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In Brief
Immunodominant influenza A
virus (IAV) antigens mutate rap-
idly, allowing the virus to escape
host antibodies. The question
remains how to design vaccines
that recognize conserved but
subdominant IAV antigens for
broader immune protection. Gly-
cosylation is a mechanism
whereby IAV evades the innate
and adaptive immune systems.
However, its influence on immu-
nodominance remains poorly
understood. Although mass
spectrometry methods for identi-
fying glycopeptides are matur-
ing, quantifying glycosylation
variation among sets of IAV mu-
tants remains a technical
challenge.
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• Glycosylation is not currently considered in flu vaccine design.

• Glycosylation influences on immunodominance are not well understood.

• Identification of site-specific glycosylation using mass spectrometry has matured.

• New methods are needed to quantify site-specific glycosylation for vaccine design.
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Why Glycosylation Matters in Building a Better
Flu Vaccine*
Deborah Chang and Joseph Zaia‡

Low vaccine efficacy against seasonal influenza A virus
(IAV) stems from the ability of the virus to evade existing
immunity while maintaining fitness. Although most potent
neutralizing antibodies bind antigenic sites on the globu-
lar head domain of the IAV envelope glycoprotein hemag-
glutinin (HA), the error-prone IAV polymerase enables
rapid evolution of key antigenic sites, resulting in immune
escape. Significantly, the appearance of new N-glycosy-
lation consensus sequences (sequons, NXT/NXS, rarely
NXC) on the HA globular domain occurs among the more
prevalent mutations as an IAV strain undergoes anti-
genic drift. The appearance of new glycosylation shields
underlying amino acid residues from antibody contact,
tunes receptor specificity, and balances receptor avidity
with virion escape, all of which help maintain viral prop-
agation through seasonal mutations. The World Health
Organization selects seasonal vaccine strains based on
information from surveillance, laboratory, and clinical
observations. Although the genetic sequences are known,
mature glycosylated structures of circulating strains are
not defined. In this review, we summarize mass spectro-
metric methods for quantifying site-specific glycosylation
in IAV strains and compare the evolution of IAV glycosy-
lation to that of human immunodeficiency virus. We argue
that the determination of site-specific glycosylation of IAV
glycoproteins would enable development of vaccines that
take advantage of glycosylation-dependent mechanisms
whereby virus glycoproteins are processed by antigen
presenting cells. Molecular & Cellular Proteomics 18:
2348–2358, 2019. DOI: 10.1074/mcp.R119.001491.

Viruses replicate by causing infected cells to produce viri-
ons that infect other cells. As has been observed by Fodor et
al., virion composition determines virus stability, transmissi-
bility, tropism, and immunogenicity (1). In the case of influenza
A virus (IAV)1, viral hijacking of the host cell machinery results
in error-prone replication. Some host cell proteins are taken
up to construct the new virions, which are pleiomorphic in
structure. Viral protein mutations caused by error-prone rep-
lication result in antigenic drift, which allows the virus to evade
neutralization by immune system molecules. Hence, generat-
ing new vaccines annually is a critical effort in public health.

There are 18 known IAV hemagglutinin (HA), divided into
two groups, and 11 known neuraminidase (NA) subtypes (2).
Among the possible HA and NA combinations, only H1N1,
H2N2 and H3N2 have caused pandemics. Today H1N1 and
H3N2 circulate seasonally in humans. As shown in Fig. 1, IAV
is a negative-sense, single-stranded RNA virus with 8 gene
segments that code for at least 17 proteins (3). The trimeric
HA glycoprotein binds sialylated glycans on the surface of
host cells and facilitates subsequent endosomal membrane
fusion. The NA glycoprotein cleaves sialic acids, allowing
newly formed virions to escape the cell surface. The host
adaptive immune system responds to IAV infection by gener-
ating antibodies that neutralize HA binding to host receptors.

