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In Brief
The set of peptides presented on
a cell’s surface by MHC mole-
cules is poly-specific (it contains
multiple sequence motifs match-
ing the quantity of MHC mole-
cules expressed). NNAlign_MA
can exploit this type of data, by
means of: (1) clustering peptides
into individual specificities; (2)
automatic annotation of clusters
to an MHC molecule; and (3)
training of a prediction model
covering all MHCs present in
the training set. NNAlign_
MA expands MHC allelic cover-
age, thus improving T-cell
epitope predictions.
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• NNAlign_MA enables full deconvolution of single MHC specificities from MS assays.

• NNAlign_MA expands MHC allelic coverage, improving identification of T-cell epitopes.

• NNAlign_MA was benchmarked on MHC classes I and II, outperforming current methods.

• NNAlign_MA offers a universal solution to analyze and exploit MHC peptidomics data.
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The set of peptides presented on a cell’s surface by MHC
molecules is known as the immunopeptidome. Current
mass spectrometry technologies allow for identification
of large peptidomes, and studies have proven these data
to be a rich source of information for learning the rules of
MHC-mediated antigen presentation. Immunopeptidomes
are usually poly-specific, containing multiple sequence
motifs matching the MHC molecules expressed in the
system under investigation. Motif deconvolution -the
process of associating each ligand to its presenting MHC
molecule(s)- is therefore a critical and challenging step in
the analysis of MS-eluted MHC ligand data. Here, we
describe NNAlign_MA, a computational method designed
to address this challenge and fully benefit from large,
poly-specific data sets of MS-eluted ligands. NNAlign_MA
simultaneously performs the tasks of (1) clustering pep-
tides into individual specificities; (2) automatic annotation
of each cluster to an MHC molecule; and (3) training of a
prediction model covering all MHCs present in the training
set. NNAlign_MA was benchmarked on large and diverse
data sets, covering class I and class II data. In all cases,
the method was demonstrated to outperform state-of-
the-art methods, effectively expanding the coverage of
alleles for which accurate predictions can be made, re-
sulting in improved identification of both eluted ligands
and T-cell epitopes. Given its high flexibility and ease of
use, we expect NNAlign_MA to serve as an effective tool
to increase our understanding of the rules of MHC antigen
presentation and guide the development of novel T-cell-
based therapeutics. Molecular & Cellular Proteomics
18: 2459–2477, 2019. DOI: 10.1074/mcp.TIR119.001658.

Major Histocompatibility Complex (MHC)1 molecules play a
central role in the cellular immune system as cell-surface

presenters of antigenic peptides to T-cell receptors (TCR). On
presentation, the peptide-MHC complex (pMHC) is scruti-
nized by T cells and an immune response can be initiated if
interactions between the pMHC and TCR are established.

The collection of peptides presented by MHC molecules is
referred to as the immunopeptidome. Because of the extreme
polymorphism of the MHC, immunopeptidomes can vary dra-
matically within a population, contributing to the personalized
attributes of the vertebrate immune system.

Because of the essential role of the MHC in defining im-
mune responses, large efforts have been dedicated to under-
standing the rules that shape the immunopeptidome, as well
as its alterations in disease—either as a result of pathogen
infection or cancerous mutation (1). A crucial step toward
defining the immunopeptidome of an individual is the charac-
terization of the binding preferences of MHC molecules. The
peptide-binding domain of MHC molecules consists of a
groove, with specific amino acid preferences at different po-
sitions. MHC class I, by and large, loads peptides between
eight and thirteen residues long (2, 3). MHC class II molecules
have an open binding groove at both ends and can bind much
longer peptides, and even whole proteins (4, 5).

Peptide-MHC binding affinity (BA) assays represented the
first attempts of studying binding preferences of different MHC
molecules in vitro (6, 7). However, BA characterization ignores
many in vivo antigen processing and presentation features,
such as protein internalization, protease digestion, peptide
transport, peptide trimming, and the role of different chaper-
ones involved in the folding of the pMHC complex (8).
Further, BA assays most often are conducted one peptide at
a time, thus becoming costly, time-consuming, and low-
throughput.
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Recently, advances in liquid chromatography mass spec-
trometry (in short, LC-MS/MS) technologies have opened a new
chapter in immunopeptidomics. Several thousands of MHC-
associated eluted ligands (in short, EL) can with this technique
be sequenced in a single experiment (9) and numerous assess-
ments have proven MS EL data to be a rich source of informa-
tion for both rational identification of T-cell epitopes (10, 11) and
learning the rules of MHC antigen presentation (12, 13).

In this context, we have demonstrated how a modeling
framework that integrates both BA and EL data achieves
superior predictive performance for T-cell epitope discovery
compared with models trained on either of the two data types
alone (13, 14). In these studies, the modeling framework was
an improved version of the NNAlign method (15), which incor-
porated two output neurons to enable training and prediction
on both BA and EL data types. In this setup, weight-sharing
allows information to be transferred between the two data
types resulting in a boost in predictive power. For MHC class
I, we have demonstrated how this framework can be ex-
tended to a pan-specific model, capturing the specific antigen
presentation rules for any MHC molecule with known protein
sequence, including molecules characterized by limited, or
even no, binding data (14, 16, 17).

Except genetically engineered cells, all nucleated cells ex-
press multiple MHC-I alleles and all antigen presenting cells
additionally express multiple MHC-II alleles on their surface.
The antibodies used to purify peptide-MHC complexes in MS
EL experiments are mostly pan- or locus-specific, and the
data generated in an MS experiment are thus inherently poly-
specific - i.e. they contain ligands matching multiple binding
motifs. For instance, in the context of the human immune
system, each cell can express up to six different MHC class I
molecules, and the immunopeptidome obtained using MS
techniques will thus be a mixture of all ligands presented by
these MHCs (12). The poly-specific nature of MS EL libraries
constitutes a challenge in terms of data analysis and interpre-
tation, where, to learn specific MHC rules for antigen presen-
tation, one must first associate each ligand to its presenting
MHC molecule(s) within the haplotype of the cell line.

Several approaches have been suggested to address this
task, including experimental setups that employ cell lines
expressing only one specific MHC molecule (10, 18–20), and
approaches inferring MHC associations using prior knowl-
edge of MHC specificities (21) or by means of unsupervised
sequence clustering (22). For instance, GibbsCluster (23, 24)
has been successfully employed in multiple studies to extract
binding motifs from EL data sets of several species, both for
MHC class I and MHC class II (5, 25–27). A similar tool,
MixMHCp (22) has been applied to the deconvolution of MHC
class I EL data with performance comparable to GibbsCluster.

However, neither of these methods can fully deconvolute
the complete number of MHC specificities present in each
data set, especially for cell lines containing overlapping bind-
ing motifs and/or lowly expressed molecules (as in the case of
HLA-C). Moreover, for both methods the association of each
of the clustered solutions to a specific HLA molecule must be
guided by prior knowledge of the MHC binding motifs, for
instance by recurring to MHC-peptide binding predictions
(16). Therefore, both methods require some degree of manual
intervention for deconvolution and allele annotation.

A recently published method was suggested to overcome
this limitation. The computational framework by Bassani-
Sternberg et al. (28) employs MixMHCp (22) to generate pep-
tide clusters and binding motifs for a panel of poly-specificity
MS data sets, and next links each cluster to an HLA molecule
based on allele co-occurrence and exclusion principles. Al-
though this approach constitutes a substantial step forward
for aiding the interpretation of MS EL data, it has some sub-
stantial shortcomings. First and foremost, the success of the
method is tied to the ability of MixMHCp to identify all the
binding motifs in a given MS data set, an ability that is chal-
lenged in particular for cell lines containing MHC alleles with
similar binding motifs, and for molecules characterized by low
expression levels (22, 29). Secondly, successful HLA labeling
of the obtained clusters is limited by allele co-occurrences
and exclusions across multiple cell line data sets. Although
one may argue that this shortcoming is destined to wane as
more immunopeptidomics data sets are accumulated in pub-
lic databases, there currently remain multiple cases when
co-occurrence and exclusion principles fail to completely de-
convolute peptidome specificities (28).

Inspired by the framework outlined by Bassani-Sternberg et
al. (28) and by the earlier success of the pan-specific NNAlign
framework for modeling peptide-MHC binding (14), we here
present a novel machine learning algorithm resolving these
shortcomings, enabling a fully automated clustering and la-
beling of MS EL data. The algorithm is an extension of the
NNAlign neural network framework (15, 30, 31), and is capa-
ble of taking a mixed training set composed of single-allele
(SA) data (peptides assigned to single MHCs) and multi-allele
(MA) data (peptides with multiple options for MHCs assign-
ments) as input and deconvolute the individual MHC restric-
tion of all MA peptides while learning the binding specificities
of all the MHCs present in the training set. Compared with
earlier approaches for peptidome deconvolution, annotation,
and prediction model training (e.g. GibbsCluster/NNAlign (29)
and MixMHCp/MixMHCpred (28)), NNAlign_MA performs
these three tasks simultaneously, by iteratively updating the
clustering, MHC annotation and peptide binding predictions
in an integrated framework. NNAlign_MA does not require
manual curation to assign the correct number of clusters, nor
for the annotation of clusters to their respective MHC mole-
cule. NNAlign_MA is available at:

1 The abbreviations used are: MHC, Major Histocompatibility Com-
plex; TCR, T-cell receptors; pMHC, peptide-MHC complex; EL,
eluted ligand.

