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In Brief
De novo peptide sequencing is a
promising approach for discov-
ering new peptides. However, its
performance is hindered by the
fact that most MS/MS spectra
do not contain complete amino
acid sequence information. Here,
we present a deep learning-
based de novo sequencing
model, SMSNet, together with a
post-processing strategy that
pinpoints misidentified residues
and utilizes user-provided se-
quence database to revise the
identifications. The results show
that many new HLA antigens
and phosphopeptides can be
discovered with our strategy.
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Highlights

• Deep learning-based hybrid de novo sequencing with database search strategy.

• Accurate identifications via ability to revise confidence scores and amino acids.

• Discovery of �10,000 potential new HLA antigens and human phosphopeptides.

• A dataset of �26 million annotated HCD spectra from Q Exactive instruments.
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Peptide Sequencing Framework*□S

Korrawe Karunratanakul‡, Hsin-Yao Tang§, David W. Speicher¶,
Ekapol Chuangsuwanich‡�‡‡, and Sira Sriswasdi�**§§

Typical analyses of mass spectrometry data only identify
amino acid sequences that exist in reference databases.
This restricts the possibility of discovering new peptides
such as those that contain uncharacterized mutations or
originate from unexpected processing of RNAs and pro-
teins. De novo peptide sequencing approaches address
this limitation but often suffer from low accuracy and
require extensive validation by experts. Here, we develop
SMSNet, a deep learning-based de novo peptide se-
quencing framework that achieves >95% amino acid
accuracy while retaining good identification coverage.
Applications of SMSNet on landmark proteomics and
peptidomics studies reveal over 10,000 previously unchar-
acterized HLA antigens and phosphopeptides, and in con-
junction with database-search methods, expand the cov-
erage of peptide identification by almost 30%. The power
to accurately identify new peptides of SMSNet would make
it an invaluable tool for any future proteomics and peptido-
mics studies, including tumor neoantigen discovery, anti-
body sequencing, and proteome characterization of non-
model organisms. Molecular & Cellular Proteomics 18:
2478–2491, 2019. DOI: 10.1074/mcp.TIR119.001656.

Typical analyses of mass spectrometry-based proteomics
and peptidomics data rely on database-search approaches that
provide the best known answers and cannot identify unex-
pected peptides and proteins. In contrast, de novo peptide
sequencing attempts to determine the amino acid sequences
directly from observed mass spectra but at times suffers from
low accuracy. The capability of de novo approaches to identify
new peptides is crucial for studying non-model organisms with
incomplete databases (1), for identifying uncharacterized muta-
tions or polymorphisms, and for discovering peptides derived
from complex processing of RNA and proteins, such as protea-
some-mediated splicing (2–4) and translation of canonically
non-coding regions of the genome (5).

Despite advancements in de novo peptide sequencing (6–
9), use of these methods in routine tandem mass spectrom-
etry (MS/MS) data remains challenging. Recently, DeepNovo
(6, 10) has shown that deep learning can be effectively applied
to the de novo peptide sequencing problem, which resulted in
clear improvements over its predecessors. Nonetheless, there
is still a huge performance gap in the accuracy and number of
identified peptides between de novo approaches and stand-
ard database-search approaches. Key parts of this limitation
lie in the nature of peptide MS/MS spectra which are noisy
and sometimes lack crucial information. When interpreting an
MS/MS spectrum, evidence for certain amino acid sequence
comes in the form of a series of observed ions whose sequen-
tial mass differences match to masses of specific amino acids
within an error threshold. However, most MS/MS spectra do
not contain a complete series of ions that would enable def-
inite deduction of every amino acid position within the original
sequence (11). In these cases, without prior information such
as a database of expected amino acid sequences, it would be
very challenging or even impossible to arrive at the correct
answers.

Here, we introduce SMSNet, a hybrid de novo peptide
sequencing approach that leverages a multi-step Sequence-
Mask-Search strategy to address the issue of missing ions in
MS/MS spectra. SMSNet adopts the encoder-decoder deep
learning architecture that has been widely used in machine
translation (12), basically formulating peptide sequencing as a
spectra-to-peptide language translation problem. At the initial
sequence step, SMSNet determines the full amino acid se-
quence as well as positional confidence scores for each input
MS/MS spectrum. Then, during the mask step, identified
amino acid positions with low confidence scores are con-
verted into mass tags that indicate the total masses of
masked amino acids. Finally, in the search step, all identifi-
cations are compared against an input amino acid sequence
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database in order to recover the exact amino acid sequences
from mass tags. Our approach essentially combines the
strengths of modern, machine learning-based methods (6, 8),
which are able to determine the whole amino acid sequence,
and sequence tag methods (13, 14), which use high-confi-
dence partial sequences as seeds for retrieving full sequences
from databases. The current version of SMSNet can identify
unmodified forms of all twenty amino acids plus oxidized
Methionine and phosphorylated Serine, Threonine, and Tyro-
sine, but the model can be re-trained to recognize additional
post-translational modifications.

Application of SMSNet on large-scaled studies of human
leukocyte antigen (HLA)1 peptidomes and epidermal growth
factor (EGF)-treated glioblastoma’s phosphoproteomes re-
veals over 10,000 previously uncharacterized HLA antigens
and over 4000 previously uncharacterized phosphopeptides.
SMSNet’s identifications are in almost perfect agreement with
results from database searches and exhibit known character-
istics of HLA antigens or could be traced to known phospho-
proteins and phosphosites. Furthermore, more than 6000 of
newly identified HLA antigens have not been reported in the
Immune Epitope Database (15) and should contribute to the
growing interests in neoantigen discovery for immunotherapy.
The power to accurately identify new peptides of SMSNet
would make it an invaluable tool for any future proteomics and
peptidomics studies.

EXPERIMENTAL PROCEDURES

Data Acquisition—A combined mass spectrometry dataset con-
sisting of more than 27 million peptide-spectrum matches (PSM)
was obtained from the Proteomics and Metabolomics Core Facility
at The Wistar Institute (Philadelphia, PA). All MS/MS spectra were
acquired on Q Exactive HF or Q Exactive Plus mass spectrometers
(Thermo Fisher Scientific, Bremen, Germany) and processed using
MaxQuant (16) by scientists at the Core Facility. Peptide level false
discovery rate was set at 1%. Multiple sets of variable modifications
and multiple protein databases were used depending on the goals
and scopes of individual mass spectrometry experiments. A partial
list of species and the corresponding numbers of peptides identi-
fied in this dataset is included in supplemental Table S1. More
information on MaxQuant search settings can be found in Supple-
mentary Methods. Importantly, all metadata have been removed to
safeguard the identity of principal investigators and the details of
their research projects.

From these 27 million PSMs, we constructed three individual train-
ing datasets: (1) WCU-MS-M, which consists of 25,174,942 MS/MS
spectra that correspond to unmodified peptides and peptides con-
taining oxidized Methionine, (2) WCU-MS-P, which consists of
26,943,975 MS/MS spectra that correspond to unmodified peptides,
peptides containing oxidized Methionine, and peptides containing
phosphorylated Serine, Threonine, or Tyrosine, and (3) WCU-MS-
BEST, which consists of 1,239,045 MS/MS spectra that were as-
signed the highest quality scores by MaxQuant (the score column in
evidence output file) for each unique unmodified peptide and charge

state. There is no cutoff on the quality score. In other words, the
WCU-MS-BEST data set contains the highest quality MS/MS spec-
trum for each unmodified peptide at each charge state.