The Need for a Better Flu Vaccine—Vaccines are injected
intramuscularly or subcutaneously and must travel to the
lymph nodes in order to elicit an antibody response. By con-
trast, a natural IAV infection occurs in human airways. The
acute host infection immune reaction cascade includes cyto-
kine release, influx of white blood cells, and cellular activation,
resulting in clinical symptoms (4). This initial innate immune
response limits the initial viral load and activates the adaptive
immune system. The IAV infection induces systemic and local
antibody responses (known as humoral immunity) and cyto-
toxic T cell responses (known as cellular immunity). In lymph
nodes, naive B cells, through their surface antibodies, bind
cognate antigens, become activated, and transition from IgM
to IgG production. They then differentiate into memory B cells
as they increase their immunoglobin specificity. Immunoglo-
bins of the IgA class transported across the upper airway
mucosal epithelium neutralize and clear infection. The lower
airway is protected primarily by IgG.

The World Health Organization recommends the composi-
tions of influenza vaccines based on surveillance, and labo-
ratory and clinical observations (5). Despite this considerable
effort, the effectiveness of the seasonal influenza vaccine
remains unacceptably low, ranging from 10–60% (6). Thus
far, neither the widespread accessibility of deep gene se-
quencing for efficient characterization of circulating strains,
nor the availability of crystal coordinates for HA has led to
improvement of vaccine efficacy. To address concern about
future pandemics, the National Institute of Allergy and In-
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fectious Diseases (NIAID) has released a strategic plan to
address this problem (7).

Licensed vaccine classes include inactivated virus, live at-
tenuated virus, and recombinant HAs (3). The majority of
licensed inactivated or live attenuated vaccines are expressed
in embryonated chicken eggs. Egg-based vaccine production
has been practiced for 70 years; however, the many draw-
backs of this system have spurred the exploration of new
expression systems. It has been recognized for many years
that IAV adapts to the cell in which it is propagated (8). Thus,
IAV passaged in embryonated chicken eggs undergoes se-
lection of strains adapted to growth in chicken cells. HA from

such egg-adapted IAV display amino acid mutations near the
receptor-binding site (9–12) and typically stimulate lower an-
tibody titers. Mammalian tissue culture-grown IAV have
shown superior vaccine protection in animal models com-
pared with corresponding egg adapted IAV (13), and there
now exists one inactivated vaccine expressed in mammalian
cells, Flucelvax, approved by the FDA. Investigators have also
used insect and plant cells for expression of HA (13–15).
FluBlok is a licensed recombinant vaccine containing HA
grown in insect cells from baculovirus vectors. Unlike egg-
based expression, these alternative expression systems do
not depend on a large supply of pathogen-free eggs for
vaccine production, making them economical choices as well
as ways to avoid the lowered immunogenicity that arises from
egg adaptation.

The Number of HA Sequons Increases As IAV Circulates
Seasonally in Humans—Glycosylation in the HA stalk region,
at or near residues 15, 26, 289, 483, and 542, occurs in all HA
forms (see (16) and references therein). These glycans may
interact with glycan binding chaperones in the endoplasmic
reticulum and appear to play roles in HA trimer assembly (17,
18). In contrast to seasonal strains, pandemic IAV, newly
introduced to the human population, evades host antibody
and innate immune defenses, and penetrates into the deep
lung to infect bronchiolar, alveolar epithelial cells, and alveolar
macrophages (19). To circulate in humans, these IAV must
evade antibody recognition (20, 21). Thus, amino acid resi-
dues of the HA globular domain mutate rapidly under evolu-
tionary pressure to avoid antibody recognition (22). Newly
emerging pandemic IAV typically begin with a low degree of
glycosylation of the HA globular domains, but the number of
N-glycosylation consensus sites increases as the strains cir-
culate seasonally. The amino acids shielded by N-glycosyla-
tion appear not to mutate at a high rate, relative to those that
are exposed to antibody binding (20, 23).

