 (right) 6 (left), 2 (right)

Anterior temporal lobectomy + 1 (left) None

Partial resection/lesionectomy 3 (left), 2 (right) 2 (left), 1 (right)

RF ablation 1 (right) None

Volume of resection

Volume of tissue, cm3 0.83b

Mean � SD 19.3 � 12.8 23.5 � 18.9

Nodes removed, % 0.72b

Mean � SD 19.3 � 14.4 21.5 � 10.8

Patients were grouped by surgical outcome. Second column shows patients who had a favourable surgical outcome. Third column shows patients who had a poor surgical outcome.

FCD = focal cortical dysplasia; HS = hippocampal sclerosis; LFL = left frontal lobe; LFPL = left frontoparietal lobe; LPL = left parietal lobe; LTL = left temporal lobe; MTS = mesial

temporal sclerosis; PNH = periventricular nodular heterotopia; RF = right frontal; RFL = right frontal lobe; RFPL = right frontoparietal lobe; RPL = right parietal lobe; RTL = right

temporal lobe; SD = standard deviation; TSC = tuberous sclerosis complex.
aData for these fields were unknown in a minority of patients and thus were not included in the table.
bT-test; cPearson chi-square test.
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electrode. All ECoG signals were notch filtered at 60 Hz to
remove power line noise. We constructed functional brain net-
works in each time window using multitaper coherence estima-
tion, which defines an edge between electrode pairs in terms of
the correlation of the power spectra of signal activity over a
specific frequency band. This procedure was done across differ-
ent physiological frequency bands, namely: �/� (5–15 Hz), b (15–
25 Hz), low-� (30–40 Hz), high-� (95–105 Hz) and very high
frequencies (4105 Hz). In addition, broadband cross-correlation
was used to generate functional dynamic networks without
regard to frequency specific information. In this study we com-
pute functional networks directly from clinical recordings of
intracranial EEG and not on modelled or simulated data.
These networks were generated as N � N symmetric adjacency
matrices, describing the network for all T time windows.

Because of its importance to seizure spread, we measured
network synchronizability by first computing the Laplacian
matrix of each adjacency matrix at time 1-s time windows.
The Laplacian matrix can be interpreted as measuring the
ease with which information diffuses between nodes in a net-
work (Stam and Reijneveld, 2007). Next, at each time epoch t
across all T epochs, we calculated the synchronizability meas-
ure, s(t) as the ratio of the second smallest eigenvalue to the

largest eigenvalue of the Laplacian matrix, which quantifies the
stability of the synchronous state (Stam and Reijneveld, 2007).
To model the effects of resective surgery, we used the ap-
proach of virtual cortical resection, which quantifies control
centrality as the contribution to synchronizability. Control cen-
trality can be calculated either at each node or for the entirety
of a region of interest by removing the node or nodes in ques-
tion from the network and recalculating synchronizability. In
this study, we remove the resection zone en bloc to calculate
control centrality when comparing across patients, while for
whole brain visualizations we calculate control centrality at the
node level. This measure of change in synchronizability is
referred to as the control centrality, or cres(t), and can be
used to identify a region as (i) desynchronizing (removal of
which increases post-resection network synchronizability) char-
acterized by positive control centrality; or (ii) synchronizing
(removal of which decreases post-resection network synchro-
nizability) characterized by negative control centrality.

Statistical methods

All averages computed in this study use the median because
it represents a better measure of centrality in skewed,

Figure 1 Imaging pipeline for resection zone estimation. The imaging pipeline registers preoperative MRI, post-implant CT, and post-

resection MRI together to allow for resection zone mapping and electrode localization. In-house software in addition to ITK-SNAP were used to

map resection zones and localize electrodes for all patients using cartoon maps presented in surgical conference notes. Nodes that overlapped

with the resection zone were virtually resected from the network to measure effect on synchronizability.
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non-normal distributions such as those seen in the distribution
of network measures (Buzsaki and Mizuseki, 2014). We com-
pared median time-varying network metrics between seizures
in patients who experienced a favourable surgical outcome and
patients who experienced a poor surgical outcome. We per-
formed this comparison by normalizing each seizure event
into 10 sequential time bins spanning the pre-seizure and seiz-
ure epochs, and using functional data analysis to test differ-
ences in temporal dynamics statistically between seizure types
independently in each state (Ramsay and Silverman, 2010).
Functional data analysis allowed us to test whether the area
under the good outcome curves and poor outcome curves were
significantly different by comparing the true area to the area
expected in an appropriate permutation-based null model. The
null model was created by reassigning surgical outcome to
adjacency matrices uniformly at random up to 10 000 times
and computing the median area under the resulting curves of
functional network metrics.