We also acquired three external datasets for evaluating SMSNet’s
performance on peptides from diverse species and on MS/MS data
from multiple laboratories. For direct comparison with DeepNovo,
we downloaded 1,422,793 PSMs from 9 studies of distinct species
(PRIDE accessions PXD005025, PXD004948, PXD004325,
PXD004565, PXD004536, PXD004947, PXD003868, PXD004467, and
PXD004424) that were previously curated by DeepNovo’s authors
(high-resolution spectra only). For evaluating SMSNet’s ability to dis-
cover new peptides, we downloaded 83 raw files consisting of more
than 3.5 million MS/MS spectra from an HLA peptidome study of
mono-allelic cell lines (17) (MassIVE accession MSV000080527). Fi-
nally, for testing SMSNet’s ability to identify phosphorylated peptides,
we downloaded 12 raw files consisting of more than 676,000 MS/MS
spectra from a comprehensive phosphoproteome study of control
and epidermal growth factor-treated glioblastoma cells (18) (PRIDE
accession PXD009227). All of these datasets were acquired on Q
Exactive mass spectrometers with high-resolution MS/MS and HCD
fragmentation method. High-quality MS/MS spectra of synthetic pep-
tides were downloaded from the ProteomeTools HCD Spectral Li-
brary (19). It should be noted that this data set was acquired on
Orbitrap Fusion Lumos mass spectrometer with high-resolution
MS/MS and HCD fragmentation method.

Data Preprocessing—MS/MS spectra in the WCU-MS datasets
were extracted from raw files and centroided using Thermo Fisher
Scientific’s MSFileReader version 3.0. MS/MS spectra in the HLA
peptidome and phosphoproteome datasets were extracted from raw
files into mgf format using ProteoWizard version 3.0.11133 (20) with
the following filter parameters: Peak Picking � Vendor for MS1 and
MS2, Zero Samples � Remove for MS2, MS Level � 2–2, and the
default Title Maker. De-noising and de-isotoping of MS/MS spectra
were not performed. Essentially, SMSNet model allows each MS/MS
peak to be of any charge state during the analysis.

For inputting into SMSNet, MS/MS spectra were truncated at 5000
Da and the observed m/z were discretized at 0.1 Da and 0.01 Da
resolutions to produce vector representations with length of 50,000
and 500,000, respectively. The lower resolution vector provides an
overview of the spectrum for the encoder whereas the higher resolu-
tion vector is used by the candidate ion stack. The details of each
component are described in the next section. MS/MS peak intensities
were also normalized so that they sum to 1.0.

Model Architecture—Inspired by DeepNovo, we developed our
deep learning model focusing on integrating domain knowledge to
create a specialized model for de novo peptide sequencing, which we
called SMSNet. Both SMSNet and DeepNovo utilize the encoder-
decoder architecture, a specialized module to extract only the rele-
vant part of MS/MS spectra for consideration at each step (the
ion-CNN in DeepNovo and the Candidate Ion Stack in SMSNet), and
a knapsack approach for checking whether certain mass values can
be explained by some amino acid combinations. However, SMSNet
diverges from DeepNovo in two aspects: first, the shift layer in SMS-
Net’s encoder module (Fig. 1) helps the model learn long-range
relationships between MS/MS peaks whose mass difference matches
to some amino acid, and second, SMSNet accepts the possibility that
some peptide identifications cannot be fully resolved and thus in-
cludes extensive post-processing.

Overall, by viewing a peptide sequence as a list of amino acids, we
can view the peptide sequencing problem as a problem of identifying
amino acid one by one until termination. Let X be an input mass
spectrum data, the model can be written as:

1 The abbreviations used are: HLA, human leukocyte antigen; EGF,
epidermal growth factor; PSM, peptide-spectrum matches.
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P�Peptide � X� � �
i�1

N

P�yi�y0, y1,· · ·yi�1; X�

where yi’s is the identified amino acid at position i, y0 is a special start
token, and N is the peptide length. Our model consists of three main
components: an encoder, a decoder, and an ion stack. In general, the
encoder tries to capture an overview of the input mass spectrum and
uses it to initialize the decoder. Then, conditioning on the prefix, the
ion stack focuses on the relevant part of the spectrum and uses it to
compute features for identifying the next amino acid. Finally, the
decoder calculates probabilities for the next amino acid using its
previous output and features from the ion stack. The model architec-
ture is illustrated in Fig. 1. Every layer in the networks used rectified
linear unit (ReLU) as the activation function unless specified
otherwise.

Encoder—The encoder was designed to encode an overview of the
input spectrum vector into a feature vector of size 1024 which will be
used to initialize the hidden state and cell state of the decoder. To
integrate the knowledge from the peptide fragmentation process into
the model, we restructured the input to make it more likely for the
encoder to capture the relationship between positions that could be
used to determine amino acid presences. First, the input vector of
length 50,000 was duplicated A times, where A is the number of
possible amino acids, into a tensor of shape (50000, A). A is 21 when
training on datasets with 20 amino acids plus oxidized Methionines
and 24 when training on datasets with 20 amino acids plus oxidized
Methionines and phosphorylated Serines, Threonines, and Tyrosines.
Each copy of the original input vector is shifted to the left according
to each amino acid mass, and then padded with zeros. For example,
with the resolution of 0.1 Da, the vector representing Alanine is shifted
to the left by floor(71.037 � 10) � 710. The first 710 values in the
vector are discarded, and 710 zeros are padded to the right. Sec-
ondly, we created another vector of values from 0 to 49,999 to
indicate the index of each positions on the spectrum, and then
normalized it to have zero mean and unit variance. The index vector
was then concatenated to the input to provide the information regard-
ing the position, resulting in a tensor of shape (50000, A � 1).

The restructured input was then passed to the encoder neural
networks consisting of three 1 � 1 convolution layers, followed by
three fully connected layers. Each of the 1 � 1 convolution layers
applies the same transformation to every input position separately
and computes features along the second dimension of the input
tensor. This forces the encoder to learn about the structure at each
location. The three kernels have shape (1, 32), (1, 64), and (1, 2) that
would produce a tensor of shape (50000, 32), (50000, 64), and (50000,
2) respectively after each layer. After that, the feature vector was
flattened and passed through three fully connected layers with di-
mension 512, 512, and 1024, finally resulting in a vector of size 1024.
For regularization, a dropout layer with dropout rate of 0.4 was used
between the first and second fully connected layer.

Decoder—The decoder is a type of recurrent neural network that
receives the feature vector from the encoder and uses it to generate
a sequence of amino acids by outputting amino acids one by one.
This is similar to the technique used in training neural networks for
image captioning (21) or machine translation (12, 22, 23) where the
input information (an image or a sentence in one language) is encoded
into a vector representation, then passed to a decoder to generate the
intended output (a caption or a sentence in a different language).
Normally, the decoder for image captioning takes only the previously
outputted word as input. In SMSNet, the decoder also takes as input
a feature vector calculated by the candidate ion stack based on
previous outputs for each step. This additional input was designed to
provide the model more context about the next amino acid.

In the decoder, we used two layers of long short-term memory
(LSTM) of size 512 with layer normalization (24) on top of each layer
and a residual connection (25) around the second layer. The same
encoded vector of length 1,024 was split into two halves and used as
initial values for the hidden state and memory in both layers. At each
step, the LSTMs take as input a vector of length 544, a concatenated
vector between a feature vector of length 512 from the candidate ion
stack and an embedding vector of size 32 of the previous amino acid.
Then, the output from LSTMs is passed through a fully connected
layer with a softmax activation function to produce probabilities for
each amino acid. The shape of the last output depends on the number
of possible amino acids (20, 21, or 24 depending on the number of
modified amino acids considered).

The decoder always outputs one of the predefined modified or
unmodified amino acids. Our current implementation does not allow
gap in the output sequence at this stage but instead allows conver-
sion of portions of output sequence into gaps in the post-processing
stage described below.

Candidate Ion Stack—Given the total mass of the current prefix
sequence, the candidate ion stack retrieves relevant m/z sections of
the mass spectrum to compute a feature vector for the decoder. For
each possible amino acid, 9 ion types were considered: a, b, b(2�),
b-H2O, b-NH3, y, y(2�), y-H2O, and y-NH3. Suppose there are 21
different amino acids, for each of the 9 ions, we sliced a small window
of size 0.2 Da (corresponding to 20 elements at 0.01 resolution) from
the original input vector of size 500,000, resulting in 189 20-element
vectors. These vectors were stacked together to form an input of
shape (189, 20). It should be noted that because of high computa-
tional cost for checking whether a neutral loss is expected based on
amino acid composition of an ion, our current implementation allows
both NH3 and H2O neutral losses on all b-ions and y-ions. Addition-
ally, the current implementation does not identify nor make use of
charge state information for each MS/MS peak. Peak intensities were
not explicitly included in the scoring as we expect the model to learn
to distinguish signals from noises in a purely data-driven manner.