NNAlign_MA; Mass Spectrometry Immunopeptidome Deconvolution

2460 Molecular & Cellular Proteomics 18.12



www.cbs.dtu.dk/suppl/immunology/NNAlign_MA/NNAlign_
MA_testsuite.tar.gz.

MATERIALS AND METHODS

Peptide Data—Several types of MHC peptide data for human (HLA)
and bovine (BoLA) class I, and HLA class II were gathered to train the
predictive models presented in this work. Peptide data was classified
as single allele data (SA, where each peptide is associated to a single
MHC restriction) and multi allele data (MA, where each peptide has
multiple options for MHC restriction). MA data are generated from MS
MHC ligand elution assays where most often a pan-specific antibody
is applied for class I and either a pan-specific class II or a pan-DR
specific antibody is applied for class II in the immuno-precipitation
step leading to data sets with poly-specificities matching the MHC
molecules expressed in the cell line under study. SA data were
obtained from binding affinity assays, or from mass spectrometry
experiments performed using genetically engineered cell lines that
artificially express one single allele.

HLA class I: SA data - both binding affinity (BA), and MS MHC
eluted ligands (EL) - was extracted from Jurtz et al. (14). The MA data
was collected from eight different sources (12, 25, 26, 28, 32–35).
Both data sets were filtered to include only peptides of length 8–14
amino acids. Additional information concerning the HLA class I MA
data can be found in supplemental Table S1 and information con-
cerning the SA BA and EL data sets in supplemental Table S2.

HLA-II: BA data was extracted from the NetMHCIIpan-3.2 publica-
tion (36). As for EL data, the Immune Epitope Database (37) (IEDB)
was queried to identify publications with a large number of allele
annotated EL data, both SA and MA (27, 38–45). Ligands were
extracted from these publications, excluding any ligands with post
translational modifications. Both BA and EL data was length filtered to
include only peptides of length 13–21. Details on the composition of
the HLA class II MA data are shown in supplemental Table S3.

Regarding BoLA, SA data was extracted from Nielsen et al. (16) and
the MA data was collected either from the same publication (data for
the MHC homozygous cell lines expressing the haplotypes A10, A14,
A18) or were generated for this study (data for the cell lines express-
ing the haplotypes A11/A11, A19/A19, A20/A20, A15/A15, and A12/
A15). All data sets were filtered to include only peptides of length
8–14. A summary of the BoLA MA data is given in supplemental
Table S4.

BoLA EL Data Generated for This Study

BoLA Cell Lines and BoLA-I-Associated Peptide Purification—
BoLA Cell Lines and BoLA-I-Associated Peptide Purification were
performed according to the procedures described in (16).

LC-MS2 Analysis—Samples were suspended in 20 �l of loading
buffer (1% acetonitrile, 0.1% TFA in water) and analyzed on an
Ultimate 3000 nano UPLC system online coupled to a Fusion Lumos
mass spectrometer (Thermo Scientific). Peptides were separated on a
75 �m � 50 cm PepMap C18 column using a 1h linear gradient from
5 to 25% buffer B in buffer A at a flow rate of 250 nL/min (�600 bar).

Peptides were introduced into the mass spectrometer using a nano
Easy Spray source (Thermo Scientific) at 2000V and ion transfer tube
temperature of 305 °C. Subsequent isolation and higher energy C-
trap dissociation (HCD) was induced on the most abundant ions per
full MS scan at 2 s cycle time. Ions with a charge of 2–4 were
measured at an accumulation time of 120 ms, AGC target of 200,000,
quadrupole isolation width of 1.2 Da, and energy level 28. All frag-
mented precursor ions were actively excluded from repeated selec-
tion for 60 s.

MS Data Analysis—MS data was searched against a database
comprising the 23/12/2017 download Uniprot entries for organism
bos bovis (32,207 entries) concatenated with 4,084 Theileria muguga
protein sequences annotated from RNAseq data of the schizont stage
of T. parva (GenBank, BioSample accession SAMN03981746) plus a
single entry for beta-galactosidase of E. coli. 36,692 entries were
searched simultaneously in Peaks v8.5. No specificity was set for
enzymatic digestion and no modifications of amino acids allowed.
Mass tolerance for precursor ions was 5 ppm, whereas fragment
mass tolerance was set to 0.03 Da. Score threshold was set corre-
sponding to a false discovery rate of 1.0% as determined by simul-
taneous decoy database searches integrated in the Peaks 8.5 soft-
ware. The full list of MS identified peptides generated for this work
can be found in the supplementary file Full_BoLA_MS_data.xlsx.

Training Data—Three training sets were constructed, one for each
of the systems under study (Table I). To ensure an unbiased perform-
ance evaluation on the MA data, duplicated entries between the SA
EL and MA data were first removed from the SA EL data set for each
training set. Next, random peptides were extracted from the UniProt
database and used as negative instances for the EL data in each
case. Here, an equal amount of random negatives was used for
each length, consisting of five times the amount of peptides for the
most abundant length in the given positive EL data set as described
earlier (13, 16). This enrichment with random natural negative pep-
tides was done for each individual SA and MA EL data set. The
amount of positive and negative peptides in each training set is
shown in Table I.

Evaluation Data—For HLA class I, an independent evaluation data
set of HLA restricted CD8� epitopes was obtained from Jurtz et al.
(14). After removal of epitopes overlapping with the HLA-I training
data, the final evaluation data consisted of 558 HLA-epitope entries.

For the evaluation with MixMHCpred, MHCFlurry, and MHCFlurry_EL
(the version of MHCFLurry trained including EL data), the epitope data
set was further filtered to only include epitopes restricted to HLA
molecules covered by all method. This resulted in a data set of 541
epitopes. Because MixMHCpred cannot make predictions for pep-
tides containing X, all such peptides were removed from the bench-
mark before evaluation.

For BoLA-I, a set of BoLA restricted epitopes were obtained from
Nielsen et al. (16). For HLA-I and BoLA-I evaluation, the source protein
sequence of each epitope was in-silico digested into overlapping
8–14mers, and the performance reported as the Frank score, i.e.
proportion of peptides with a prediction score higher than that of the
epitope (14). Using this measure, a value of 0 corresponds to a perfect

TABLE I
Training data overview

SA (BA) SA (EL) MA (EL)

Pos Neg MHCs Pos Negs MHCs Pos Neg MHCs Len

HLA-I 50,344 127,169 104 46,183 740,939 51 225,751 5,399,788 67 8–14
BoLA-I 50,361 150,833 7 84,717 1,644,976 – 92,339 1,788,293 16 8–14
HLA-II 55,178 76,185 59 32,510 337,720 8 15,494 152,445 16 13–21

For each MHC system (first column), the number of positive and negative instances is shown for each type of training data. SA: Single Allele;
MA: Multi Allele; BA: Binding Affinity; EL: Eluted Ligands.
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prediction (the known epitope is identified with the highest predicted
binding value among all peptides found within the source protein) and
a value of 0.5 to random prediction.

For HLA class II all CD4� epitopes measured by Intracellular
Cytokine Staining(ICS) assay were downloaded from the IEDB. The
set was filtered to include only positive epitopes with four letter
resolution HLA typing. Further, epitopes overlapping with the HLA-II
training data (100% identity) were removed. As for HLA-I, the Frank
score was used to validate the model performance, here in-silico
digesting the source protein into overlapping of a length equal to that
of the epitope. Finally, to exclude potential noise, epitopes were
discarded if none of the prediction methods included in the bench-
mark could identify the epitope with a Frank value of 0.2 or less. This
resulted in a set of 221 HLA-II epitopes for evaluation.

NNAlign_MA Modeling and Training Hyperparameters—Models for
peptide-MHC binding prediction were trained with hyperparameters
and model architectures similar to those described earlier (13, 15, 29)
for prediction of peptide-MHC binding based on the data sets de-
scribed in Table I. Positive instances in EL data sets (for both SA and
MA) were labeled with a target value of 1, and negatives with a target
value of 0.

To avoid performance overestimation and model overfitting, train-
ing sets were split into 5 partitions for cross-validation purposes using
the common motif algorithm (47) with a motif length of 8 amino acids
for class I (corresponding to the shortest binding mode for class I
peptides) and 9 amino acids for class II (corresponding to the size of
the class II binding core) as described earlier (13, 14).