The median network measures during pre-ictal epochs are
compared to those of ictal epochs using Wilcoxon rank-sum
test. The �s(t) change from pre-ictal to ictal time periods was
used as the feature for quantifying the ability to predict surgi-
cal outcome. We varied the threshold of �s(t) to predict pa-
tients as having either good or poor surgical outcome, which
generated a receiver operating characteristic (ROC) curve. We
measured area under the ROC curve (AUC) as a marker for

accuracy in predicting good versus poor surgical outcome; the
ROC curve quantifies the trade-off between the true positive
rate and the false positive rate for a binary classifier. We used

the non-parametric DeLong test to compare ROC curves and
determine whether any single predictive model derived from a
specific frequency band performed significantly better than the

others (DeLong et al., 1988). In the analysis of control cen-
trality of the resection zone we present P-values noting that the
significance threshold is 0.0083 to correct for six comparisons
introduced by the separate frequency bands according to the

Bonferroni method.

Data availability

Our codebase comprises the imaging and electrophysiology
pipelines (https://github.com/ieeg-portal/EpiVR), and allows re-

searchers to easily fetch data situated on the IEEG.org portal
as well as to perform virtual cortical resection. The electro-
physiology pipeline is dependent on Echobase, which can be
found at https://github.com/akhambhati/Echobase. We have

additionally made pre- and post-resection imaging as well as
annotations of seizures along with their ECoG recordings from
the entirety of their epilepsy monitoring unit (EMU) stay avail-

able to the public through IEEG.org. From this unique and
powerful dataset we hope that other investigators may validate

Figure 2 Electrophysiology pipeline for epileptic network analysis. The electrophysiology pipeline uses coherence to construct adja-

cency matrices for each event, separately for seizure and pre-seizure data. Baseline synchronizability of the network and control centrality of each

individual node is calculated. From the imaging pipeline, resected electrodes are determined, and control centrality of the resection zone is

calculated. Metrics are used to generate predictions of surgical outcome. EEC = earliest electrographic change; UEO = unequivocal electrographic

onset.
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our methods or compare their performance to other virtual
resection tools.

Results
Twenty-eight patients with drug-resistant epilepsy under-

went implantation with ECoG electrodes to localize the

SOZ preceding surgical resection. Patient-specific network

models were constructed from clinically annotated

(Supplementary Table 1) ECoG recordings stored on the

cloud platform IEEG.org (Wagenaar et al., 2015; Kini

et al., 2016a, b), and a quantitative pipeline using pre-

and post-surgical imaging was used to determine which

electrodes were resected.

Network synchronizability predicts
surgical outcome

We began our virtual resection approach by examining the

dynamic network changes in synchronizability s(t) that

occur in the transition state from pre-ictal to ictal periods.

Seizures were interpolated to be equal length across pa-

tients and onset times were aligned such that s(t) curves

could be compared. Figure 3A shows the time course of

median broadband synchronizability over pre-ictal and

ictal periods between patients with good and poor out-

come. These curves were different in the ictal period be-

tween outcome groups (functional data analysis curve area

test, 10 000 permutations, P5 0.001) suggesting that there

is predictive information in the magnitude and temporal

evolution of s(t). Patients with favourable surgical

outcomes had decreased synchronizability at the time of

seizure onset across frequency bands while s(t) remained

high in those with poor surgical outcomes. Synchronizability

curves for other frequency bands can be found in

Supplementary Fig. 1.