The candidate ion stack consists of two 1 � 1 convolution layers
followed by two fully-connected layers. The idea is to force the model
to first learn the peak patterns of each ion, then learn the relationship
between ions based on the calculated features. The two 1 � 1
convolution layers have 32 and 64 filters respectively, whereas both
fully connected layers have 512 dimensions. The output feature ten-
sor was then used as input for the decoder.

Inference—During inference, we used beam search with beam size
of 20 to explore and find the most likely sequence of amino acids. At
each step, all remaining hypotheses are ranked by the following
formulas (26):

score�Y,X� � log�P�Y�X��/length�penality�Y�

length�penality�Y� � �5 � �Y��/6

where P(Y � X) is the product of the previously identified amino acid
probabilities. The length penalty term is used to compensate for the
fact that longer sequences usually have lower score values than the
shorter ones. Additionally, during each step, we filtered out hypoth-
eses where the difference between current prefix mass and the pre-
cursor mass did not match any possible amino acid combinations
using the knapsack search algorithm.

The beam search decoding would continue until a special ending
token is produced or a maximum length of 50 is reached for every
remaining beam. After the decoding process ended, the amino acid
sequence with the best score according to the provided formulas was
selected as the final output. If the correct peptide contains residues
with unexpected modifications, the beam search process has the
capability to replace those sections of the peptide sequence with
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isobaric combinations of predefined residues, if ones exist, and pro-
ceed to identify the correct amino acid sequences in the remaining
sections of the peptide. The incorrect isobaric sections should have
low confidence scores and subsequently be masked in the post-
processing stage described below. It should be noted that if the
appropriate sequence database and amino acid modifications are
considered, these peptides can be correctly identified during the
post-processing stage.

Training, Validation, and Test Sets Partitioning—To ensure that
training, validation, and testing sets do not share a common peptide,
we first partitioned unique peptides into three sets, then constructed
training, validation, and testing sets from mass spectrum data asso-
ciated with these peptides. Accounting for the fact that some pep-
tides appear in the datasets much more often than the others, we kept
only one random data entry per peptide in validation and testing sets.
The validation set was used for choosing the model architecture,
determining the number of training steps, as well as setting all hyper-
parameters. For WCU-MS-M and WCU-MS-P, we used validation
and test sets of size 50,000. During training, peptides longer than 30
amino acids were ignored. Details of data set sizes can be found in
supplemental Table S2.

Model Training—We modeled the peptide sequencing task as a
series of amino acid identifications where each identification is a
multi-class classification problem. We chose the focal loss (27), which
is a dynamically scaled cross-entropy loss, as a loss function for our
model. For binary classification tasks, the focal loss is defined as:

Focal loss � ���1 � pt�
� log�pt�

where pt � p for the class with y � 1 and pt � 1- p otherwise, p is the
model’s estimated probability for the class with label y � 1, and � and
� are hyper-parameters for balancing the importance of positive/
negative examples and easy/hard examples, respectively. We set � to
0.25 and � to 1.0 as it performed best on the validation set. The focal
loss is chosen instead of normal cross-entropy loss because we
suspected that there is an imbalance between easy examples with
complete mass spectrum evidence and hard examples with missing
peaks.

To extend the focal loss to multi-class classification, we can view
a multi-class classification problem as many binary classification
problems. Concretely, we can pass the output of the last layer of the
model through multiple sigmoid functions to obtain binary probabili-
ties of being each class, then use the provided formula to calculate
the focal loss. The loss function is thus the summation of the focal
loss of each class:

Multiclass Focal Loss � �
k�1

N

���1 � pt
�k��� log�pt

�k��

where N is the number of possible amino acid classes, pt
(k) is pt of

class k. The values of � and � are the same for every class. For
inference, the sigmoid function was substituted with a softmax func-
tion to compute probability scores which sum to 1.

We initialized all parameters by drawing from a uniform distribution
between �0.1 and 0.1, and trained the model using stochastic gra-
dient descent with learning rate decay. An initial learning rate of 0.01
was used until two-thirds of the maximum training step. Afterward,
the learning rate was halved every one-twelfth of the maximum train-
ing steps. The gradient of the loss was normalized so that its L2-norm
was less than or equal to 5. With a batch size of 32, the models were
trained for 4,000,000 steps on WCU-MS-M and WCU-MS-P datasets,
which took roughly one month on Nvidia GeForce GTX 1080 Ti.

Ablation Study—To evaluate the impact of each component to the
performance of SMSNet, we performed ablation studies by making

some modifications to the model, and then measuring the perform-
ance degradation caused by those modifications. The following mod-
ifications were tested:

● Not using layer normalization after LSTM layers in the decoder
● Using normal cross-entropy loss instead of focal loss
● Not considering neutral losses, b-H2O, b-NH3, y-H2O, and y-NH3

ions, in the candidate ion stack.
● Removing the shift mechanism in the encoder. In this variation,

we removed the 1 � 1 convolution layers and fed the low-resolution
input vector of size 50,000 directly to the fully-connected layer.

● Removing the encoder entirely and initializing the decoder with a
vector of zeros

Every modified model was trained for 20 epochs from new initial-
ization on the WCU-MS-BEST dataset. This is the same number of
epochs that was used to train the main model until convergence.

Data Preprocessing for the Rescorer—Unlike the main model, the
rescorer model operates solely on the level of amino acids. For each
hypothesized amino acid, it predicts the confidence level of the
identification. The following features were used: peptide length, num-
bers of amino acids with probability more than 0.7, 0.8, and 0.9, a
geometric mean of amino acid probabilities in the peptide, the posi-
tion of the amino acid normalized by the peptide length, probabilities
of amino acids at index t - 1 to t � 2 for current index t. We chose
these features on the basis that they are not taken into consideration
by the main model during the decoding process, and they gave the
lowest loss on the validation set. The label for each data point is 1 if
the given de novo amino acid matches the true label and 0 otherwise.

As the rescorer is designed to evaluate amino acids labels identi-
fied by the main model, we could not use the original training set that
the main model was trained on. Therefore, the original validation set
was split into rescorer training and validation sets with ratio of a
90:10. The test set were still the same for both tasks. It should be
noted that because the rescorer module is trained at amino acid level,
each peptide-spectrum match in the validation set gives rise to mul-
tiple data points for training this module. In fact, there are more than
700,000 data points for training the rescorer module in most cases
(supplemental Table S3).

Rescorer—We designed the post-processing model to be a shal-
low neural network consisting of two fully connected layers of size 64.
To train the model, we used binary cross-entropy loss and the Adam
optimizer with default parameters of �1 � 0.9 and �2 � 0.999. The
rescoring validation set was used for early stopping.

Database Search for Resolving Ambiguous Identifications—To de-
termine the exact amino acid sequences for identifications with mass
tags or ambiguous Leucine/Isoleucine positions, we search for pos-
sible matches within a given protein sequence database. For analyz-
ing HLA peptidome and human phosphoproteome dataset, the Uni-
Prot (28) reference human proteome was used (downloaded April
2019). For evaluating whether each of SMSNet’s identifications could
be matched to a unique possibility, the UniProt reference proteome
for either human, mouse (Mus musculus), budding yeast (Saccharo-
myces cerevisiae), Escherichia coli strain K12, or a combination of all
four species was used (downloaded April 2019). All databases include
isoforms and predicted proteins. An amino acid sequence within the
database is considered a match to an ambiguous identification if (1)
all non-Isoleucine positions in both sequences match, (2) all Isoleu-
cines in the identification match to either Leucine or Isoleucine in the
database sequence, and (3) all mass tags in the identification match
to amino acid substrings in the database sequence whose weights
differ less than 20 ppm from the corresponding mass tags. Only
amino acid modifications recognized by the corresponding SMSNet
model were considered during the search. For example, when eval-
uating the SMSNet model that can identify phosphorylated Serine,
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every Serine in the database is allowed to be in either the unmodified
form or the phosphorylated form.