A single and simple yet highly critical step sets the updated
NNAlign_MA method proposed here aside from its ancestors. To be
able to accurately handle and annotate MA data, NNAlign_MA im-
poses a burn-in period where the method is trained only on SA data.
After the burn-in period, each data point in the MA data set is
annotated by predicting binding to all possible MHC molecules de-
fined in the MA data set and assigning the restriction from the highest
prediction value (see the Prediction score rescaling section for vari-
ations on this). After this annotation step, the SA and MA data are
merged respecting the data partitioning to further train the algorithm.
This MA annotation step is repeated in each training cycle.

In the case of HLA-I and BoLA-I, models were trained on the full set
of SA and MA data as an ensemble of 50 individual networks, gen-
erated from 5 different seeds; 56 and 66 hidden neurons; and 5
partitions for cross-validation. Models were trained for 200 iterations
(using early stopping), with a burn-in period of 20 iterations. For
performance comparison, a SA-only model was trained for HLA-I
using the same architecture and hyper-parameters by excluding all
MA data from the cross-validation partitions, thus including only data
for SA while respecting the training data structure.

Regarding HLA-II, default settings for MHC-II prediction as previ-
ously described (13, 29) were used. Models were trained and evalu-
ated on 5-fold cross-validation partitions defined by common motif
clustering with a motif of length 9. The final ensemble of models
consists of 250 networks (2, 10, 20, 40 and 60 hidden neurons and 10
random weight initiation seeds for each CV fold). Networks were
trained for 400 iterations, without early stopping and using a burn-in
period of 20.

All networks have an input layer, a single hidden layer and an
output layer with two output values (one for binding affinity and one
for eluted ligand likelihood). Networks were trained using back-prop-
agation with stochastic gradient descent and a fixed learning rate of
0.05. When making predictions using the network ensembles, the
average over the individual network predictions was used.

Prediction Score Rescaling—To level out differences in the predic-
tion scores between MHC alleles imposed by the differences in num-
ber of positive training examples and distance to the training data

included in the SA data set, a rescaling of the raw prediction values
was implemented and applied in the MA data annotation. The rescal-
ing was implemented as a z-score transformation of the raw predic-
tion values using the relation z � �p � p�/�, where p is the raw
prediction value of the peptide to a given MHC molecules, and p and
� are the mean and standard deviation of the distribution of prediction
values for random natural peptides for the MHC molecule. Here, the
score distribution was estimated by predicting binding of 10,000
random natural 9mer peptides to MHC molecule in question. Next,
the mean and standard deviation were estimated from a positive
normal distribution, iteratively excluding outliers (z-score � �3 or
z-score 	 3). For an example on how z-score is applied to transform
prediction score distributions, see supplemental Fig. S6. This estima-
tion of p and � was repeated in each iteration round before annotating
the MA data. As the rescaling is imposed to level out score differ-
ences between MHC molecules characterized in the SA training bind-
ing data and molecules from the MA data distant to the training data,
the need for rescaling should be leveled out as the MA data are
included in the training and the NNAlign_MA training progresses. To
achieve this, the values of p and � were modified to converge toward
uniform values pu and �u defined as the average of p and � over all
molecules in the MA data set. This convergence was defined as
p
 � w * p � �1 � w� * pu and �
 � w * � � �1 � w� * �u, where
w � 1/�1 � e� x�75�/10� and x is the number of training iterations. With
this relation, when w is close to 1 after pre-training (x � 20), the terms
pu and �u vanish; on the other hand, as x passes 100 iterations, w
converges to 0 and the terms p and � will vanish. With this, one can
modulate the rescaling of the data as a function of the iterations and
the type of data being used for training (SA or MA). The shift value of
the exponential present in w (75) is a tunable parameter that defines
this adjustment schedule. Similar results as the ones shown in this
work were obtained varying this value in the range 50–100 (data not
shown).

Distance Between Pairs of MHC Molecules—The distance between
MHC molecules was calculated as described earlier (48) from the
sequence similarity between the pseudo sequences of the two mol-
ecules. Likewise, was the distance of an MHC molecule to the data
used to train a given prediction model, defined as the closest distance
to any MHC molecule included in the training data.

Pruning the HLA Supertype Tree - HLA Models with Removed
Specificities—To quantify how MA data can boost the performance of
a peptide-MHC predictor, we constructed additional models, where
SA data associated with HLA molecules from the A2 and A3 super-
types where exclude from the training data. In short, this was
achieved by first identifying the alleles in the MA data for the two
supertypes (49), resulting in the following allele list: HLA-A*02:01,
HLA-A*02:05, HLA-A*02:06, HLA-A*02:20, HLA-A*68:02, HLA-A*03:
01, HLA-A*11:01, HLA-A*30:01, HLA-A*31:01, and HLA-A*68:01.
Next, all data for alleles with a distance (see above) of less than 0.2 to
any of the alleles in this list were removed from the SA data. Finally,
a SA model was trained as described above on the remaining SA
data, and MA model on the remaining SA data combined with the
complete MA data, respecting the original data partitioning.

Sequence Motif Construction—Sequence binding motif were visu-
alized as Kullback-Leibler logo plots using Seg2Logo (50). Amino
acids are grouped by negatively charged (red), positively charged
(blue), polar (green) or hydrophobic (black). If not otherwise specified,
binding motifs were generated from the top 0.1% of 200,000 random
natural peptides (9mers for class I and 15mers for class II) as de-
scribed earlier (14).

Binding Motifs Similarity Comparison—The similarity between two
HLA binding motifs was estimated in terms of the Pearson’s correla-
tion coefficient (PCC) between the two vectors of 9*20 elements (9
positions and 20 amino acid propensity scores at each position).
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Model Performance Evaluation—For model comparison, the AUC
(Area Under the ROC Curve) and AUC 0.1 (Area Under the ROC Curve
integrated up to a False Positive Rate of 10%) performance measures
were used. For a given model, each test set was predicted using the
model trained during cross-validation. Next, all test sets were con-
catenated, and an AUC/AUC0.1 value was calculated for each MHC
molecule/cell line identifier. In case of multi-allele data, the prediction
score to each peptide was assigned as the maximal prediction value
over the set of possible MHC molecules.

To evaluate the “cleanness” of a given cluster/motif identified by
NNAlign_MA, positive-predictive values (PPV) were calculated. For
each cell line, we calculated the number of ligands N predicted to be
bound to each allele from the concatenated test set predictions. Next,
the PPV for each motif was calculated as the fraction of peptides in
the top N*0.95 predictions that were actual ligands. The values of
95% was selected to tolerate a certain proportion of noise in the EL
data (29).

In Vitro Binding Data—Recombinnt BoLA-1*00901 and human be-
ta-2 microglobulins (�2m) were produced as previously described
(51). In brief, biotinylated BoLA-1*00901 was generated in Escherichia
coli, harvested as inclusion bodies, extracted into Tris-buffered 8 M

urea and purified using ion exchange, hydrophobic, and gel filtration
chromatographies. MHC-I heavy chain proteins were never exposed
to reducing conditions, which allows for purification of highly active
pre-oxidized BoLA molecules, which folds efficiently when diluted
into an appropriate reaction buffer. The pre-oxidized, denatured pro-
teins were stored at �20 °C in Tris-buffered 8 M urea. Human �2m
was expressed and purified as previously described (52).

Nonameric peptide binding motifs were determined for BoLA-
1*00901, using PSCPL as previously described (51, 53, 54). Recom-
binant, biotinylated BoLA heavy chain molecules in 8 M urea were
diluted at least 100-fold into PBS buffer containing 125I-labeled hu-
man �2m and peptide to initiate pMHC-I complex formation. The final
concentration of BoLA was between 10 and 100 nM, depending on
the specific activity of the heavy chain. The reactions were carried out
in the wells of streptavidin-coated scintillation 384-well FlashPlate®
PLUS microplates (Perkin Elmer, Waltham, MA). Recombinant radio-
labeled human �2m and saturating concentrations (10 �M) of peptide
were allowed to reach steady state by overnight incubation at 18 °C.
After overnight incubation, excess unlabeled bovine �2m was added
to a final concentration of 1 �M and the temperature was raised to
37 °C to initiate dissociation. pMHC-I dissociation was monitored for
24 h by consecutive measurement of the scintillation microplate on a
scintillation TopCount NXT multiplate counter (Perkin Elmer, Wal-
tham, MA). PSCPL dissociation data were analyzed as described (33).
Briefly, following background correction, the area under the dissoci-
ation curve (AUC) was calculated for each sublibrary by summing the
counts from 0 to 24 h. The relative contribution of each residue in
each position (i.e. the relative binding, RB) was calculated as RB �
(AUC_sublibrary/AUC_X9). The RB values were next normalized to
sum to one for each peptide position and used as input to Seq2Logo
to generate the in vitro BoLA-1*00901 binding-motif.

RESULTS

A key issue associated with the interpretation and analysis
of LC-MS MHC eluted ligand data sets (EL data) stems from
the challenge of deconvoluting and linking each ligand back
to the presenting MHC molecule(s) of the investigated cell
lines. In the following, we describe the NNAlign_MA frame-
work resolving this challenge, and showcase how the frame-
work can be applied to effectively integrate MA EL data in a
semi-supervised manner into machine-learning models for
improved prediction of MHC antigen presentation and T-cell

epitopes on the three large data sets of human (class I and
class II) and cattle MHC class I ligand and T-cell epitope data.