We also asked whether there is an association between

synchronizability and clinical variables used to guide ther-

apy such as lesion status on MRI. We found that patients

who were non-lesional (n = 14) had higher pre-ictal

synchronizability in broadband compared to patients with

lesions (n = 11) (rank-sum statistic �1.984, P = 0.047)

(Fig. 3B), even though there was no correlation with

lesion status and outcome (chi-square test = 0.178,

P = 0.67) or electrode number (rank-sum statistic 267,

P = 0.79) in our study.

To quantify the ability of synchronizability to predict

surgical outcome, we calculated median change in s(t)

from pre-ictal to ictal periods, and performed a sweep of

that feature to generate an ROC curve (Fig. 3C). Despite

the small sample size, the �s(t) derived from broadband

ECoG data (AUC = 0.89, 95% CI 0.76–1.00) is predictive

of surgical outcome. This ROC curve showed greater stat-

istical significance than that observed in each of the other

frequency bands. Selecting the point on the ROC that gave

the greatest number of correct classifications, we choose a

threshold of �s(t) = 0.0279 to determine the performance

of our predictive model based on broadband networks

across all 28 patients in our cohort. We found an accuracy

of 0.86 with a true positive rate of 0.88 and a true negative

rate of 0.82 (Supplementary Table 2).

Virtual resection provides novel
clinical insight

We sought to determine whether the virtual resection

model provides additional information on patient prognosis

that is not merely correlated with traditional electrographic

findings such as DC shift, clear seizure focus, and low volt-

age fast activity. While a significant decrease in broadband

synchronizability at seizure onset carries an odds ratio of

35 for good surgical outcome, having a focal SOZ, low

voltage fast activity, or a DC shift do not perform as

well with odds ratios of 4.3, 1.5 and 7, respectively

(Supplementary Table 3). We present the EEG and synchro-

nizability of two patients that our model predicted correctly

(Fig. 4). In these cases, following electrographic features

alone did not correlate with outcome and we found that

virtual resection provides novel clinical information not

captured by traditional clinical analysis.

We then asked the following questions: How does con-

trol centrality cres(t) of the resection zone change before and

during a seizure? How does it differ between patients who

fare favourably and patients who fare poorly after surgery?

We observed that median cres(t) was lower in good out-

come patients compared to poor outcome patients during

the ictal period. In focal impaired awareness seizures the b
frequency analysis was strongest (rank-sum statistic –2.10,

P = 0.036), while in focal to bilateral tonic-clonic seizures

this effect was strongest in high-� (rank-sum statistic –2.43,

P = 0.015) (Fig. 5). We note that after adjusting the �-level

to 0.0083 for multiple comparisons, these results no longer

reached statistical significance. The effect was not signifi-

cant during pre-ictal periods or in other frequency bands

(Supplementary Fig. 2). Additionally, calculated cres(t) is

robust to segmentation error at the resection zone margin

(Supplementary Fig. 3). These findings align with our initial

hypotheses as well as with the theoretical understanding of

the virtual resection network analysis.

Virtual resection maps spatial
anomalies in seizure networks

To examine the implications of virtual resection results on

clinical management, we sought to elucidate the role that

various clinical features can play on virtual resection fea-

tures. We sought to study the spatial distribution of cres(t)

in patients who had undergone focal resections with mal-

formations of cortical development (MCD), such as focal

cortical dysplasia. There were six patients with MCD, two

of which were read as MRI-normal. Five of these patients

had favourable outcome. Figure 6 shows patients with
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MCD on pathology and their respective mean control cen-

trality across pre-ictal and ictal epochs derived using the

broadband cross-correlation metric for functional connect-

ivity. In high frequency bands, during pre-ictal periods, we

observed that MCDs exhibit stronger synchronizers peri-

lesionally (pre-seizure: rank-sum statistic –2.08, P = 0.04).

We also found strongly desynchronizing nodes in the b-

band during ictal periods peri-lesionally within the resec-

tion zone compared to non-lesional patients (seizure period:

rank-sum statistic 1.71, P = 0.09). However, neither of

these results achieved statistical significance after correcting

for multiple comparisons. These closely localized desyn-

chronizing nodes near lesions may be important controllers

that act on nearby seizure-generating regions next to dys-

morphic dysplastic tissue. As this finding was present even

in the two non-lesional patients with MCD, spatial maps of

control centrality may act as a biomarker to uncover

hidden epileptogenic lesions that may not be easy to iden-

tify on standard clinical neuroimaging.