Performance Comparison with DeepNovo—To compare the per-
formance of our model with DeepNovo, we trained both DeepNovo
and SMSNet on three data sets, one from nine species used in
Deep-Novo, one from our new data set, and one from ProteomeTools
spectral library. Both models used the same training, validation, and
test sets. For DeepNovo, we used the code provided together with
their publication.

The first data set is constructed by combining all high-resolution
data sets in DeepNovo publication. As we only focused on amino acid
with Methionine-oxidation, any peptide that contains deamidated
Asparagine or Glutamine in the original data set was discarded. The
remaining data consist of 1,422,793 mass spectra from 256,200
unique peptides. Because of its lower number of unique peptides,
instead of using 50,000 unique peptides as validation and testing sets
as in other experiments, we sampled only 20,000 unique peptides
from the data set and used all of their associated spectra, resulting in
validation and test sets of size 111,365 and 112,995, respectively.

The second data set, called WCU-MS-BEST, is a subset of WCU-
MS-M data set that contained only peptide with no amino acid
modification. We selected only the spectra with the best quality score
according to MaxQuant for each unique peptide and charge state to
form an easy but diverse dataset. In total, there are 1,239,045 spectra
of 869,206 unique peptides. The validation and test set each contains
50,000 unique peptide spectra (two spectra were later removed from
the test set because of mismatches between their precursor masses
and the labels, resulting in the test set of size 49,998). For peptides
with many charge states, we randomly chose one charge state and
discarded the rest.

The third data set corresponds to the high-quality spectral library of
202,648 unique synthetic peptides. Because of its low number of
unique peptides and spectra, we sampled only 20,000 unique pep-
tides each to create the validation and test sets. The summary of all
data sets can be found in supplemental Table S2.

The amino acid vocabulary was set according to the data set for
both models, with 21 possible amino acids for the first data set, and
20 for the second data set, and 21 for the third data set. Apart from
the amino acid vocabulary, our model settings were the same as in
other experiments. For DeepNovo, we set the spectrum resolution to
0.02 Da and kept other default parameters. At inference time, both
models used beam search with beam size 20 to find the most prob-
able peptide for each input.

Definition of Amino Acid’s Evidence—Given a mass spectrum, we
determined that an amino acid has supporting evidence if it follows
our defined criteria. First, for an amino acid with mass Maa and prefix
mass Mprefix, there must be ions with mass Mprefix and Mprefix � Maa

present in the spectrum. Secondly, a fragmented ion is said to be
present in the spectrum if there is at least a peak with any intensity
within 0.1 Da of its theoretical a, b, b-NH3, b-H2O, b(2�), y, y-NH3,
y-H2O, or y(2�) ions. The first and last amino acids in a peptide only
require one ion mass presence.

Evaluation of Newly Identified HLA Antigens—Because the HLA
peptidome data sets considered here (17) were derived from cell
cultures that contain fetal bovine serum and immunoprecipitated
using protein G, several MS/MS spectra may correspond to these
contaminants. We searched SMSNet’s identifications against a com-
bined database of UniProt reference human proteome (downloaded
April 2019), UniProt reference bovine proteome (downloaded August
2019), and Streptococcus Immunoglobulin G-binding protein G (Uni-
Prot accessions: P19909 and P06654). Isoforms and predicted pro-
teins are included. This revealed that the overwhelming majority
(57,394 out of 58,565) of identified peptides are from human, and only
1080 and 91 peptides are from bovine and G protein, respectively. For

the comparison to Spectrum Mill and all subsequent analyses, only
peptides mapped to human proteins are considered.

As most HLA antigens are non-tryptic whereas most peptides in
SMSNet’s training data sets are tryptic, there may be some system-
atic errors in SMSNet’s identified peptides. One possibility is that
SMSNet mis-assigned b-ions as y-ions and vice versa. If this is the
case, among identifications where SMSNet disagrees with prior
study, we expected peptides identified by prior study to be more like
the reversed sequences of SMSNet’s identifications than to SMS-
Net’s identifications. However, the Levenshtein distances between
peptides identified by prior study and SMSNet’s identifications are
significantly lower than the distances between peptides identified by
prior study and the reversed sequences of SMSNet’s identifications
(mean distances are 5.27 and 8.23, respectively, Wilcoxon sign test p
value � 2.64e-31). Overall, SMSNet appears to be able to identify
non-tryptic peptides.

To check the novelty of newly identified antigens, we downloaded
the latest list of known HLA antigens from the Immune Epitope
Database (IEDB) (downloaded April 2019) and searched whether pep-
tide-HLA pairs that were identified by SMSNet have been previously
reported. It should be noted that negative entries and entries with
ambiguous HLA allele names in the IEDB database were excluded
from consideration. To verify whether newly identified antigens pos-
sess the expected properties, NetMHCPan version 4.0 (29) was used
to predict the binding affinity (in percentile rank) and the 9-residue
core binding motif for each identified peptide-HLA pair. The profiles of
allele-specific core binding motifs were visualized using WebLogo
(30).

Determination of the Origins of Identified HLA Antigens—We iter-
atively determined the origins of HLA antigens identified by SMSNet
by (1) searching all identified amino acid sequences against a refer-
ence human proteome from UniProt (isoforms and predicted proteins
included, downloaded April 2019), (2) searching the amino acid se-
quences without any hit in the first step against hypothetical open
reading frames extracted from published RNA sequencing data of the
cell lines used (17) and from reference human non-coding RNAs
downloaded from RefSeq (GRCh38) (31), and (3) searching the amino
acid sequences without any hit in the two prior steps against hypo-
thetical spliced peptides generated by joining two peptides from the
same protein. RNA sequencing data were aligned to the GRCh38
human reference genome using HISAT2 (32). Sequence variants were
called using GATK version 4 (33). Reference non-coding RNAs were
extracted from GRCh38’s reference transcriptome based on the
“ncRNA,” “non-coding RNA,” and “long non-coding RNA” tags. Hy-
pothetical spliced peptides were generated by joining two peptides,
each with length at least 3, from non-overlapping regions of the same
protein.

Evaluation of Newly Identified Phosphopeptides—We compared
SMSNet’s identification for each MS/MS spectrum in the dataset to
previously reported result (18) by considering only the actual amino
acid sequences without any modification. This is because many pre-
dicted peptides contain multiple Serine, Threonine, and Tyrosine
residues located near each other and so it is often difficult to pinpoint
the exact location of phosphorylation(s). To evaluate the contribution
of SMSNet to human phosphoproteome study, we appended newly
identified amino acid sequences to a reference human proteome
downloaded from UniProt (isoforms and predicted proteins included,
downloaded April 2019) and reanalyzed raw mass spectrometry data
using MaxQuant. MaxQuant analysis settings were set as described
in the prior study (18). Namely, variable modifications include Oxida-
tion (M), Acetyl (protein N-term), and Phosphorylation (STY). Enzyme
specificity was set as Trypsin/P with 2 maximum missed cleavages.
Fixed modification includes only Carbamidomethyl (C). Precursor
mass tolerances was set at 4.5 ppm for the main search and MS/MS
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mass tolerance was set at 20 ppm. Other settings were left as default.
The Match Between Runs and Second Peptide search functionalities
were disabled as we want to focus on whether newly identified amino
acid sequences would be selected by MaxQuant as the main identifi-
cation for previously unannotated MS/MS spectra. False discovery
rates were set at 1% for both PSM and protein levels. Minimum peptide
length was set at 7. Newly identified phosphopeptides from the re-
analysis that were not reported in prior study were searched against the
PhosphoSitePlus database (34) (downloaded April 2019). Annotated
spectra for newly identified phosphopeptides were produced using PDV
version 1.5.3 (35) with MS/MS mass tolerance of 20 ppm and are
available on Figshare (DOI: 10.6084/m9.figshare.9784814).