The NNAlign_MA Algorithm—The NNAlign_MA algorithm is
an extension of the NNAlign neural network framework, and is
capable of taking a mixed training set composed of single-
allele data (SA, peptides assigned to single MHCs) and multi-
allele data (MA, peptides that are assigned to multiple MHCs),
and fully deconvolute the individual MHC restriction of all MA
peptides, learning the binding specificities of the MHCs pres-
ent in the training set. In short, the NNAlign framework under-
lying NetMHCpan-4.0 method, is an artificial neural network
method integrating SA binding affinity and EL data with se-
quence information of the MHC molecules, allowing informa-
tion to the leveraged both between data types and MHC data
sets, resulting in pan-specific predictive power (14).

The MA extension of NNAlign consists of various critical
steps (see Fig. 1 for a schematic overview). First, a neural
network is pre-trained on SA data only during a burn-in pe-
riod, using the NNAlign framework. This results in a pan-
specific model with potential to infer binding specificities also
for MHC molecules not included in the SA data set (14, 48).
After this initial training period (from now on referred to as
“pre-training”), the data in the MA data sets are annotated.
That is, binding for each positive peptide in the MA data set is
predicted (using the ligand likelihood prediction value from the
pre-trained model) to all the possible MHC molecules of the
given cell line and the restriction is inferred from the highest
prediction value (for details see Materials and Methods). For
negative MA data, a random MHC molecule from the given
cell line is tagged. Next, the SA and now single-MHC anno-
tated MA data are merged, and the model is retrained on the
combined data. Note, that the MHC allele annotation is up-
dated at each iteration and will in general change as the
training progresses. Implicitly, the algorithm exploits the prin-
ciples of co-occurrence and exclusions outlined by Bassani-
Sternberg et al. (28): i.e. sequence motifs that consistently
occur across multiple cell lines sharing only specific MHC
alleles are assigned to the shared MHC(s) by the iterative
annotation step. For an illustration of this effect refer for
instance to HLA-B*13:02, the only allele in common between
the two cell lines CM467 and pat-NS2. The binding motif for this
molecule (and the other HLA molecules in each cell line) as
obtained by NNAlign_MA are shown in supplemental Fig. S1.
Here, it is apparent that only one motif is shared by these two
cell lines, and the co-occurrence principle allows NNAlign_MA
to assign this motif to HLA-B*13:02. In ambiguous cases where
co-occurrence and exclusion principles are insufficient, the
pan-specific nature of the method will help tilt the annotation
toward the correct MHC. An example of this is showcased by
the motif of BoLA-1:00901 in Fig. 1. BoLA-1:00901 is only
present in the MA data, and hence are data for this molecule
only presented to the model after the pre-training. Because no
MHC molecule in the SA data share a strong preference for H at
P9, H at P9 is absent in the predicted motif for BoLA-1:00901
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after pre-training. After pre-training, the data from the two cell
lines (A12/A15 and A15/A15) expressing BoLA-1:00901 are pre-
sented to the model, hence for the first-time showing peptides

with a H at P9. NNAlign_MA is now faced with the challenge of
assigning these peptides to one or more of the alleles ex-
pressed in the two cell lines. The method does this in two ways,

FIG. 1. Full NNAlign_MA framework. Initially, a model is pre-trained using SA data only (“NNAlign 2.0 Training” box); next, MA data are
annotated and merged with the SA data (“NNAlign 2.0 MA Annotation” box), generating newly annotated MA data; then, the training is repeated
iteratively using such new data. The NNAlign_MA algorithm encompasses all the steps indicated in the flow chart. It is important to notice that,
for alleles that are part of one or more MA data sets, a prediction score rescaling is applied in every epoch (iteration) after the pre-training, as
a part of the MA annotation step. In the upper left part are displayed examples of binding motifs of two MHC molecules just after pre-training
(i � 20). In the lower part of the figure are shown the changes to predicted binding motifs of the same two MHC molecules as NNAlign_MA
iterates over the data. Here “i” refers to the number of iterations.
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by within each cell line predicting for each peptide binding to all
expressed alleles and selecting the most favorable as the po-
tential restriction element, and by transferring knowledge of
binding preferences for the different alleles imposed by ligands
in other cell line data sets. Analyzing the binding of peptides
using the pre-training model, BoLA-1:00901 (in contrast to
BoLA-4:02401 and BoLA-2:02501) is found to tolerate H at P9
(the H is not present in the motif because this motif only displays
amino acid enrichments). Further, both BoLA-4:02401 and
BoLA-2:02501 are expressed in a third cell line (A14), but none
of the motifs identified here share a preference for H at P9 (see
supplemental Fig. S4). Taken together, these properties enable
the model to assign peptides with H at P9 to BoLA-1:00901. For
details on model hyper-parameters and model training setup,
see Materials and Methods.

HLA-I Benchmark—To benchmark NNAlign_MA, we trained
a model on the complete set of SA data described in the
NetMHCpan-4.0 paper, combined with an extensive set of
MA data covering 50 different cell lines with typed HLA allo-
types described in Bassani-Sternberg et al. (28). Note that,
before training, we removed all overlapping peptides between
the SA and MA data from the SA data set. This was done to
fully demonstrate the power of the NNAlign_MA to annotate
MA data also in situations where the information cannot sim-
ply be transferred from the SA data. After training, each MA
data point ends up being annotated to a single MHC mole-
cule, and from this annotation the distribution of ligands as-
sociated with each HLA molecules was recovered. Based on
the predicted 9mer binding cores of the ligands, logos for all
the HLA alleles expressed by each of the cell lines under study
was constructed (supplemental Fig. S1). In this benchmark,
NNAlign_MA was capable of not only clustering the EL data
into a set of groups matching the number of expressed HLA
alleles in each cell line (this is guaranteed by the construction
of the method), but also to assign each group to a single
corresponding HLA allele. As a point of comparison, on the
same benchmark data, MixMHCp was only capable of achiev-
ing a complete deconvolution of all HLA specificities in 26%
of the 50 cell line data sets (failing to identify motif corre-
sponding to HLA-C alleles in 61% of the cases), and could not
annotate at least one cluster in 16% of the samples. Two
examples of this are given in Fig. 2, showing the NNAlign_MA
deconvolution of the two cell lines HCC1143 and HCT116. In
the first case, MixMHCp correctly identified 5 motifs, but
could not assign two of the five to their corresponding allele
(respectively HLA-A*31:01 and HLA-B*37:01). For HCT116,
MixMHCp was able to deconvolute and assign only four of the
six expressed alleles, missing the deconvolution of the motifs
for two HLA-C alleles, HLA-C*05:01 and HLA-C*07:01. The
accuracy of the 4 motifs additionally identified by NNAlign_MA
was confirmed by reference to SA data available from IEDB (37)
(see Fig. 2).

As stated above, the NNAlign_MA method by construction
is guaranteed to cluster the MA data into several groups

matching the number of HLA alleles expressed in each cell
line. The association of each cluster to the correct HLA mol-
ecule, and the accuracy of each cluster are, however, not
guaranteed. By investigating the deconvolution solutions for
the different cell lines (supplemental Fig. S1), it is apparent
that the accuracy of the motifs identified by NNAlign_MA (as
expected) depends on the number of ligands assigned to a
given HLA, and that complete characterization of the HLA’s in
a given cell line, for a few cases, is impeded by this fact (a few
examples include the motif for HLA-C*07:04 from Fibroblast,
HLA-C*08:01 from Mel-624, and HLA-C*02:10 from RPMI8226).
These are further examples of alleles only present in single MA
data sets, limiting the ability of NNAlign_MA to transfer infor-
mation of the binding motifs from other data sets.

To further quantify the accuracy of the cluster-HLA associ-
ation, we compared the motifs obtained by NNAlign_MA to
the motifs obtained from SA data in situations where such
data were available from the IEDB (supplemental Fig. S2).
Here, we in the vast majority of cases observed an excellent
agreement, with an average correlation between the two mo-
tifs of 0.883 over the 46 alleles included (p value for the
correlation being random was in each case � 0.001, exact
permutation test, for details on how the correlation was cal-
culated refer to Materials and Methods. Note, that this corre-
lation was equally high for alleles characterized by SA EL
training data and alleles not characterized by SA EL data
(average PCCs of 0.883 and 0.876, respectively). As ex-
pected, the agreement between the MA and SA motifs also
here was highest for the cases where both motifs were char-
acterized by large data sets.