Discussion
In this study, we investigate the ability of virtual resection

to accurately predict surgical outcome using functional net-

works derived from ECoG data, expertly annotated seizure

markings, and rigorous co-registration of intracranial elec-

trodes and resected brain regions. We determine that

decreased synchronizability at the time of seizure onset is

predictive of good outcome, performing better than trad-

itional electrographic features. We further suggest that

good outcome patients have brain regions removed with

a relatively greater synchronizing effect on broader

networks than those of poor outcome patients. Finally,

we propose that our robust pipeline incorporating rigorous

clinical marking and validation of ECoG, quantified resec-

tion zones on standardized MRI after surgery, and sharing

of all code and data are novel contributions that make this

study important.

In our validation of the virtual resection method, we un-

cover relationships between synchronizability and import-

ant clinical variables. Broadband synchronizability has a

significant decrease at seizure onset in good but not poor

outcome patients, and pre-ictal synchronizability is higher

in non-lesional patients than those with a clear lesion on

MRI. The notion that patients with a good outcome have a

decrease in synchronizability at seizure onset is intriguing

because it suggests a greater resistance to the propagation

of oscillatory epileptic activity throughout the network

early in seizures. For patients without this decrease in syn-

chronizability, traditional resections may not provide a cure

as the existing epileptic network may poorly constrain ab-

normal activity. Furthermore, heightened pre-ictal synchro-

nizability in non-lesional patients could underlie differences

in the pathophysiology of seizure generation. Furthermore,

the robustness of our methods to predict both non-lesional

and lesional patient outcomes equally well is exciting and a

clear strength of this study as there is substantial literature

supporting improved outcomes in lesional epilepsy (Noe

et al., 2013; Vakharia et al., 2018). While our retrospective

analysis is not designed to prove conclusively the mechan-

ism by which either of these observations occur, future ex-

perimental studies may explore these concepts in vivo. As

we continue to extend virtual resection and provide support

of its utility, we further aim to initiate a prospective clinical

trial in the future.

Figure 3 Time-varying network synchronizability is predictive of surgical outcome. (A) Median base network synchronizability in

good outcome patients (blue) and poor outcome patients (red) for broadband intracranial EEG (IEEG). ***P5 0.001. Shaded areas show 95%

confidence intervals. (B) Patients with lesional MRI have higher pre-ictal synchronizability than non-lesional (NL) patients. *P5 0.05 (lesional, pre-

ictal: min = 0.42, 25%ile = 0.55, median = 0.60, 75%ile = 0.67, max = 0.74; NL, pre-ictal: min = 0.33, 25%ile = 0.59, median = 0.63, 75%ile = 0.67,

max = 0.85; lesional, ictal: min = 0.40, 25%ile = 0.51, median = 0.55, 75%ile = 0.61, max = 0.70; NL, ictal: min = 0.40, 25%ile = 0.51, median = 0.56,

75%ile = 0.60, max = 0.74). (C) ROC curves were constructed by calculating difference in s(t) from pre-ictal to ictal periods and sweeping the

threshold for classification. Broadband IEEG predicts surgical outcome significantly better than other bands as assessed by the DeLong test, which

statistically compares ROC curves generated from correlated data.
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We used differences in synchronizability between patients

with good and poor outcome to predict surgical outcome

and show that it provides novel information not present in

traditional electrographic features. Using the change in

median s(t) from the pre-ictal to the ictal period, we predict

surgical outcome with accuracies that compare favourably

to other recently published in silico models of resective

epilepsy surgery (Goodfellow et al., 2016; Sinha et al.,

2017; Tomlinson et al., 2017; Taylor et al., 2018). We

also show that examining synchronizability curves can un-

cover novel information about the epileptic network that is

often not present in traditional electrographic localizing

features of focal SOZ, DC shift, and LVFA. These findings

support the use of our model as an adjunct to traditional

Figure 4 Synchronizability provides novel clinical information. (A) Our model correctly predicted HUP073 to be seizure-free after