The number of sequons on the HA globular head domain
increases with the amount of time the IAV sub-type circulates
seasonally in humans (21, 24–26). Genetic studies show ev-
olutionary changes in the number of N-glycosylation sequons
in the IAV protein sequences (16, 24). The number of N-gly-
cosylation sequons for human-circulating H3N2 and H1N1
has increased over time and the pattern has changed (27). All
of these findings suggest that amino acid mutations and
increased glycosylation affect how HA interacts with immu-
nity. Indeed, Bajic et al. showed that engineered hyperglyco-
sylated HA restricted the resulting antibody repertoire to a
subdominant epitope and that such antibodies protected
against viral challenge (28). However, little is known about the
types and structures of HA glycans and how these influence
antibody responses.

Glycosylation Impacts IAV Antigenicity, Immunogenicity,
and Immunodominance—As pointed out by Yewdell et al.,
among several respiratory RNA viruses with similar mutation
rates and antigenic escape frequencies, only IAV undergoes

1 The abbreviations used are: IAV, influenza A virus; HA, hemag-
glutinin; NA, neuraminidase; NIAID, National Institute of Allergy and
Infectious Diseases; MHC, major histocompatibility complex.

FIG. 1. Influenza A viral cycle (127). Virion binding to airway cell
receptors can be neutralized by antibody binding to the hemagglutinin
(HA) head group or by innate immune system collectin binding to high
mannose N-glycans on the HA head group. If neutralization does not
occur, virion HA molecules bind airway cell sialic acid receptors and
the virion is endocytosed. Low endosome pH causes virion mem-
brane fusion and uncoating of ribonucleoprotein. Viral proteins are
transported into the nucleus by host cell machinery. The negative
sense RNA viral genome is converted to positive sense RNA that
serves as a template for viral RNA production. Viral mRNA is exported
from the nucleus and translated by cytoplasmic ribosomes. Viral
proteins are imported to the nucleus where viral ribonucleoprotein
complex assembly occurs. Viral ribonucleoproteins are transported to
the plasma membrane. The HA and NA proteins pass through the
secretory pathway where they are glycosylated and assembled into
trimers. Viral progeny are assembled at the plasma membrane. En-
veloped virions bud from the cell surface with the aid of NA cleavage
of cell surface sialic acid residues.
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genetic drift (29). Although the understanding of the reasons
for IAV drift remains incomplete, the fact that immune re-
sponses in humans are focused on antigenic sites on the HA
protein means that single point mutations have large impacts
on viral escape.

Antigenicity refers to the capacity of a chemical structure
(antigen) to bind antibodies or T cell receptors. Immunogenic-
ity, by contrast, refers to the capacity of the antigen to induce
an adaptive immune response. The immune system responds
to complex antigens in a hierarchical manner, a concept
known as immunodominance (30). Thus, immunodominant
antigens may suppress immune responses to subdominant
antigens. Broadly protective antibody responses appear to
target subdominant conserved epitopes that have low varia-
bility due to the need to maintain viral function and display
restricted gene usage (28).

Immune responses to viral antigens are governed by factors
including antigen structure (concentration, conformation, and
location), B cell immunodominance, and T-cell immunodomi-
nance. Aspects of T cell immunodominance have been re-
viewed (31). Briefly, because CD8� T cells help clear viral
infections, researchers have tried to develop vaccines that
exploit these responses. CD8� T cells recognize viral pep-
tides processed by cellular proteasomes and presented by
the major histocompatibility complex (MHC) class I mole-
cules. Most T cell responses are generated against immu-
nodominant viral peptides, which make up only a small
fraction of the thousands of processed viral peptides. T Cell
populations that recognize glycopeptides presented by
MHC-I and MHC-II have been identified (32, 33), indicating
the significance of glycosylation on acquired immune re-
sponses (34).