Next, we compared the motifs of individual HLA alleles
obtained across different cell lines, for example the HLA-
C*03:03 allele, shared between 5 cell lines. Using again a
simple correlation analysis, we quantified the similarity of
these different motifs, and could in all cases confirm a high
consistency, with an overall averaged correlation of 0.901
over the 17 alleles shared by 5 of more cell lines (supplemen-
tal Fig. S3). These correlation values were all significantly
different from random (p � 0.0001, exact permutation test),
and significantly higher than the correlations obtained by
comparing motifs assigned to different HLA molecules (p �

10�5, t test). Also, the correlations were lowest for the com-
parison between motifs characterized by small data sets (as
exemplified by the motifs for HLA-C*07:02 from the HCC1937
and Mel-8 cell lines, each characterized by 48 and 31 ligand
data points respectively (see supplemental Fig. S1), resulting
in a correlation between the two motifs of 0.68). Finally, we
evaluated the “cleanness” of each cluster/motif by calculating
predicted positive (PPV) values. Here, all clustering solutions
were found to have very high accuracy, with an average PPV
value of 75% (for details on the calculation of the PPV refer to
Materials and Methods, and for the complete list of PPV
values refer to supplemental Table S5.
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Taken together, these results demonstrate the high per-
formance of NNAlign_MA, achieving in most cases an accu-
rate, consistent and complete (including for HLA-C) deconvo-
lution of MA EL data sets.

Given these encouraging results, we next conducted a full-
scale performance evaluation for prediction of eluted HLA
ligands. To this end, we first compared the performance of
NNAlign_MA trained on the complete HLA-I data set (referred
to as the MA model) to the performance when trained only on
the subset of SA data (referred to as the SA model). Note, that
this SA model is trained identically to NetMHCpan-4.0, with
the only exception of the removal of overlapping peptides
between the SA and MA described above. This benchmark

(Fig. 3A) demonstrated that the MA model exhibited a con-
sistently (and statistically significant, p � 0.0001, paired t test)
higher performance when evaluated on the MA data (median
AUC of 0.9769), compared with the SA model (median AUC of
0.9712). On the other hand, as expected, the MA and SA
models showed an overall comparable predictive perform-
ance when evaluated on the SA data (median AUC of 0.9842
versus 0.9839). We hypothesized that NNAlign_MA would
demonstrate a performance gain over NNAlign_SA for alleles
where the SA data are either limited or absent. The results
displayed in Fig. 3 confirmed this. Here, the median number of
positives for SA data sets where NNAlign_MA outperforms
NNAlign_SA was 57 whereas the number for the SA data sets

FIG. 2. Sequence clustering and labeling comparison between NNAlign_MA. MixMHCp and NetMHCpan-4.0 for the HCC1143 and
HCT116 cell lines. Motifs corresponding to NNAlign_MA were constructed based on ligands from the given MA data set (cell line) predicted
using cross-validation to be restricted by the given HLA molecule; the quantity of peptides associated to each HLA molecule is given on top
of the corresponding logos; allele annotation was performed automatically by NNAlign_MA. MixMHCp motifs were constructed by running the
algorithm on the ligands associated to each cell line; allele annotation was obtained from (28). SA EL data motifs were derived from single-allele
(SA) data available from the IEDB (37).
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where NNAlign_SA won was 435. Further, was the perform-
ance gain of NNAlign_MA on the MA data found to be largest
for data sets characterized by alleles absent from the SA data.
Last, we investigated if the MA model also demonstrated
improved performance compared with the SA model for bind-
ing affinity (BA) predictions. Here, we evaluated the perform-

ance of the two models in terms of the allele specific PCC on
the BA data using cross-validation. Also, here did the MA
significantly outperform the SA model with median PCC val-
ues of 0.766 and 0.759 (p � 0.005, binominal test).

Next, we investigated how the peptidome for the MA EL
data in each data set was distributed among the alleles of the

FIG. 3. Benchmark of the prediction method on the HLA-I data. A, Performance of the SA and MA trained models on the SA EL and
MA EL data sets, expressed in terms of AUC. Each point corresponds to one SA or MA data set. SA data corresponds to 55 single-allele
EL data set. MA data consist of EL data from 50 different cell lines, each expressing more than one MHC molecule. To evaluate the MA
data, each data point was assigned the highest prediction value across all possible MHC restrictions in the given cell line data set (for
further details, see Materials and Methods). Performance values for the SA model on the SA data sets, and for the MA model on the SA
and MA data, were extracted from the cross-validated predictive performance. B, The relative peptidome size for the three loci (HLA-A,
HLA-B and HLA-C) as predicted by NNAlign_MA for the different MA data sets. Each data point gives the relative proportion of ligands
in each MA data set predicted to be restricted by a HLA from the given locus. The HLA restriction for each ligand data was estimated from
the evaluation performance of the cross-validation as described in Material and Methods. Only data sets where HLA expression is
annotated for all three loci were included. C, Frank values for the epitope evaluation data set for NetMHCpan-4.0 and models trained with
only SA data (SA Model) and with SA and MA data (MA Model). Red dots correspond to epitopes restricted to HLAs that were part of the
SA training data, whereas blue points refer to Frank values for epitopes with HLA restrictions absent from the SA training set. For
visualization, Frank values of 0 are displayed with a value of 0.00004. HLAs in the category “Alleles absent from SA data” are HLA-B*13:02,
HLA-B*55:01 and HLA-C*01:02. D) Frank values for the epitope evaluation on NetMHCpan-4.0, MixMHCpred, MHCFlurry (trained on BA
data), MHCFlurry_EL (trained on BA and EL data) and the models trained with only SA data (SA Model) and MA data (MA Model). For
visualization, Frank values of 0 are displayed with a value of 0.00004.
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three loci HLA-A, HLA-B and HLA-C. To do this, we extracted
the number of ligands predicted by NNAlign_MA to be re-
stricted by HLA-A, HLA-B and HLA-C for each cell line pres-
ent in the MA EL data set and then calculated the proportion
of ligands associated to a given loci relative to the total
amount of peptides in the cell line. The result of this analysis
is shown in Fig. 3B and confirms the general notion that
HLA-A and HLA-B have comparable peptidome repertoire
size, whereas the peptidome size of HLA-C, in comparison, is
substantially reduced (53). Although this is not a novel obser-
vation, to the best of our knowledge this is the first fully
automated analysis of EL data demonstrating this. Some clear
outliers are present in the figure where either the HLA-A or
HLA-B peptidome repertoires are highly reduced compared
with the median values. A few such examples include the
HL-60, CA46, Mel-624 and HEK293 cell lines where either the
entire HLA-A or HLA-B locus appears to have been deleted or
made non-functional. These observations agree with results
from earlier studies for these cell lines (for details refer to
Supplemental Table 6), suggesting the power of NNAlign_MA
also for identification of loss or down-regulation of HLA ex-
pression directly from EL data sets.

Evaluation on HLA-I Epitopes from IEDB—To further inves-
tigate the predictive power of NNAlign_MA, we employed an
evaluation set of epitopes of length 8–14 extracted from IEDB
(see Materials and Methods for details). Here, we divided the
data set into two subsets; one containing the epitopes re-
stricted to HLAs that were part of the SA training data set, and
one where the HLAs were not present in the SA training data.
The results of the evaluation on these two data sets for the SA
and MA models, and the state-of-the-art method NetMHC-
pan-4.0 are shown in Fig. 3C in terms of Frank values. This
measure reflects the false-positive rate, and a value of 0
corresponds to the perfect prediction (for details see Materi-
als and Methods). For epitopes restricted to HLA molecules
that are part of the SA data set (red points), the figure displays
a comparable performance of the MA and NetMHCpan-4.0
methods (median Frank values 0.0021 and 0.0020, p � 0.3,
paired t test), and a significantly worse performance of the SA
method (median Frank 0.0022, p � 0.0025 paired t test).
Further, when evaluated on the small set of epitopes whose
HLA restrictions are only present in the MA data (blue points),
the performance of the MA model is substantially increased
compared with both the SA and NetMHCpan-4.0 models
(average Frank of 0.0091 compared with 0.0186 and 0.0166
for the SA and NetMHCpan models). These results demon-
strate how the NNAlign_MA model also when it comes to
prediction of T-cell epitopes achieved state-of-the-art per-
formance, and further is capable of benefiting from MA data to
expand the allelic coverage outside SA data set to improve
the allelic coverage and predictive power.

Finally, in Fig. 3D, the evaluation was expanded to include
the MHCFlurry (trained without and with EL data) and Mix-
MHCpred methods limiting the benchmark to include only

HLA molecules covered by all methods, thus including only
HLA alleles with previously well-characterized binding motifs
(for details on the benchmark refer to Materials and Methods).
The results of this benchmark confirmed a comparable per-
formance of NNAlign_MA (median Frank 0.0021) to NetMHC-
pan-4.0 (median Frank 0.0021), and a small (but statistically
significant, p � 0.05 paired t test, in all cases except for
MHCFlurry) drop in performance of MHCFlurry (median Frank
0.0031), MHCFlurry_EL (median Frank 0.0033), MixMHCpred
(median Frank 0.0023) and NNAlign_SA (median Frank
0.0024). This result confirms the state-of-the-art performance
of NNAlign_MA.