surgery. A board-certified epileptologist determined there is no DC shift, low voltage fast activity, or clearly focal seizure onset. This stereotyped

clinical seizure results in arousal from sleep without evident EEG change. While the clinically marked seizure onset began with an arousal pattern

in LLT04–06, here rhythmic activity begins in ROF1–3 60 s into seizure, later progressing to RLT1–3. Resection was performed in the right frontal

region. Synchronizability decreases throughout the seizure in this patient, predicting seizure freedom after surgery. (B) Our model correctly

predicted the poor outcome of Patient HUP080. In the displayed seizure, a board-certified epileptologist determined seizure onset electrodes of

AST1–3 with the presence of low voltage fast activity (red box), and a clearly focal seizure onset but no DC shift. Synchronizability increases after

earliest electrographic change (EEC) in this patient, correctly predicting the surgical outcome of this patient to be poor.
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EEG interpretation and may identify patients for whom

surgery could eliminate their seizures as well as those un-

likely to benefit from intervention. We envision clinicians

interacting with our model in a similar approach to Fig. 4,

where synchronizability, control centrality, and EEG are

viewed alongside each other. A holistic assessment of the

full clinical information such as electrographic features is

always warranted; however, our findings support the use of

synchronizability to support surgical decision-making.

Examining the contribution of the resection zone to over-

all network dynamics may be a powerful tool for assessing

surgical intervention. While the results of this analysis are

not statistically significant after adjusting for multiple com-

parisons, median control centrality of the resection zone is

lower in good outcome patients (Supplementary Fig. 2)

across all frequency bands that are correlated. We observe

that patients with a good outcome may be more likely to

have lower control centrality of their resection zones,

meaning that the resected tissue plays more of a synchro-

nizing role in the overall network. It follows that such pa-

tients would have good outcome as the topology of the

resulting functional brain network would have decreased

synchronizability. Performing a high resolution spatial

mapping of individual synchronizing and desynchronizing

nodes such as in Fig. 6 may also provide insights into these

concepts in the context of specific pathologies. However,

larger collaborative datasets are needed to robustly uncover

disease-specific patterns as our results do not reach statis-

tical significance after adjusting for multiple comparisons. It

is tempting to infer that our finding suggests that these

regions function as a macro-scale ‘inhibitory surround’,

analogous to that seen in more controlled studies of seizure

propagation in animal models and humans (Weiss et al.,

2013; Bink et al., 2018), but this hypothesis would require

further investigation.

Broadband cross-correlation may have higher predictive

power compared to individual frequency bands because it

provides the most general assessment of network connect-

ivity without frequency-specific information. Given that

broadband has high correlation with all other frequency

bands (Supplementary Fig. 4), broadband may be the

most generalizable as it would not be as affected by differ-

ences in individual seizure pathophysiology. Furthermore,

previous network models of epilepsy have found broad-

band to be highly predictive (Tomlinson et al., 2017). On

the other hand, when examining control centrality of the

resection zone parsed by seizure types we found frequency

differences that are not apparent in the broadband analysis.

The finding that high-� synchronization was most asso-

ciated with good outcome in focal seizures that generalized

whereas b synchronization was associated with good out-

come in focal seizures that did not spread may be rooted in

different mechanisms underlying these events.

Recent work has attempted to study the spatiotemporal

dynamics of seizures from initiation to termination (Kramer

et al., 2008; Khambhati et al., 2016; Wang et al., 2017).

Onset patterns are not determined by initiation of aberrant

activity in the SOZ core alone, but additionally by how

changes in excitability in surrounding healthy tissue cause

the onset to become evident (Ray et al., 2008). These

Figure 5 Control centrality of resection zone. Median node-level control centrality—calculated for the entire group of nodes lying within

the resection zone—are shown for different seizure types. Patients with a good outcome have regions that play a greater synchronizing role

resected compared to poor outcome patients. This effect is greatest in the b-band for focal impaired awareness seizures (good: min = �0.044,