Immunodominance reflects many factors, including antigen
presentation and T cell activation (35). Immunodominant an-
tigens are recognized by large T cell populations, relative to
those of subdominant antigens. This hierarchy is a reproduc-
ible pattern among individuals. Immunodominance largely re-
sults from the fact that only a small percentage of peptides
bind MHC molecules with affinity enough for stable presen-
tation to activate CD8� T cells, a pattern that shows high
evolutionary conservation (36). At present, the apparent in-
ability of memory CD8� T cells to protect against IAV has
driven renewed focus on vaccines that elicit an antibody
response (29).

Among IAV proteins, the order of antibody immunodomi-
nance is approximately HA � NA   nucleoprotein (36). It is
therefore of interest that the number of HA (and NA) sequons
increases during seasonal circulation in humans. In order to
evaluate the influence of IAV glycosylation on binding of strain
antibodies, researchers currently rely on genetic sequences to
predict sequons. It is known that the number of sequons on
the HA globular head domain increases with the amount of
time the IAV sub-type circulates seasonally in humans (21,
24–26). Genetic information has been used to model HA

glycosylation by inserting the generic N-glycosylation chito-
biose core structure onto HA crystal structure coordinates
(26, 37–39). However, information about the size and compo-
sition of glycans at individual sites and their impact on anti-
genic integrity is available for only a few strains.

The current understanding of the adaptive immune system
derives from peptide antigens (40). Synthetic glycopeptides
containing oligosaccharides generated reduced CD4� T cell
responses to IAV strains with glycosylation at the correspond-
ing position (41). Avci et al. have described a mechanism
whereby B cells take up glycoconjugates through a carbohy-
drate-recognizing B cell receptor and process the antigens in
the endosome. The peptide portion of the resulting glycan-
peptide is presented to carbohydrate-recognizing T cells, the
stimulation of which results in a carbohydrate-specific adapt-
ive immune response (40). There are only a few examples of
natural glycopeptides inducing T cell responses (42). None-
theless, the influence of site-specific glycosylation structure
on recognition of IAV antigens by antigen presenting cells for
subsequent T cell stimulation have not been defined clearly.

Comparing How Glycosylation Is Used to Evade the Human
Immune System, in IAV and Human Immunodeficiency Virus 1
(HIV-1)—Although IAV and HIV-1 differ in their replication
mechanisms, both exhibit sufficient antigenic variation in their
surface proteins over time in the human population to evade
the protection conferred by standard vaccine strategies. In
both cases, the ability of the virus to evolve reduces the
efficacy of vaccines. Glycosylation of the HIV-1 envelope
protein trimer, consisting of gp120 and gp41, corresponds to
about half its mass (43). The underlying protein is highly
mutative and evolves constantly to evade host antibodies.
The high density of N-glycosylation limits the accessibility of
glycan biosynthetic processing enzymes, resulting in a shield
of primarily high mannose N-glycans that facilitate viral es-
cape by interfering with proteolytic processing of envelope
peptides for presentation by the major histocompatibility
complex (44, 45). Although broadly neutralizing antibodies to
envelope protein have been identified that either tolerate the
dense glycan shield or bind to epitopes that contain glycans,
it has not been possible to formulate a vaccine that elicits
such responses (46). By contrast, glycosylation of IAV HA
appears to interfere with receptor binding and/or membrane
fusion if too many sequons are occupied on the head domain
(47–49).

The simplest mechanism whereby IAV escapes neutralizing
antibodies of the adaptive immune system occurs through
mutation(s) that diminish antibody binding affinity (50). In
some cases, mutations can cause allosteric effects that de-
crease the antibody access to the epitope (51). Mutations that
increase the avidity of HA for the host sialic acid receptor may
cause IAV to bind host cells more avidly than competing
antibodies (52, 53). Amino acid mutations may create new
N-glycosylation sites (sequons) in the HA globular domain.
These mutated sequences are synthesized, extruded into the
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ER lumen of infected cells, and modified by N-glycans, which
can, as shown in Fig. 2, subsequently block antibody binding
and therefore impact antigenicity (20, 38). Depending on their
accessibilities, immature high mannose N-glycans may be
trimmed by mannosidases and subsequently extended by
galactosyltransferases to form complex-type N-glycans.