RESULTS

SMSNet Model Training—We acquired a large collection of
�26 million anonymized MS/MS spectra from the Proteomics
and Metabolomics Facility at The Wistar Institute for develop-
ing SMSNet. This dataset consists of about 1 million unique
peptides from diverse species (supplemental Table S1). Four
versions of SMSNet were developed based on distinct train-
ing datasets for evaluation on external data sets and compar-
ison with DeepNovo. To compare with DeepNovo, we trained
both SMSNet and DeepNovo on a high-resolution MS/MS
data set curated by DeepNovo’s authors (1,422,793 spectra)
and on a collection of 1,239,045 highest quality spectra each
representing a peptide in our dataset (named WCU-MS-
BEST, see Experimental Procedures). For further evaluations,
SMSNet was trained on a set of 25,174,942 spectra of un-
modified peptides and peptides containing oxidized methio-
nine (named WCU-MS-M) and on spectra in WCU-MS-M
dataset plus additional 1,769,033 spectra of peptides con-

taining phosphorylated serine, threonine, or tyrosine (named
WCU-MS-P).

SMSNet employs the encoder-decoder architecture which
has been widely used in machine translation to identify amino
acid sequence from input MS/MS spectra sequentially from
the N terminus to the C terminus of the peptide (Fig. 1). The
encoder embeds the input MS/MS spectrum into a fixed-
length vector representation through multiple 1D-convolu-
tional and feed forward layers. The decoder, consisting of
long short-term memory (LSTM) layers, predicts the likelihood
distribution of the next amino acid based on the current state
of the model and evidence from the corresponding m/z re-
gions in the input spectrum (the candidate ion windows in Fig.
1). Once the entire amino acid sequence has been identified,
SMSNet adjusts the confidence score for each position in the
identification through feed forward layers (the rescorer in Fig.
1). These steps comprise the sequence phase of the Se-
quence-Mask-Search framework. Then, during the mask
phase, identified amino acid positions whose confidence
scores lie below a user-specified cutoff were replaced by
mass tags that reflect their combined masses. Here, we set
the confidence score cutoff so that the false discovery rate at
amino acid level is less than 5%. Finally, during the search
phase, SMSNet attempts to recover the exact amino acid
sequences from masked positions by searching all identifica-
tions against a reference amino acid sequence database.

Performance Evaluation On Held-out MS/MS Data—We
evaluated SMSNet’s performance against DeepNovo by train-
ing and testing both tools on the same high-resolution MS/MS
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FIG. 1. Overview of the Sequence-Mask-Search framework. SMSNet encodes the input MS/MS spectrum and passes the information
to the decoder module which outputs amino acids sequentially. During the sequencing process, relevant m/z regions from the input
MS/MS spectrum are extracted and fed to the decoder. Post-processing steps involve the adjustment of positional confidence scores, the
replacement of low confidence positions by mass tags, and the recovery of exact amino acid sequences in masked segments through
database search.
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spectra from three separate datasets (see Experimental Pro-
cedures). In each test, MS/MS spectra were split so that the
train and test sets contain different peptides (supplemental
Table S2). At each threshold on the positional confidence
score, an identified amino acid whose score is above the
threshold is considered correct only if its mass and prefix
mass (the combined mass of earlier amino acid positions in
the sequence) differs less than 0.0001 Da and 0.03 Da from
the ground truth, respectively. Identified amino acids whose
scores are lower than the threshold are considered in the
calculation of recall but excluded from the calculation of ac-
curacy. At the peptide level, an identified peptide is consid-
ered correct only if all of its amino acid positions whose
scores are higher than the threshold are correct and that it
contains at least 4 identified amino acid positions. Peptides
with less than 4 identified amino acid positions after applying
the score threshold are removed from consideration. To pro-
vide fair comparisons, because DeepNovo does not perform
post-processing, the performance of SMSNet with and with-
out re-scoring (the outputs prior to and after the Rescorer
module in Fig. 1) are considered together here.

SMSNet consistently outperforms DeepNovo, achieving
21.65% higher amino acid recall than DeepNovo at 5% amino
acid false discovery rates on the dataset curated by DeepNo-
vo’s authors (Fig. 2A). If all identified amino acids are consid-
ered, SMSNet achieves 71.24% amino acid recall and
47.11% peptide recall whereas DeepNovo achieves 65.57%
and 44.41% recall, respectively. These differences resulted
from the fact that SMSNet’s output positional confidence
scores are slightly better at distinguishing between correct
and incorrect positions than DeepNovo’s do (Fig. 2B). Similar
difference in performance was observed when both tools
were evaluated on our WCU-MS-BEST dataset (Fig. 2C).
Here, if all identified amino acids are considered, SMSNet
achieves 44.73% amino acid recall and 64.45% peptide recall
whereas DeepNovo achieves 37.57% and 57.02% recall, re-
spectively. Interestingly, the distribution of confidence scores
for the correctly identified positions produced by DeepNovo
became bi-modal with a new mode at around 0.6 in this latter
test (Fig. 2D) whereas SMSNet’s outputs remain unaffected.
We suspect that DeepNovo’s model may have overfit to some
coincidental patterns in this dataset. Similar results could be
observed when DeepNovo and SMSNet were evaluated on
high-quality MS/MS spectra of synthetic peptides acquired
from ProteomeTools database (Fig. 2E–2F).

We also evaluated the contribution of each key component
of SMSNet’s architecture by removing individual component
from the model, retraining the model, and determining the
degradation in performance (Table I). This reveals that the
normalization of recurrent neural network layers (24) and the
use of focal loss (27), which conceptually makes the model
gives higher weights to data points that are difficult to fit,
contribute up to 1.32% to the recall at peptide level and
0.66% at amino acid level. In comparison, the inclusion of

neutral loss ions to the model, which is one of the standard
considerations in any peptide sequencing approaches, con-
tribute 1.72% to the recall at peptide level and 1.45% at the
amino acid level. Interestingly, the shift layer alone (Fig. 1) is
almost as important as the whole encoder architecture to the
performance (4.50% versus 4.67% contribution to the recall
at peptide level and 2.55% versus 2.64% at amino acid level).

Impact of the Sequence-Mask-Search Framework—By de-
sign, the underlying architecture of SMSNet, which sequen-
tially output the likelihood of the next amino acid based on the
model’s current state, assumes that the identifications for
prior positions are correct and is unable to adjust the confi-
dence scores of prior positions even if later identifications
drastically change the context of the sequence. Thus, we
trained a neural network module to adjust the resulting posi-
tional confidence score based on the information of the whole
output amino acid sequence (the rescorer in Fig. 1, see Ex-
perimental Procedures). The objective of this rescorer is to
maximize the separation in confidence score between cor-
rectly identified and incorrectly identified amino acid posi-
tions. This post-processing step improves the recalls at amino
acid level by 9.53% and 9.08% when SMSNet was evaluated
on the WCU-MS-M and WCU-MS-P datasets, respectively
(Fig. 3A–3B and supplemental Fig. S1).

We examined the impact of masking identified positions
with low confidence scores on the performance of SMSNet
and whether the correct amino acid for each masked position
could be recovered by searching against a reference amino
acid sequence database. The key concern here is that in order
to achieve high accuracy, so many amino acid positions may
be masked that the resulting identified peptides are no longer
informative. Here, we trained SMSNet and the rescorer using
the WCU-MS-M dataset, identified the adjusted confidence
score threshold that corresponds to 5% amino acid false
discovery rate on this dataset, and then determined the ac-
curacy and recall achieved by SMSNet at the same threshold
on the dataset curated by DeepNovo’s authors. This revealed
that SMSNet with the rescore module performs consistently
on MS/MS spectra from diverse species and laboratories at
both amino acid and peptide levels (Fig. 3C–3D). Furthermore,
the amount of masked amino acid positions at 5% false
discovery rate threshold closely matches the actual number of
amino acid positions whose corresponding ions are missing
from the corresponding MS/MS spectra (Fig. 3E). In other
words, SMSNet did not apply too many masks more than the
amount required to cover all missing data.