A Specificity Leave-out Benchmark—All the benchmarks
performed hereto were conducted in situations where the MA
data shared high HLA overlap with the SA data. By way of
example, over 75% (51 of 67) of the alleles in the MA data set
were part of the SA data, and 94% (63 of 67) share a distance
of less than 0.1 to an allele in the SA data as measured from
the similarity between pseudo sequences (for details on this
similarity measure see Materials and Methods), a distance
threshold earlier demonstrated to be associated with high
predictive accuracy of the pan-specific prediction model (55).

As stated above and confirmed by the results in Fig. 3A and
3C, the main power of NNAlign_MA is to effectively extend the
allele-space covered by HLA annotated EL data leading to an
improved predictive power outside the space covered by SA
data. Given the high allelic overlap between the MA and SA
data set, it is hence not surprising that the impact of including
MA data in these benchmarks was limited. Therefore, to fur-
ther test the power of the NNAlign_MA method in a more
extreme setting, we conducted an experiment where parts of
the SA data were left out from the training data leaving part of
the HLA space covered only by MA data. In short, we re-
moved all SA data for HLA molecules belonging to (or similar
to alleles in) the HLA-A2 and HLA-A3 supertypes (49), effec-
tively pruning off whole branches from the tree of HLA spec-
ificities (Fig. 4 left panel) (for details on this pruning refer to
Materials and Methods). This scenario thus simulates a situ-
ation where the MA data describes binding specificities that a
novel compared with any specificity contained in SA training
data. Given this, the binding motifs in the MA data cannot
simply be inferred from a close neighbor in the SA data,
making the challenge of HLA deconvolution non-trivial. This
experiment therefore allows us to investigate how the
NNAlign_MA method can benefit from MA data to accurately
characterize the binding specificity of HLA molecule not char-
acterized by SA data, and from such MA data expand the HLA
coverage of the trained prediction model.

In the benchmark, SA and MA models were trained as
described above on the pruned SA and complete MA data,
and the predictive performance was evaluated on SA EL data
for the alleles on the pruned branch. Note, that this evaluation
was done respecting the data partitioning of the cross valida-
tion to avoid introducing a bias in favor of the MA model. The
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performance was estimated in terms of AUC0.1 resulting in
average values of 0.599 versus 0.852 for the SA and MA
models respectively (for details on the performance values
see supplemental Table S7).

Next, binding motifs for the alleles in the MA data from the
A2 and A3 supertypes were estimated for the MA and SA
models and compared with motifs derived from SA EL data if
available (see Fig. 4 right panel). Here, we observed a high
overlap between the motifs of the MA model motifs obtained
from SA EL data, and a likewise low overlap of the motifs
obtained by the SA model. Note, also here that the agreement
between the MA model and SA EL data motifs was dependent
on the number of ligands assigned to the given allele from the
MA data, i.e. HLA-A*02:01 was assigned 26,038 and HLA-
A*02:05 only 917 ligands from the MA data resulting in a
somewhat lower agreement between the two motifs for HLA-
A*02:05 compared for HLA-A*02:01. Finally, we reinvesti-
gated the performance of the SA and MA models trained on
the pruned SA data set, on the subset of 358 epitopes re-
stricted by the 11 alleles covered by the two A2 and A3
supertypes. This benchmark confirmed the superior perform-

ance of the MA model over the SA model with median Frank
values of 0.0044 compared with 0.0393 (p � 10�15, paired t
test). Note, the performance of the full MA model on this
epitope data set was 0.0032. Taken together these results
demonstrate the power of the NNAlign_MA to accurately
characterize individual binding motifs of molecules from MA
data only.

BoLA-I Benchmark—Having demonstrated how NNAlign_
MA was capable of benefitting from MA EL data to boost
predictive power and expand the allelic coverage also in a
setting where the MA data shared limited allelic overlap to the
SA data, we next turned to the BoLA (Bovine Leukocyte
Antigen) system. Because binding data (both BA and EL) is
more scarce for BoLA compared with HLA, and because the
relative expression of MHC molecules within a given cell line
varies in a more dramatic manner for the bovine system
compared with humans, analyzing and deconvoluting BoLA
MA EL data is more challenging compared with HLA, and
working within this system allowed us to better appreciate
and assess the strength and potential limitations of the
NNAlign_MA framework.

FIG. 4. HLA supertype pruning experiment. The left panel shows a functional tree of HLA specificities estimated using MHCcluster (63).
Branches in light blue and red correspond to the A2 and A3 HLA supertypes. In the HLA supertype tree pruning experiment, SA data for HLA
molecules belonging to both these branches were removed. Right panel shows binding motifs for A2 and A3 supertype alleles from the MA
EL data set predicted by the MA and SA models. Motifs were constructed from the top 1% of 1,000,000 random natural 9mer peptides
predicted by each model. SA EL data show motifs derived from SA EL data (not included in the training). For alleles marked with * no SA EL
data was available and motifs were obtained from NetMHCpan from http://www.cbs.dtu.dk/services/NetMHCpan/logos_ps.php.
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In a previous work, a prediction model for BoLA peptide
interactions, NetBoLApan, was trained using NNAlign on SA
BA (including binding affinity data for 7 BoLA molecules) and
EL MA data from 3 BoLA-I homozygous cell lines, describing
the BoLA haplotypes A10, A14, and A18 (16). Because of the
prior limitation of the NNAlign framework only admitting SA
data for training, in NetBoLApan the EL MA data had to be
first deconvoluted using GibbsCluster and then manually an-
notated to the individual BoLA molecules of each cell line by
visual inspection. Since this earlier publication, we have gen-
erated MA EL data for additional 5 cell lines. Using these data,
we trained and evaluated the NNAlign_MA framework on the
SA data described above combined with EL MA data for a
total of 8 BoLA cell lines (for details on these data sets, refer
to Materials and Methods and supplemental Table S4).

After training, we proceeded to investigate the different
binding motifs captured by the model. We were interested in
the motifs of the BoLA molecules shared between multiple
haplotypes. One such example is BoLA-2*02501, present in
the A14, and A15 haplotypes. Although the motif for this
molecule in our earlier work showed a strong preference for
G/Q and L at P2 and P9 respectively (Fig. 5B), the new
NNAlign framework captured a completely different signal,
with a consistent proline (P) signal on most positions (see Fig.
5A). Also, the number of ligands assigned to BoLA-2*02501
was extremely low for the three cell lines expressing this
molecule (less than 1.5% in all three cases). A prime source of
this result is the very large distance (0.426) of BoLA-2*02501
to the SA training data (for details on this distance measure
refer to section Distance Between Pairs of MHC Molecules
above). In comparison, the maximum distance between any
molecule in the MA data to the SA training data for the HLA
system is less than 0.13. These large pairwise distances in the
BoLA system have two strong impacts on the predictive be-
havior of NNAlign_MA. First and foremost, the model pre-
trained on the SA is expected to have limited power to predict
the binding motif of the BoLA-2*02501 molecule (in the pre-
trained model, BoLA-2*02501 prefers P at P2). Secondly, the
prediction values of the pre-trained model will be lower for this
molecule compared with molecules that share higher similar-
ity to the SA data used for pre-training. To deal with the latter
of these two issues, we devised a rescaling scheme for the
prediction score in the MA annotation step of the NNAlign_MA
framework, and rescaled the raw prediction by comparing it to
a score distribution obtained from a large set of random
natural peptides (for details refer to the Prediction Score
Rescaling section in materials and methods). This score dis-
tribution was recalculated in each training iteration before the
MA annotation. Including this rescaling step, the number of
ligands estimated by cross-validation to be assigned to
BoLA-2*02501 from the three cell lines increased to 13% on
average.

However, investigating the motifs from the ligands pre-
dicted to be associated with BoLA-2*02501 from the A14 MA

data to that from A12/A15 and A15 MA data, an inconsistency
became apparent (see Fig. 5C and 5D). Here, the motif ob-
tained from the A14 MA data showed an additional preference
for G at P2 that was completely absent for the motif obtained
from the A15 and A12/A15 MA data. Re-examining the orig-
inal publication that described the BoLA allele expression
profile in the A14 haplotype (56), suggested an explanation to
the apparent inconsistencies in the predicted BoLA-2*02501
binding motifs. In that paper, A14 was found to express 4 and
not 3 BoLA alleles, as was assumed in our earlier publication
and used in the first NNAlign_MA analysis. The extra allele
expressed is BoLA-6*04001. After including this extra allele in
the A14 haplotype and retraining the model, we obtained the
binding motifs displayed in Fig. 5E, showing a motif for BoLA-
2*02501 consistent with the motif identified in the A12/A15
and A15 MA data (Fig. 5D), and a likewise well-defined motif
for BoLA-6*04001 (Fig. 5F). These results clearly suggest that
the motif earlier reported for BoLA-2*02501 (Fig. 5B) was a
mixture of the motifs of BoLA-2*02501 and BoLA-6*04001.