Most IAV antigenicity studies do not account for changes in
HA site-specific glycosylation because adding glycosylation
lowers receptor binding avidity, thereby complicating inter-
pretation of hemagglutination inhibition (HI) assays used in
most serological analyses (38). The micro-neutralization (MN)
assay is an alternative method that can overcome non-anti-
genic effects caused by changes in receptor binding affinity
(54–56).

IAV viral fitness, the ability of the virus to propagate, is
maintained by balancing receptor binding and membrane fu-
sion with the release of new virions from the cell surface. A
mutation that significantly increases receptor avidity may
have a negative impact on fitness if virions cannot escape the
cell surface. Thus, mutations that strengthen NA activity may
help balance such increases in HA receptor binding avidity
(57). Head group glycans can increase viral fitness by shield-
ing HA residues from antibody binding and tuning receptor
specificity (58). In addition, the subsequent appearance of
new glycosylations sites can balance the increased receptor
binding avidity of an amino acid mutation as a mechanism for
maintaining fitness (58). Increased glycosylation may also
compromise viral fitness by enabling the binding of HA by
lectins of the innate immune system (59–62), or by negatively
impacting assembly of stable HA trimers in the ER (16, 24, 38,
49, 63–65). Lectins, including surfactant protein D (SP-D) and
mannose binding lectin (MBL), neutralize IAV by binding to
glycosylated HA. Although these interactions depend on the
glycan structures present at each glycosite, they cannot be
predicted from HA sequence information alone.

Glycosylation and Antigenic Cartography of Influenza Virus-
es—Antigenic cartography (66) is used to assess the antigenic
distance among HA molecules from different IAV strains (67–
69). Antigenic distances are calculated from hemagglutination

inhibition and microneutralization assays (69). Wan et al. de-
veloped a 3D antigenic cartography construction and visual-
ization resource to study strain candidates for vaccines (68).
Given its roles in shielding underlying protein sequences from
antibody binding, glycosylation is likely to impact antigenic
cartography of a given IAV strain. Expanded knowledge of
site-specific glycosylation in different IAV strains, including
the range of glycoforms present at each site, would enable the
correlation between antigenic distance calculation and HA
glycosylation. This would be a boon to efforts in predicting the
pandemic potential of zoonotic viruses. It would also facilitate
vaccine planning by improving the ability to predict whether a
given seasonally circulating virus will likely escape vaccines.

Toward a Broadly Neutralizing IAV Vaccine—The major HA
antigenic sites in the head domain show high rates of muta-
tion, including the addition of new sequons (70). At the same
time, the evolution of receptor binding sites and the stem
domain is much more limited to conserve their functions
(71–73). Antibody escape mutants occur in five major head
domain antigenic clusters (50). Neutralizing antibodies appear
to target regions proximal to the receptor binding site and
mutations responsible for antigenic drift tend to occur within
these proximal regions (74–78). This may be related to the
accumulation of N-glycosylation on the head group that shield
underlying antigenic sites (79). Such glycosylation will disrupt
binding of sialic acid residues if it occurs too close to the
receptor binding site, thus leaving an opening for neutralizing
antibodies to bind.

In principle, broadly neutralizing antibodies can target the
conserved sites of the receptor binding and stalk regions,
respectively, which are present across different IAV strains
(79). However, most human antibodies against HA (and NA)
bind hypervariable residues, not those conserved among IAV
strains. Efforts to generate broadly neutralizing antibodies
have focused on the receptor binding site and the highly
conserved stalk region (80), for which escape mutants would
disrupt key viral functions and therefore have a high fitness
cost. For this to work, however, it is necessary to direct the
immune system away from the immunodominant variable res-
idues toward subdominant residues that are conserved
among strains.