Although the masking step effectively improves the accu-
racy of SMSNet without too much sacrifice in recall, most
uses of proteomics and peptidomics data require fully iden-
tified amino acid sequences where mass tags and the Leu-
cine/Isoleucine ambiguity have been resolved. Therefore, we
explored whether the correct amino acids that correspond to
masked positions could be recovered if an appropriate amino
acid sequence database is provided. There are three possible

Uncovering New Peptides with Sequence-Mask-Search Framework

2484 Molecular & Cellular Proteomics 18.12

http://www.mcponline.org/cgi/content/full/TIR119.001656/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001656/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001656/DC1


A B

C D

E F

DeepNovo
SMSNet - without rescoring
SMSNet - with rescoring

Amino acid recall (%)

A
m

in
o 

ac
id

 a
cc

ur
ac

y 
(%

)

Amino acid recall (%)

Amino acid recall (%)

A
m

in
o 

ac
id

 a
cc

ur
ac

y 
(%

)
A

m
in

o 
ac

id
 a

cc
ur

ac
y 

(%
)

DeepNovo
SMSNet - without rescoring
SMSNet - with rescoring

DeepNovo
SMSNet - without rescoring
SMSNet - with rescoring

ProteomeTools

WCU-MS-BEST

DeepNovo
25

20

15

10

5

0
0.00 1.000.25 0.50 0.75

D
en

si
ty

Positional confidence score

25

20

15

10

5

0
0.00 1.000.25 0.50 0.75

Positional confidence score

D
en

si
ty

25

20

15

10

5

0
0.00 1.000.25 0.50 0.75

D
en

si
ty

Positional confidence score

25

20

15

10

5

0
0.00 1.000.25 0.50 0.75

D
en

si
ty

Positional confidence score

25

20

15

10

5

0
0.00 1.000.25 0.50 0.75

D
en

si
ty

Positional confidence score

25

20

15

10

5

0
0.00 1.000.25 0.50 0.75

D
en

si
ty

Positional confidence score

25

20

15

10

5

0
0.00 1.000.25 0.50 0.75

D
en

si
ty

Positional confidence score

25

20

15

10

5

0
0.00 1.000.25 0.50 0.75

D
en

si
ty

Positional confidence score

25

20

15

10

5

0
0.00 1.000.25 0.50 0.75

Positional confidence score

D
en

si
ty

DeepNovo SMSNet
w/o rescoring

SMSNet
with rescoring

DeepNovo SMSNet
w/o rescoring

SMSNet
with rescoring

DeepNovo SMSNet
w/o rescoring

SMSNet
with rescoring

Correct ion
Incorrect ion

Correct ion
Incorrect ion

Correct ion
Incorrect ion

FIG. 2. SMSNet outperforms state-of-the-art de novo peptide sequencing tool. To provide fair comparisons, SMSNet and DeepNovo
were retrained using the same high-resolution MS/MS spectra from the indicated datasets. Furthermore, as DeepNovo does not include
post-processing, the performance of SMSNet with and without re-scoring are shown together here. A, Amino acid-level performances for
SMSNet and DeepNovo when evaluated on the dataset curated by DeepNovo’s authors. The corresponding recalls at 5% amino acid false
discovery rate are indicated. B, Histograms showing the distributions of positional confidence scores produced by SMSNet and DeepNovo
when evaluated on the dataset curated by DeepNovo’s authors. C–D, Similar plots showing performances of SMSNet and DeepNovo when
evaluated on our WCU-MS-BEST dataset. E–F, Similar plots showing performances of SMSNet and DeepNovo when evaluated on high-quality
MS/MS spectra of synthetic peptides acquired from ProteomeTools database.

TABLE I
Ablation analysis of SMSNet’s main components. Percentages are shown

Components Peptide recall (%) Difference Amino acid recall (%) Difference

Final architecture 44.73 – 64.45 –
Without layer normalization 44.10 �0.63 63.89 �0.56
Cross-entropy loss instead of focal loss 43.41 �1.32 63.79 �0.66
Not considering neutral loss ions 43.01 �1.72 63.00 �1.45
Without shift layer in encoder 40.23 �4.50 61.90 �2.55
Without the entrie encoder 40.06 �4.67 61.81 �2.64

Uncovering New Peptides with Sequence-Mask-Search Framework

Molecular & Cellular Proteomics 18.12 2485



A B

40

SMSNet (after rescoring)
SMSNet (before rescoring)

0 10 20 30 50 60 70
Amino acid recall (%)

50

60

70

80

90

100
95

A
m

in
o 

ac
id

 a
cc

ur
ac

y 
(%

)

D
en

si
ty

Positional confidence score
0.250.0 0.5 0.75 1.0 0.250.0 0.5 0.75 1.0

Positional confidence score

Correct ion
Incorrect ion

0

5

10

15

Before rescoring After rescoring20

0

5

10

15

20

0

20

40

60

80

100

A
m

in
o 

ac
id

 a
cc

ur
ac

y 
or

 re
ca

ll 
(%

)

Data set

Accuracy Recall

0

20

40

60

80

100

Pe
pt

id
e 

ac
cu

ra
cy

 o
r r

ec
al

l (
%

)

Bacteria
Bean

Mouse

Human
Yeast

Honey bee

To
mato

Arch
aea

Inverti
brate

WCU-M
S-M

Bacteria
Bean

Mouse

Human
Yeast

Honey bee

To
mato

Arch
aea

Inverti
brate

WCU-M
S-M

Data set

Accuracy Recall
C D

E F

Predicted amino acid
Evidence in MS/MS

0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 p

ep
tid

e 
le

ng
th

205 10 15 25 30
Peptide length

Combined
database

E. coli

S. cerevisiae

M. musculus

H. sapiens

0 20 40 60 80 100
Fraction of predicted peptides (%)

Unique hit Multi-hit No hit

Total: 12,540 peptides

Total: 11,037 peptides

Total: 2,453 peptides

Total: 1,249 peptides

Total: 20,362 peptides
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outcomes here. If the identified peptide is incorrect or contain
unexpected amino acid sequence, then there would be no
match in the database. On the other hand, if the identified
peptide is correct, but too many masks were introduced, then
there may be multiple matches with distinct sequences in the
database. Finally, if the identified peptide is correct and con-
tains a small number of masked positions, a unique sequence
hit could be recovered from the database. Our results show
that the correct amino acid sequences could be unambigu-
ously recovered for more than 80% of SMSNet’s identifica-
tions, even when amino acid sequences from multiple species
were used at once (Fig. 3F).