The benchmark on the BoLA EL data confirmed the power
of the NNAlign_MA method to achieve complete, consistent
and well-defined deconvolution and motif identification of
MHC alleles in the MA EL data sets, also in this challenging
case with limited overlap between the SA and MA data (for
details on the deconvolution refer to supplemental Fig. S4).
One notable example demonstrating this is BoLA-1:00901, a
molecule contained within the A15 haplotype. BoLA-1:00901
shares limited overlap with the SA training data (distance to
the SA data D � 0.137), and the motif predicted by the
NNAlign_MA method after the pre-training on the SA data
share, as expected, high similarity to the motif predicted by
NetBoLApan (Fig. 6). This pre-trained motif is, however, al-
tered substantially after the training of the model on the EL MA
BoLA data, resulting in a strong preference for Histidine (H) at
P� (Post-training motif in Fig. 6). To validate the accuracy of
the motif predicted for BoLA-1:00901, we performed in vitro
binding assays of a combinatorial peptide library to the BoLA-
1:00901 molecule (for details see Materials and Methods). The
in vitro binding motif showed very high similarity to the Post-
training motif predicted by NNAlign_MA (Fig. 6).

Evaluation on BoLA-I Epitopes—Having demonstrated the
power of the proposed model also for the challenging BoLA
system, we next evaluated its predictive power on a set of
experimentally validated BoLA restricted CD8 epitopes. The
result of this evaluation for NNAlign_MA and NetBoLApan
confirmed the high performance of the proposed model (Table
II). Overall, the performance of the NNAlign_MA model is
comparable to that of NetBoLApan. However, one notable
example where the two models showed very different per-
formance is the FVEGEAASH epitope, restricted by BoLA-1:
00901. For this epitope, the Frank performance value of Net-
BoLApan was 0.121-in other words, the true positive is found
12.1% down the list of candidate peptides predicted by Net-
BoLApan. Including the novel BoLA EL data and training the
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FIG. 5. Identification of binding motifs for the BoLA-2*02501 molecule A, Binding preference for this molecule found by the
NNAlign_MA method without score rescaling, B, motif logo found in our previous work (16). The top five repeating binding cores present
in each motif alignment are shown below each logo. Binding motifs for BoLA-2*02501 obtained by NNAlign_MA trained including three BoLA
alleles (BoLA-1*02301, BoLA-4*02401, and BoLA-2*02501) for the A14 MA data from ligands predicted using cross-validation to be restricted
by BoLA-2*02501 from the A14 MA data (C), and from the A15 and A12/15 MA data sets (D). Binding motifs for the BoLA-2*02501 (E) and
BoLA-6*04001 (F) molecules as estimated from ligands in the A14 MA data as predicted by NNAlign_MA using cross-validation when
expanding the list of alleles in A14 to include BoLA-6*04001.
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model using the NNAlign_MA framework, the Frank value for
this epitope improved to 0.000—the epitope is the single top
candidate predicted by NNAlign_MA. This result aligns with
the experimental binding motif analysis of the BoLA-1:00901
molecule, exhibiting a strong preference for H at the C-termi-
nal (Fig. 6). In summary, the results displayed in Table II
demonstrate the high predictive power of the model trained
including the BoLA EL data also for prediction of CD8
epitopes. The average Frank value of NNAlign_MA over the 16
epitopes is 0.0033, meaning that on average 99.67% of the
irrelevant peptide space can be excluded by the prediction
model while still identifying 100% of the epitopes.

Performance values for NetBoLApan and NNAlign_MA are
reported as Frank. In short, we predicted binding for all
overlapping 8–11mer peptides from the source protein of
the epitopes to the known BoLA-I restriction molecule.
Then, the performance for each epitope was reported as the
Frank score. Epitope data for Theilera parva (T. parva) and

Bovine Herpes Virus (BHV) were obtained from three
sources (16, 57, 58). The lowest Frank value for each
epitope is highlighted in bold.

HLA-II Benchmark—To prove that the ability of NNAl-
ign_MA to deal with MA data also extended to MHC II, a
separate study was conducted on a set of MHC II BA and EL
data. Here, we compared the cross-validated performance of
NNAlign_MA trained on SA data alone (SA model) versus
NNAlign_MA trained on the full data set including MA data
(MA model). Both models were evaluated individually on the
SA and MA data sets as described earlier for the HLA-I
benchmark. The conclusions from this evaluation (Fig. 7A)
were similar to those obtained for the HLA-I data: when eval-
uated on SA data, the SA model demonstrated a modest (and
statistically insignificant (p � 0.125, binomial test) perform-
ance gain compared with the MA model. However, when it
comes to the MA data, the MA model significantly outper-
formed the SA model (p � 7.6 * 10�6, binomial test excluding

FIG. 6. Binding motifs for the BoLA-1*00901 molecule estimated by different in silico and in vitro binding methods. Binding motifs for
the three in silico methods were estimated from the top 0.1% of 1,000,000 random natural 9mer peptides with predicted binding by the given
method, for BoLA-1:00901. The in vitro binding motifs were estimated using a position scanning combinatorial peptide library, as described
in Materials and Methods. The three in silico methods are: NetBoLApan (16), trained including EL data for the cell lines A10, A14 and A18;
Pre-training, the NNAlign_MA method pre-trained on SA data; Post-training, the NNAlign_MA method after completing the training including
MA data.

TABLE II
Predictive performance of NNAlign_MA and NetBoLApan on the set of known CD8 epitopes

Allele Epitope Antigen Npep NetBoLApan NNAlign_MA

T. parva BoLA-6*01301 VGYPKVKEEML Tp1 2138 0.0098 0.0070
BoLA-6*04101 EELKKLGML Tp2 662 0.0000 0.0000
BoLA-2*01201 SSHGMGKVGK Tp2 662 0.0060 0.0045
BoLA-T2c FAQSLVCVL Tp2 662 0.0136 0.0151
BoLA-2*01201 QSLVCVLMK Tp2 662 0.0015 0.0015
BoLA-AW10 TGASIQTTL Tp4 2282 0.0000 0.0000
BoLA-1*00902 SKADVIAKY Tp5 586 0.0000 0.0000
BoLA-T7 FISFPISL Tp7 2850 0.0172 0.0112
BoLA-3*00101 CGAELNHFL Tp8 1726 0.0029 0.0035
BoLA-1*02301 AKFPGMKKS Tp9 1302 0.0054 0.0023

BHV BoLA-1:00901 FVEGEAASH ICP4 5350 0.1215 0.0000
BoLA-3:00201 AGPDLQLARL ICP4 5350 0.0000 0.0000
BoLA-3:00201 TTPEILIEL Circ 1006 0.0000 0.0000
BoLA-3:01701 TGARAGYAA ICP4 5350 0.0350 0.0013
BoLA-4:02401 GAFCPEDW ICP22 1214 0.0066 0.0058
BoLA-2:01801 APAPSPGAL Circ 978 0.0020 0.0000
Average 0.0138 0.0033
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ties). In supplemental Fig. S5, we further show the binding
motifs for MA data included in this study demonstrating that
also for class II is the NNAlign_MA framework in most cases
capable of achieving clear and consistent MHC motif decon-
volution. However, as for the class I data does the accuracy of
the motifs identified by NNAlign_MA also here depend on the
number of ligands assigned to a given HLA. For example, is
the motif for HLA-DRB1*13:01 most often derived from a very
small number of ligands resulting in a limited similarity be-
tween the motifs obtained from the different MA data sets.
This observation underlines the critical dependence of
NNAlign_MA on the quality of the input data.

Next, we evaluated the performance of the SA and MA
models together with NetMHCIIpan-3.2 on an independent
data set of CD4� epitopes (for details on this data set refer to
Materials and Methods. The results of this benchmark are
depicted in Fig. 7B in terms of Frank values. Here, the median
Frank values were respectively 0.02403, 0.03155, and
0.03734 for the three methods MA, SA and NetMHCIIpan-3.2.
The difference in Frank between the MA and the two other
methods was in both cases found to be statistically significant
(p � 0.01, binomial test excluding ties). These results strongly
suggest that the NNAlign_MA framework extends its predic-
tive power also into MHC class II.

DISCUSSION

Advances in Mass Spectrometry have dramatically in-
creased the throughput of immunopeptidomics experiments,
with several thousands of peptides directly eluted from their
cognate MHC molecule in a single experiment. This type of
data has greatly changed our knowledge base for character-

izing MHC antigen processing and presentation. In general,
MS eluted ligands originate from multiple MHC molecules,
and MS data sets therefore consist of a mixture of motifs,
each corresponding to the binding specificity of one of the
MHC molecules expressed by the cell line. Although several
tools for the deconvolution of multiple motifs have been pro-
posed, they all tend to underestimate the number of specific-
ities in a sample, especially for haplotypes with overlapping
MHC binding motifs and for alleles with low protein expres-
sion. Even for peptidomes that can be confidently deconvo-
luted, the pairing between motifs and the expressed MHC
alleles is often not trivial, and in many cases must be done
manually by visual inspection - with the potential sources of
error this process entails.