Although most neutralizing antibodies target residues prox-
imal to the receptor binding site, some appear to mimic the
sialic acid receptor itself and bind to conserved residues, thus
offering the potential for a broadly neutralizing response (78).
Some researchers have pointed to the lack of accessibility of
the stem region for the lack of broadly neutralizing antibodies
from vaccines (81), whereas others have noted that the stem
region of HA in virions should be accessible to antibody
binding based on structural studies (82). Improved under-
standing of the dynamics of IAV immunodominance in human
populations will be necessary in order to design vaccine strat-
egies that succeed in generating antibodies against con-

FIG. 2. Mechanisms whereby hemagglutinin glycosylation influ-
ences IAV fitness (58).
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served epitopes that confer broadly neutralizing projection
against IAV (83).

Structural analysis of HAs from pandemic and seasonal IAV
indicates that while the HA fold is conserved, the surface
properties and glycosylation patterns differ significantly
among subtypes (80). A large-scale in vitro mutational analy-
sis of the H1 and H3 HA receptor binding site identified many
replication-competent mutations not yet observed in nature,
indicating that the receptor binding site can accommodate
much more sequence diversity than previously believed (84).
These researchers noted that many deleterious single muta-
tions were viable when present in combination with other
substitutions, demonstrating epistatic effects in evolution of
the HA receptor binding site. Natural mutations to the recep-
tor binding site become part of a network of epistatic
modifications that prevent reversion of individual substitutions
(70). The recent decline in effectiveness of IAV vaccines has
been attributed in part to HA substitutions that arise during
virus growth in chicken eggs that reduce binding and neutral-
ization by a receptor binding site broadly neutralizing antibody
by orders of magnitude (85). This work highlighted the fact
that much about the receptor binding site of HA remains
unknown, despite decades of effort.

For H3N2, the mode of receptor binding has shifted as the
virus has circulated since 1968. Thus, mutations that in-
creased H3N2 sialic acid binding in early years after 1968 in
H3N2 and subsequent strains are inhibitory more recently
because of other substitutions in the receptor binding site
(70). This suggests that many residues proximal to the recep-
tor binding site coordinate the receptor binding behavior of
HA. Further, after 2003, H3N2 preference moved to binding
extended, branched N-glycans, indicating the ability of the
virus to evolve to bind a subset of airway glycans as a way of
maintaining fitness.

Proteomics of IAV—Mass spectrometric analysis of viral
glycoproteins has been summarized in a recent review (86).
Downard et al. developed an approach for using accurate
mass measurement of proteolytic peptides of IAV proteins,
referred to as proteotyping, to identify HA and NA from cir-
culating IAV types and subtypes. The accurate mass values
constitute signatures for conserved regions of IAV proteins
that enable virus typing (87, 88). The investigators used this
approach to differentiate seasonal strains from pandemic
H1N1 (89–91) and study the evolution of H5N1 strains (92)
and NA subtypes (93). They developed computer algorithms
to identify virus reassortants from whole virus digests (94).
FluShuffle considers combination of viral protein identities
that match the mass spectral data using Gibbs sampling.
FluResort uses those identities to calculate the weighted dis-
tance of each across two or more phylogentic trees through
viral protein sequence alignment. As an extension to this
approach, the FluClass algorithm performs phylogenetic clas-
sification using MS data starting from DNA- or protein-based
phylogenetic trees (95). The MassTree algorithm identifies and

displays protein mutations and calculates mutational frequen-
cies across phylogenetic trees for studies of IAV evolution
(96–98).