SMSNet Discovers More Than 10,000 New HLA Anti-
gens—To evaluate the utility of SMSNet on real-life mass
spectrometry dataset that contains MS/MS spectra of unex-
pected peptides, we analyzed a large-scale HLA class I pep-

tidome dataset of mono-allelic human B lymphoblastoid cell
lines (17) which consists of more than 35 million MS/MS
spectra. The SMSNet model trained on WCU-MS-M dataset
was used here because most peptides should not be post-
translationally modified. At 5% amino acid level false discov-
ery rate, SMSNet made full-sequence identifications for
95,046 MS/MS spectra, 43,193 of which were not annotated
by the prior study. SMSNet’s identifications also matched
prior study on 51,153 out of 51,853 MS/MS spectra (Fig. 4A,
98.65% agreement rate). Even though SMSNet was trained
primarily using tryptic peptides, it was able to produce highly
concordant identifications compared with database search
approach and there was no systematic error, such as reversal
of sequence because of misidentification of b-ions as y-ions
and vice versa, among 213 mismatches between SMSNet
and Spectrum Mill (see Experimental Procedures). SMSNet

A B

D E

18

4000

3000

2000

1000

6 8 10 12 14 16
Amino acid sequence length

N
um

be
r o

f p
ep

tid
e

Assembled + reference
transcriptome
Proteasome-mediated
peptide splicing

Reference proteome

Unknown

6,844 peptides

3 peptides

145 peptides

Y

A
I
V
L
S
T

A

E
D

E

D

LLY
2 4 6 81 3 5 7 9

3
2
1
0

4

HLA-A*01:01 motif residue

F

A

M
I
V
L
T
S

S

M

A
E
D

L

V

S

L Y
Y

HLA-A*01:01 motif residue

3
2
1
0

4

2 4 6 81 3 5 7 9

Fr
ac

tio
n 

of
 li

ga
nd

0.4
0.3
0.2

0 2 4 6

0.1

HLA binding affinity (%rank)

0.5

0 2 4 6
HLA binding affinity (%rank)

0.5

0.3

0.1

0.4

0.2

SMSNet only Common

Bi
ts

0.6

F
Y

HLA-A*01:01 motif residue

3
2
1
0

4

2 4 6 81 3 5 7 9

0 2 4 6
HLA binding affinity (%rank)

0.5

0.3

0.1

0.4

0.2

Spectrum Mill only 

0.6

SMSNet’s output Peptide-HLA pairs

1.0

0.6

0.2

0.8

0.4

0.0

D
en

si
ty

Fully resolved
n = 95,046

Ambiguous
n = 67,915

SMSNet only
n = 10,702

SM only
n = 9,468

Overlap
n = 15,959

New sequence
n = 6,055

Previously reported
n = 1,379

New allele
n = 2,034

Compare with IEDB

Stronger binding Stronger binding

A
I
V
L
S
T

A
E
D

LL

F
Y

Unidentified
n = 44,679

Compare with SM

1.0

0.6

0.2

0.8

0.4

0.0

D
en

si
ty

C

Stronger binding

42 peptides

SMSNet only
n = 43,193

Match with SM
n = 51,153

SMSNet only
n = 44,060

Mismatch with SM
n = 700

SM only
n = 68,534

FIG. 4. SMSNet uncovers many new HLA antigens. A, Stacked bar plots showing the numbers of MS/MS spectra identified by SMSNet
and the overlaps between SMSNet and prior study (17), which utilized Spectrum Mill (SM) software (Agilent Technologies, Inc., Santa Clara,
CA) for MS/MS data interpretation. B, Stacked bar plots showing the overlap between peptide-HLA pairs identified by SMSNet and prior study
or the Immune Epitope Database (IEDB). “New sequence” indicates that the identified peptide contains amino acid sequence that has not been
reported as antigen for any specific HLA allele in IEDB. “New allele” indicates that the identified sequence has been reported to bind to HLA
alleles other than the ones considered here. There are 7034 distinct peptides among 10,702 newly identified peptide-HLA pairs. C, The length
distribution of 7034 peptides newly identified by SMSNet. D, Histograms and sequence logos comparing the predicted binding affinities and
core sequence motifs between peptide-HLA pairs identified by only SMSNet (left), by both SMSNet and prior study (middle), or by prior study
only (right). Binding affinities and core motifs were predicted using NetMHCPan. Vertical red lines designate the 0.5% rank threshold typically
used to select strong binders. E, Pie chart showing the origins of 7,034 peptides newly identified by SMSNet. Peptide sources were determined
by searching amino acid sequences against human proteome, transcriptome, and a database of theoretically possible spliced peptides (see
Experimental Procedures).
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uncovered 10,702 unreported peptide-HLA pairs, 8089 of
which are new antigens according to the Immune Epitope
Database (Fig. 4B). Newly identified antigens are of the right
lengths (8–12 amino acids, Fig. 4C), predicted to bind strongly
to their corresponding HLA molecules, and contain the ex-
pected core binding motifs (Fig. 4D and supplemental Fig.
S2). Altogether, these evidences strongly suggest that SMS-
Net’s identifications are true HLA class I antigens.

Additionally, as recent reports indicated that a fraction of
HLA antigens may originate from proteasome-mediated pep-
tide splicing (2–4) and non-coding regions of the genome (5),
we explored whether SMSNet discovered any new antigen
whose amino acid sequence does not match known human
proteins in the UniProt database. Among 7034 peptides newly
identified by SMSNet, 6844 peptides (97.30%) were mapped
to known proteins and only a handful were mapped to non-
coding RNAs or explained as possible products of protea-
some-mediated peptide splicing (Fig. 4E). The high proportion
of matches to known proteins here is expected because the
majority of SMSNet’s identifications contain mass tags and
ambiguous Leucine/Isoleucine residues that must be resolved
through searching against reference database. If we also in-
clude 68,159 MS/MS spectra with partial sequence identifi-
cations (Ambiguous in Fig. 4A) in this analysis, then the num-
ber of peptides that could be mapped to non-coding RNAs or
explained as possible products of proteasome-mediated
splicing rose to 592 and 1154, respectively. Compared to the
number of peptides mapped to known protein, the small
number of potential spliced peptides identified here is in
concordance with recent analysis of HLA peptidomes which
attributed around 2–6% of identified antigens as spliced pep-
tides (4). Overall, we estimated that as many as 43.60% of all
unique identifications made by SMSNet still remain unre-
solved. All of SMSNet’s fully resolved and partial identifica-
tions are available as Supplementary Excel Table.

SMSNet Improves the Coverage of Phosphoproteome—
Lastly, we evaluated the power of SMSNet to identify post-
translationally modified peptides by analyzing a phosphopro-
teome dataset of control and epidermal growth factor (EGF)-
treated glioblastoma cells (18) that was previously analyzed
with MaxQuant. Phosphorylation was selected because of its
importance in biology and because our WCU-MS-P dataset
contains a sizeable number of phosphorylated peptides
(1,769,033 MS/MS spectra) for the model to learn. At 5%
amino acid level false discovery rate, SMSNet made full-
sequence identifications for 181,144 MS/MS spectra, 133,958
of which are in agreement with previous study (Fig. 5A, see
Experimental Procedures). Further, SMSNet assigned the
same phosphorylation sites as previous study in 78,609 out of
81,440 sites (96.52%) on 68,344 phosphopeptides which
contain multiple Serine, Threonine, and Tyrosine residues.

Next, we appended SMSNet’s identifications to a human
protein database and re-searched the MS/MS spectra using
MaxQuant. This results in a net gain of 30,096 identified

MS/MS spectra and 3,289 identified phosphopeptides over
previous study’s result (Fig. 5B). Among 3333 new phospho-
peptides identified by SMSNet, 1166 were confirmed by Max-
Quant whereas only 217 resulted in conflicting identifications
(Fig. 5C). 644 phosphopeptides were shorter than 7 amino
acids and out of scope of the MaxQuant analysis. Overall, by
supplementing MaxQuant’s search with both phosphopep-
tide and non-phosphopeptide sequences from SMSNet, we
were able to gain 532 peptides with new amino acid se-
quences and 2001 semi-tryptic and non-tryptic peptides that
would not be discovered in typical full-tryptic search (Fig. 5C).
Furthermore, the majority of newly identified phosphopep-
tides could be observed in multiple replicate samples (Fig. 5D)
and mapped to known phosphosites and phosphoproteins in
the PhosphoSitePlus database (Fig. 5E). All SMSNet’s fully-
resolved and partial identifications are available as Supple-
mentary Excel Table.