Here, we have described a fully automated approach,
NNAlign_MA, aiming to resolve these challenges. The ap-
proach taken in NNAlign_MA is very simple. The method
applies a pre-training period where only single allele data
(peptide data characterized by having a single MHC associ-
ation) are included. After this pre-training, the multi-allele data
(peptide data characterized by having two or more MHC
associations) are annotated using the current prediction
model to predict binding to all MHC molecules possible for
the peptide, and next defining a single MHC association from
the highest prediction value. In this annotation step, multi-
allele data are thus casted into a single-allele format, becom-
ing manageable by the NNAlign method and therefore en-
abled for training. This multi-allele annotation step is
iteratively performed in each training cycle.

We have applied the NNAlign_MA method to analyze and
interpret three large-scale multi-allele MHC eluted ligand data

FIG. 7. Method benchmarking on HLA class II data. A, Performance of NNAlign_MA trained on SA and MA data evaluated in cross-
validation. Model performance is given in terms of AUC and calculated as described in Fig. 3. Each point refers to an individual SA or MA data
set. B, Epitope Frank scores of NetMHCIIpan-3.2 and NNAlign_MA trained on SA and MA data evaluated on CD4� epitopes from the IEDB
(37). The plot compares the Frank distribution of the MA and SA models and each point represents the Frank of an epitope. For visualization,
Frank values of 0 are displayed with a value of 0.0008.
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sets, and demonstrated its unprecedented performance com-
pared with state-of-the-art methods. First, we applied the
method to analyze multi-allele HLA MS eluted ligand data
from 50 cell lines. Using this data, we demonstrated how the
method in most cases was capable of correctly identifying
distinct binding motifs for each of the HLA molecules ex-
pressed in a given cell line. This result contrasts with findings
using earlier methods such as GibbsCluster and MixMHCp
that in most cases fail to identify one or more motifs. Also,
NNAlign_MA was in close to all cases capable of accurately
associating each identified motif with a specific HLA mole-
cule. These results highlighted the high performance of
NNAlign_MA compared with current state-of-the-art methods
such as MixMHCp/MixMHCpred, where the association of
binding motifs to individual HLA molecules is achieved by
exclusion principles identifying binding motifs shared uniquely
between different cell line data sets.

In terms of predictive performance, the models trained us-
ing the NNAlign_MA method were found to outperform con-
ventional methods (trained on single-allele data), both for
prediction of HLA eluted ligand data and CD8 epitopes. As
expected, this performance gain was most pronounced for
ligands/epitopes restricted by HLA molecules characterized
by limited or no single-allele data. This observation underlines
the single most important power of NNAlign_MA, namely to
effectively expand the part of the HLA space covered by
accurate predictions. By way of example, the SA EL data
included in this study covers 51 HLA molecules. Earlier stud-
ies have demonstrated that pan-specific prediction methods
allow to accurately predict the binding specificity also for HLA
molecules not characterized by binding data, if their distance
to a molecule characterized by binding data is 0.1 or less (for
a definition of this distance refer to Materials and Methods)
(55). Applying this rule to the set of 10,558 functional HLA
class I A, B and C alleles contained within IPD-IMGT/HLA
release 3.35 (59) results in a coverage of 76% (8,051 out of
10,558 molecules). By integrating the MA data, the number of
alleles covered by EL data is expanded to 85, and number of
HLA molecules covered by accurate predictions to 94%
(9,949 of 10,558 molecule).

This power of NNAlign_MA to expand the allelic coverage
was further demonstrated in a specificity leave-out experi-
ment. Here, entire HLA specificity groups were removed from
the single-allele data set, and the NNAlign_MA framework
applied to analyze and characterize multi-allele data including
HLA molecules from these removed specificity groups. The
result of this experiment confirmed the power of NNAlign_MA
to expand the allelic coverage and accurately identifying bind-
ing motifs for individual HLA molecules in multi-allele data,
also in situations where no explicit information about the
binding preferences of the investigated molecules was part of
the single-allele training data.

The HLA system has been studied in great detail over the
past decades, and peptide-MHC binding data are available

for hundreds of alleles. To further explore the predictive power
of NNAlign_MA for MHC systems characterized by limited
data, we turned to the Bovine Leukocyte Antigen (BoLA)
system, and applied NNAlign_MA to analyze MS MHC eluted
ligands data sets from 8 cell lines expressing a total of 8
haplotypes covering 16 distinct BoLA molecules. These BoLA
molecules shared, for most parts, very low similarity to the
molecules included in the single-allele data. Also in this set-
ting, NNAlign_MA was demonstrated to accurately identify
binding motifs in all BoLA data sets, and the model trained on
the BoLA MA data demonstrated a high predictive power for
identification of known BoLA restricted CD8 epitopes, identi-
fying the epitopes within the top 0.3% of the peptides within
the epitope source protein sequence. These results thus fur-
ther demonstrated how NNAlign_MA was capable of correctly
deconvoluting binding motifs present in multi-allele data in
situations with limited shared similarity to the single-allele
data.

As a final validation, the NNAlign_MA framework was ap-
plied to MS EL data from MHC II. Also here, the models were
evaluated in cross-validation and on an independent set of
CD4� epitopes and the results were in agreement with the
results obtained for MHC I. That is, the model trained includ-
ing MA data showed significantly improved performance
compared with models trained on SA data only, when evalu-
ated on both MA EL data and CD4 epitopes.

In a recent work, Bulik-Sullivan et al. (60) have suggested an
alternative approach to deconvolute and train MHC antigen
presentation prediction models using an allele-specific archi-
tecture, thus limiting the predictive coverage of the model to
MHC alleles present in the training data. This contrasts with
the architecture of NNAlign_MA, which enables pan-specific
predictions covering alleles outside the training data (as de-
scribed above). Also, the allele-specific nature of the method
proposed by Bulik-Sullivan et al. limits the power of the tool to
identify motifs and construct prediction models for the alleles
included in the training data. By way of example in the data
presented by Bulik-Sullivan et al., less than 65% of the alleles
in their training set ended up covered by a prediction model.
Future work and independent benchmarking will allow us to
evaluate which of the two approaches is optimal for a given
epitope discovery setting.

We have demonstrated how NNAlign_MA achieves binding
motif deconvolution driven by similarity to MHC molecules
characterized by single-specificity data, and by principles of
co-occurrence and exclusion of MHC molecules between
different poly-specificity MS eluted ligand data set. The
NNAlign_MA failed to construct accurate binding motifs for a
few limited HLA molecules. These cases were all characterize
by very few ligand data, and by alleles only present in single
MA data sets. This observation, combined with the power of
NNAlign_MA to expand the allelic coverage of the resulting
prediction model, points to a direct application to effectively
achieve broad and high accuracy allelic coverage for regions
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of the MHC repertoire with yet uncharacterized binding spec-
ificities. Guided by NNAlign_MA, sets of cell lines with char-
acterized HLA expression should be selected for LC-MS/MS
to maximize allele co-occurrence, allele exclusion and allele
similarities with the comprehensive set of available EL data so
that the NNAlign_MA motif deconvolution for the uncharac-
terized binding specificities can be achieved in an optimal
manner. We believe this approach for generating additional
MA data to be a highly effective manner to further improve
prediction of MHC antigen presentation, moving beyond the
limitations associated with fulfilling this task using artificial
single allele MS setups.

Although peptide-MHC binding is arguably the most selec-
tive step in the MHC antigen presentation pathway, other
properties contribute to determining immunogenicity of T-cell
epitopes. The above-mentioned work by Bulik-Sullivan et al.
(60), attempted to incorporate gene expression levels and
proteasome cleavage preferences in a machine-learning
model, showing promising improvements for the prediction of
cancer neo-epitopes. For the MHC class II system, consistent
signatures of peptide trimming and processing have been
detected, with pioneering attempts to incorporate them in
T-cell epitope prediction models (13, 61). In future develop-
ments of the NNAlign_MA framework, the effect on the pre-
dictive power of incorporating such additional potential cor-
relates of immunogenicity will be investigated.

Overall, we have evaluated the proposed NNAlign_MA
framework on a large and diverse set of data, and demon-
strated how the method in all cases was capable of achieving
a complete deconvolution of binding motifs contained within
poly-specific MS eluted ligand data, and how the complete
deconvolution enabled training prediction models with ex-
panded HLA allelic coverage for accurate identification of
both eluted ligands and T-cell epitopes. In conclusion, we
believe NNAlign_MA offers a universal solution to the chal-
lenge of analyzing large-scale MHC peptidomics data sets
and consequently affords an optimal way of exploiting the
information contained in such data for improving prediction of
MHC binding and antigen presentation. The modeling frame-
work is readily extendable to include peptides with post-
translational modifications (15, 62), and signals from antigen
processing located outside the sequence of the ligands (13).
Given its very high flexibility, we expect NNAlign_MA to serve
as an effective tool to further our understanding of the rules for
MHC antigen presentation, as a guide for improved T-cell
epitope discovery and as an aid for effective development of
T-cell therapeutics.
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