IAV Glycoproteomics—As reviewed (99), mass spectrome-
try has been used in proteomics studies of IAV proteins and in
mass profiling of tryptic peptides and glycopeptides. An early
pioneering study characterized N-glycosylation on three IAV
strains (100). An LC-MS method has been used to character-
ize glycoforms at specific sites using alternating high and low
collision energy values (a data-independent acquisition exper-
iment known as MSE) combined with multiple reaction moni-
toring assays as a means of comparing recombinant HA
samples as vaccine candidates (14, 101). The investigators
who developed the MSE method also used this approach to
analyze site-specific glycosylation in a series of engineered
H3N2 HA variants with added sequons that mirror those that
appeared during seasonal circulation since 1968 (49, 102).
They also characterized HA glycosylation in a series of engi-
neered H5N7 as part of an effort to define glycosylation struc-
ture-function relationships in this avian IAV strain (103). In
additional work, they also examined glycosylation in a set of
reference HA antigens used in influenza vaccine potency test-
ing (104). We have used site-specific glycosylation informa-
tion to model interactions between HA and surfactant pro-
tein-D (60, 102, 105–107).

MS Workflows for Assigning Glycopeptides—Confident as-
signment of glycopeptides requires building a search space
consisting of the glycosylation variants of a measured pro-
teome. For IAV, the hypervariable proteome (108), combined
with the presence of host proteins in the viral architecture (1),
require special consideration when applying proteomics
methods. In addition, other post-translational modifications,
including phosphorylation, have been observed on IAV pro-
teins (109). Because the proteomics search space must in-
clude both IAV and host proteins, the rate of false positive
identifications becomes unacceptably high if random muta-
tions are allowed. Considering this, we recommend defining a
range of allowable mutations in a custom database that con-
tains sequences for a given IAV strain plus host proteome.

Mass Spectrometry Methods for Assigning Site-specific
Glycosylation—For detailed glycoproteomics reviews, see
(110–116). As shown in Fig. 3, glycopeptide glycoforms elute
from a reversed phase chromatography column over a narrow
retention time window. Identification of site-specific glycosy-
lation requires tailored analytical and bioinformatics methods.
Proteomics workflows identify and quantify proteins based on
prediction of peptide tandem mass spectra from genomic
databases. Although small PTMs have single predictable
mass shifts, glycosylation at a given site is heterogeneous,
pushing confident site-specific assignment of glycosylation
beyond the scope of conventional proteomics workflows. In
order to assign site-specific glycosylation, one must generate
an appropriate list of theoretical glycan and peptide compo-
sitions (known as the search space) and use this list to assign
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FIG. 3. Comparison of acquisition
methods for tandem MS of glycopep-
tides. Extracted ion chromatograms for
glycopeptide IADTNITTIPQGLPPSLTEL-
HLDGNK glycoforms are shown, illus-
trating that a large number of glycoforms
elute over a narrow retention time range
using reversed phase chromatography
LC-MS as described (128). Automated
precursor ion selection using data de-
pendent acquisition, targeted precursor
ion selection using parallel reaction
monitoring (PRM), and data independent
acquisition are compared.
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the most probable glycopeptide composition (117). The num-
ber of possible glycoforms at each glycosylation site multi-
plies the size of the search space and the difficulty in making
confident assignments. Assumptions made about the purity
or complexity of the sample can greatly affect the quality and
confidence of the results. Using a too small search space by
assuming incorrectly that a glycoprotein sample is pure may
lead to unacceptably high numbers of contaminant glycopep-
tides incorrectly assigned to the target glycoprotein. Overes-
timating the size of the search space by including too many
glycoproteins and glycoforms leads to decreasing ability to
assign glycopeptides with acceptable confidence.

The ability to distinguish HA glycosylation among differ-
ent IAV strains or expression platforms with statistical sig-
nificance depends on the quality of the mass spectral data.
Typical top-N data-dependent acquisition (DDA) mass
spectrometry methods, based on selection of the most
abundant precursor ions, give rise to missing values that
negatively impact the ability to quantify glycopeptides. In
addition, glycosylation variants of a given peptide elute over
a narrow retention time window using LC-MS. For this rea-
son, DDA samples only the most abundant glycoforms. The
under-sampling and reproducibility problems resulting from
the stochastic nature of top-N DDA result in the inability to
quantify a given precursor ion in a significant subset of a
biological sample cohort. These missing values, the occur-
rence of which increases as the glycopeptide abundance
decreases, necessitate the imputation of glycopeptide
abundances, a step that reduces the resulting statistical
rigor. The use of targeted quantification (118) solves the
missing value problem but limits the number of precursor
ions for which tandem mass spectra are available. This
suggests the use of the MS1 dimension of a DDA or targeted
quantification experiment to quantify glycopeptides. Thus, it
would be important to develop metrics for assigning confi-
dence of glycopeptides for which tandem mass spectra
were not collected.