DISCUSSION

SMSNet incorporates several recent computer vision and
machine translation techniques (24–27) as well as key con-
siderations from earlier de novo peptide sequencing ap-
proaches (6, 14), all of which contribute to its strong perform-
ance. The structure of the recurrent neural network in the
decoder module was improved from DeepNovo’s design so
that more of the relevant information are exposed to the
network. To better capture the notion that some amino acid
positions are easy to determine from evidences in MS/MS
spectra whereas some could be extremely difficult to do so,
we implemented the focal loss (27). Coincidentally, this fea-
ture has also been introduced in a later version of DeepNovo
(10). Interestingly, one of the most impactful features in SMS-
Net turns out to be the shift layer (Fig. 1), which was imple-
mented to help the encoder module detect pairs of MS/MS
peaks whose mass differences match to some amino acids.
When we removed this layer, the performance of SMSNet
dropped by almost as much as removing the whole encoder
module. This indicates that incorporating domain-specific
knowledge is highly critical for handling complex data gener-
ated in the field of biotechnology.

Generalizability is always a major concern in any machine
learning study. We have shown that even though SMSNet was
trained primarily on MS/MS data of tryptic peptides (�95% of
peptides in the WCU-MS dataset end with a Lysine or an
Arginine) that were acquired in a single laboratory, the model
consistently performs well on MS/MS data from diverse spe-
cies and laboratories (Fig. 3C–3D) and is able to identify a
large number of HLA antigens that end with non-Lysine/non-
Arginine residues. Therefore, SMSNet should be able to iden-
tify any peptide regardless of the protease enzyme used.
Additionally, although our evaluations of SMSNet mainly in-
volved MS/MS spectra from Q Exactive mass spectrometers
with higher-energy collisional dissociation (HCD), it is possible
to adapt the framework of SMSNet for data from different
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mass spectrometers and peptide fragmentation methods.
Part of SMSNet’s capability to adapt to new MS/MS dataset
can be seen through its high performance on MS/MS spectra
acquired on Orbitrap Fusion Lumos (19) (Fig. 2E).

One limitation of SMSNet is that the effectiveness of the
final search step, which attempts to recover unique amino
acid possibilities for the masked positions, depends on the
quality and completeness of the database provided. Our re-
sult shows that multiple sequence databases could be given
to SMSNet at once without apparent deterioration in perform-

ance (the combined database in Fig. 3F). Hence, one can
potentially incorporate known DNA polymorphisms or dis-
ease-associated mutations into the protein database to im-
prove the identification coverage of SMSNet. Another possi-
bility is to include all amino acid arrangements that fit the
mass tags and perform a scoring-based database search to
select the best matches. In this regard, a recent advancement
in database search using deep learning-assisted prediction of
fragment ion intensity (36) would help improve SMSNet’s
search step.

A B

D

Known phosphosite
New phosphosite on known 
phosphoprotein
New phosphopeptide and site

E

40k–10k 10k 20k 30k

+38,487–8,391

+4,341–1,052

4k–1k 1k 2k 3k

Changes in identified MS/MS

Changes in identified phosphopeptides

0

0

GainLoss

3,024 phosphopeptides

536 phosphopeptides

781 phosphopeptides

SMSNet only
n = 3,333

MQ only
n = 4,187

Overlap
n = 12,346

Before re-search

Uniprot DB

SMSNet peptides

MaxQuant

MaxQuant
Uniprot DB

Gain/Loss
in  IDs

Tryptic peptide 
Semi-tryptic peptide
Non-tryptic peptide
New amino acid sequence

7,096 peptides

532 peptides 528 peptides

1,483 peptides

Co
nt

ro
l

EG
F-

tr
ea

te
d

4,341 newly identified phosphopeptides
Unidentified1 MS/MS2 MS/MS3+ MS/MS

# 
re

pl
ic

at
es

3

12

6
9

(r
ep

 1
-6

)
(r

ep
 1

-6
)

F
SMSNet’s output

1.0

0.6

0.2

0.8

0.4

0.0

D
en

si
ty

Fully resolved
n = 181,144

Ambiguous
n = 81,874

SMSNet only
n = 45,430

Match with MQ
n = 133,958

SMSNet only
n = 58,201

Mismatch with MQ
n = 1,756

Unidentified
n = 75,047

MQ only
n = 98,720

Compare with MQ

C
1.0

0.6

0.2

0.8

0.4

0.0

D
en

si
ty

After re-search

Confirmed
n = 1,166

Identified as 
different sequence

n = 217

No identification
produced by MQ

n = 1,306

Peptide length <7
n = 644

FIG. 5. SMSNet improves the coverage of human phosphoproteome. A, Stacked bar plots showing the numbers of MS/MS spectra
identified by SMSNet and the overlaps between SMSNet and prior study (18). B, The gains and losses in number of identified MS/MS spectra
and phosphopeptides after adding SMSNet’s identifications to the human proteome database and re-analyzing with MaxQuant (see
Experimental Procedures). C, Stacked bar plots showing the numbers of phosphopeptides identified by MaxQuant and SMSNet and the
numbers of new phosphopeptides that could be confirmed by re-analyzing SMSNet’s identifications with MaxQuant. Peptides shorter than 7
amino acids were not considered during the search. “No identification produced by MQ” indicates that none of the MS/MS spectra of a
phosphopeptide were identified as peptides by MaxQuant. “Identified as different sequence” indicates that none of the MS/MS spectra of a
phosphopeptide were confirmed by MaxQuant as the same identification produced by SMSNet and at least one MS/MS spectrum was
identified as a different peptide. D, Pie chart showing the composition of all newly identified peptides gained by adding SMSNet’s
identifications to MaxQuant’s search. This includes phosphopeptide and non-phosphopeptide identifications from all MS/MS spectra that were
not previously identified by prior study. It should be noted that because MaxQuant searches were performed with full-tryptic enzyme specificity,
all identifications of semi-tryptic peptides, non-tryptic peptides, and peptides with new amino acid sequences were possible because of
sequences supplied by SMSNet. E, Heatmap and line plot showing the reproducibility of 4,341 newly identified phosphopeptides after
re-analysis using MaxQuant across 6 control and 6 epidermal growth factor (EGF)-treated replicates. Each row in the heatmap corresponds
to one mass spectrometry experiment. F, Pie chart showing the overlap between newly identified phosphopeptides and known phosphopro-
teins and phosphosites in the PhosphoSitePlus database. An identified phosphopeptide was counted as “Known phosphosites” only if all
identified phosphorylation sites on that peptide are reported in the database. Identified phosphopeptides that contain unreported phosphosites
were grouped based on whether they could be mapped to known phosphoproteins in the database.
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Most importantly, we have demonstrated the power of
SMSNet to uncover new peptides in large-scale proteomics
and peptidomics datasets. High level of agreement between
SMSNet and MaxQuant (Fig. 5A), together with the findings
that SMSNet’s identifications exhibit expected characteristics
of HLA antigens (Fig. 4B–4C) and contain known phospho-
sites (Fig. 5E), indicates that newly identified peptides are true
positives. Our results also show that SMSNet can improve the
coverage of peptide identification by almost 30% (Fig. 4A)
and identify new amino acid sequences that better explain
observed MS/MS spectra than those in the database do
(supplemental Fig. S3). Although many of SMSNet’s new
identifications are semi-tryptic and non-tryptic forms of
known peptides (Fig. 5C) which could theoretically be discov-
ered through database search, SMSNet can process 50,000
MS/MS spectra in 1.14 h whereas partial or no enzyme spec-
ificity search would take much longer and may result in many
false positives. Altogether, SMSNet should become an invalu-
able tool for future proteomics and peptidomics studies, such
as neoantigen discovery, antibody sequencing, and charac-
terization of non-model organisms, as well as for mining novel
peptides and detecting potential contaminants in well-studied
samples.
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23. Cho, K., Van Merriënboer. Bart Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014) Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv
preprint arXiv,1406.1078

24. Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016) Layer normalization. arXiv
preprint arXiv,1607.06450

25. He, K., Zhang, X., Ren, S., and Sun, J. (2016) Deep residual learning for
image recognition. Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770–778

26. Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W.,
Krikun, M., Cao, Y., Gao, Q., Macherey, K., and others . (2016) Google’s
neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv,1609.08144

27. Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollá, r, Piotr . (2017) Focal
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