25%ile = �0.021, median = 0.017, 75%ile = 0.060, max = 0.220; poor: min = 0.046, 25%ile = 0.071, median = 0.088, 75%ile = 0.095, max = 0.183)

and in the high-� band for focal to bilateral tonic-clonic seizures (good: min = �0.050, 25%ile = �0.017, median = �0.006, 75%ile = 0.010,

max = 0.034; poor: min = 0.019, 25%ile = 0.023, median = 0.042, 75%ile = 0.067, max = 0.090).
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network state changes may serve as control mechanisms

enabling desynchronous activity to disrupt seizures or to

coalesce tightly bound and functionally cohesive network

components (Kramer and Cash, 2012). As a result, some

nodes may be seizure desynchronizers that should poten-

tially be left intact in any resection plan (Fig. 7). In Fig. 7,

the proposed resection zone is the group of synchronizing

nodes that fell within the original resection zone, while

nodes marked to avoid are desynchronizing nodes that

were resected. The predictions of our model need to be

validated in a prospective trial before translating them

into patient care. Additionally, other nodes may act as

strong synchronizers during seizure evolution and perhaps

could be especially targeted for ablation, resection or stimu-

lation. Studying these findings broadly across connected

brain regions could identify potential targets for focal ther-

apy outside of the seizure onset.

The virtual resection method allows for mapping of con-

trol mechanisms of epileptic networks outside of seizures as

well. The model can be extended to interictal periods with-

out the need for ictal markings because repetitive, stable

topographical patterns in functional connectivity emerge

across long interictal time periods (Wang et al., 2017).

Additionally, subgraphs identified in interictal periods are

similar topologically to those identified during seizures,

allowing for generalization of the virtual resection method

to interictal epochs (Wang et al., 2017). Interictal epilepti-

form discharges may also be incorporated into the virtual

resection framework by studying the regions that generate

spikes in terms of their interictal, pre-ictal and ictal control

centrality. The flexibility of our methods to various modes

of analysis is a clear strength of our study.

The natural next step in testing the idea that resection

should target synchronizers and preserve desynchronizers is

to relate the effects of local stimulation to regional control

centrality. Brain stimulation performed either intraopera-

tively or in the epilepsy monitoring unit may provide a

safe and effective way to experimentally test network

hypotheses by determining whether activation of certain

nodes results in the generation or interruption of epileptic

activity. Relating stimulation to virtual resection measures

may be useful to describe spatiotemporal dynamics fully,

and would provide an avenue to formulate an algorithm to

target resection. As recent technology allows intracranial

EEG streaming to online cloud platforms (Baldassano

et al., 2019), our virtual resection method and calculation

of network metrics could also be implemented in real time

during stimulus-based mapping. If successful, these meth-

ods could be extended to guide therapy with closed-loop

neurostimulation devices such as the Neuropace RNS.

The methods and results of our model are derived from

patient-specific ECoG and imaging data and compare fa-

vourably with previous studies of in silico models of resec-

tive epilepsy surgery. In particular, studies have often

performed the identification of ictogenic nodes whose resec-

tion influences outcome by using neural mass models para-

meterized by functional connectivity. First, Sinha et al.

(2017) identified nodes that caused the network to transi-

tion the fastest into seizure dynamics via a subcritical Hopf

bifurcation (Kalitzin et al., 2010). Second, Goodfellow

et al. (2016) used a more mechanistic model that identified

nodes where removal would reduce epileptiform dynamics

via saddle-nodes on a limit cycle bifurcation (Goodfellow

et al., 2016, 2017). In contrast, our current virtual resec-

tion study uses a network framework to describe directly

the node level and global dynamics of each patient’s seiz-

ures as they occur. Our approach is thus not constrained

by simulated seizures whose dynamics may be at odds with

those observed in clinical data, and instead allows clinicians

to assess intracranial EEG network properties derived from

Figure 6 Spatial patterns uncover MCDs in resected regions in five patients. Spatial maps of mean control centrality for each node are

shown for all five patients: three lesional and two non-lesional on MRI, seen above. All patients had pathology-confirmed MCDs (yellow arrow).