Data-independent analysis (DIA) eliminates the need to iso-
late precursor ions if peptides are chromatographically well
resolved. In sequential window acquisition of all theoretical
fragment ion spectra (SWATH)-MS DIA (119), for example,
fragment ion spectra for all precursors are acquired within the
specified m/z range and retention time window. However,
there are limitations to DIA for the analysis of glycopeptides.
First, one cannot construct a rigorous spectral library because
of the lack of a comprehensive collection of synthetic glyco-
peptides. In addition, the glycopeptide oxonium ions and
residue losses from the precursor ion do not provide peptide
sequence information because these losses occur in all gly-
copeptides, irrespective of their glycan compositions. In order
to be effective, DIA methods must consider the narrow reten-
tion time window over which glycopeptide glycoforms elute in
typical reversed phase gradients. Further, if a large precursor
window is fragmented, there may be problems determining

which precursor peak produced the glycopeptide fragments.
Despite these limitations, investigators have used low colli-
sion energy settings to produce Y-type ions for identification
and quantification of IgG glycopeptides in a complex matrix of
human plasma (120–122). A SWATH DIA method was used to
quantify high mannose N-glycopeptides from yeast using
manually created glycopeptide libraries (123, 124). Research-
ers developed a DIA strategy to quantify 25 N-glycopeptides
from plasma using a search space of 161 glycoforms for a
study of liver cirrhosis (121). Others have used DIA to produce
comprehensive glycosylation maps of human serum IgM us-
ing extracted ion chromatograms of shared peptide-specific
fragment ions to filter related glycoforms for a given glycosite
(125). This approach allowed identification of glycopeptides
with unexpected modifications. A targeted DIA method iden-
tified N-glycopeptides without predefined glycan composi-
tions from 59 N-glycosylation sites from 41 glycoproteins,
including 21 IgG glycopeptide glycoforms, from HILIC-en-
riched human blood plasma tryptic digest (126). Because of
the statistical limitations of DDA, therefore, a targeted DIA
approach may be necessary to produce a comprehensive
catalogue of all HA glycoforms with sufficient confidence.

CONCLUSIONS

Because of the low efficacy of existing seasonal IAV vac-
cines, we need a paradigm change in IAV vaccine design. IAV
strains are continually mutating under immune pressure, ne-
cessitating selection and manufacture of new vaccines every
year. To mitigate the disease burden caused by IAV, we need
to develop a broadly neutralizing vaccine capable of protect-
ing against multiple strains. IAV researchers currently use
genetics and structural biology studies in determining IAV
antigenicity and immunogenicity, but as of today, glycosyla-
tion state of HA is largely ignored.

In the HIV vaccine field, researchers have moved toward
mimicking the glycan shield in order to generate broadly
neutralizing antibodies analogous to those that develop nat-
urally in a subset of infected individuals. For IAV, glycosylation
does not go to the extreme of forming a sterically restricted
shield. There is a strong argument for the need to understand
the influence of IAV glycosylation on transport to the lymph
nodes and innate immune lectin mediated recognition and
processing by dendritic cells and B cells toward generating an
effective antibody response.

The technology to correlate glycopopulations of vaccine
constructs with breadth of antibody response already exists.
Exploitation of the knowledge of the most appropriate glyco-
populations of HA, as well as the viral expression systems that
can produce them, will mark a major step toward developing
more effective IAV vaccines.
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