Two patients had non-lesional findings on MRI despite presenting a spatial pattern of node-level control centrality similar to those in other patients

with MRI-positive MCDs. Specifically, strong desynchronizing regions (red) are seen in all resected regions (darkened zone with white outline),

which contain MCDs (synchronizers, blue). Artefactual electrodes not included and analyses are denoted with black dots.
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the very same data on which they currently base clinical

decisions. Furthermore, our quantitative imaging pipeline

and high-quality dataset is larger than either of the previ-

ous studies, which bolsters the generalizability of our re-

sults. We also use data from each seizure and a

corresponding preictal period for each patient in our

study rather than just the first seizure (Goodfellow et al.,

2016) or purely interictal data (Sinha et al., 2017). Each of

these advantages of our study brings us closer to a clinical

tool and demonstrates the significant novelty of our work

in the field of personalized network models of epilepsy.

Our study has several important limitations. The small

number of patients tested decreases the statistical power of

this study, and before the technique can be applied clinic-

ally, it must be tested on a broader range of epilepsy types.

It also must be validated on stereotactic EEG recordings,

which are rapidly becoming the standard for many epilepsy

centres worldwide as they use depth electrodes to sample

broader brain networks yet require a less invasive implant-

ation procedure. Another limitation of our network neuro-

science approach is the sensor-level brain regions that we

call ‘nodes’ are neither spatially discrete nor fixed in their

locations across patients as intracranial electrodes are not

implanted with connectivity studies in mind. One limitation

of all studies using functional connectivity derived from

ECoG is the sampling bias introduced by electrode place-

ment, which may impact the reliability of summary statis-

tics derived from network models. We have found that

even upon 20–40% resampling of electrodes, network met-

rics including control centrality and synchronizability are

reliable and perform in line with other metrics used in

the field (Conrad et al., 2019). Furthermore, statistical

methods such as jackknife resampling can be used to de-

termine relative spatial confidence in network model results

(Conrad et al., 2019). Unfortunately, we cannot validate

whether the predictions regarding changes in synchroniz-

ability after resection result in an altered epileptic network

that is less likely to manifest seizures. Direct brain record-

ings post-surgery would be an ideal method of model val-

idation but these are not performed as part of clinical care

at our institution.

A further nuance of our study is that all seizures were

considered and analysed for every patient. Patients

undergoing electrode implantation and monitoring are fre-

quently observed to have aberrant seizures and discharges

attributed to electrode trauma as well as events occurring in

regions that do not give rise to the patient’s stereotyped

clinical events (Sperling, 1997; Hudgins et al., 2016;

Parvizi and Kastner, 2018). The true causes of these seiz-

ures and their significance are unknown. Additionally, in

our synchronizability analysis we average all seizures

within a patient, even for mixtures of focal impaired aware-

ness and bilateral tonic-clonic seizures. This approach

diminishes sensitivity in detecting dynamic changes asso-

ciated with different seizure subtypes. However, we feel

that ‘human filtering’ of data by selecting subtypes would

add bias to our results and add a level of subjectivity to our

methods that would make them quite difficult to translate

to clinical practice, particularly at different medical centres

using slightly different ECoG interpretation criteria. While

this attests to the generalizability of the method, we need to

refine spatiotemporal mapping further.

We present a method for rigorously mapping epileptic

networks and predicting outcome based upon rigorously

validated resection of network nodes. In spite of study limi-

tations, our results suggest that these tools may have value

in planning epilepsy surgeries, identifying patients in ad-

vance who are likely to have good outcomes, and also

those who are less likely to benefit from surgical resection.

We hope that this work may be a step in further

Figure 7 Proposed framework for optimal resection targets using virtual resection. Median node-level control centralities during

interictal, pre-ictal and ictal periods are shown for a sample patient who had poor outcome. The top row shows spatial maps with the resection

zone (darkened region with white outline) and the bottom row shows regions that perhaps should be targeted for resection due to the presence of

strong synchronizing nodes (blue), or should be avoided during resection because of the presence of strong desynchronizing nodes (red). Future

experiments assessing the effects of stimulation of these nodes and subsequent changes in synchronizability will allow clinicians to better predict

the effect of targeted resection of these nodes.
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standardizing invasive epilepsy procedures and treatment,

and initiating multicentre clinical trials that reduce individ-

ual variation from centre to centre in this vital part of pa-

tient care.
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