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Myoferlin, a Membrane Protein with Emerging Oncogenic Roles
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Myoferlin (MYOF), initially identified in muscle cells, is a member of the Ferlin family involved in membrane fusion, membrane 
repair, and membrane trafficking. Dysfunction of this protein is associated with muscular dysfunction. Recently, a growing body of 
studies have identified MYOF as an oncogenic protein. It is overexpressed in a variety of human cancers and promotes tumorigenesis, 
tumor cell motility, proliferation, migration, epithelial to mesenchymal transition, angiogenesis as well as metastasis. Clinically, MYOF 
overexpression is associated with poor outcome in various cancers. It can serve as a prognostic marker of human malignant disease. 
MYOF drives the progression of cancer in various processes, including surface receptor transportation, endocytosis, exocytosis, 
intercellular communication, fit mitochondrial structure maintenance and cell metabolism. Depletion of MYOF demonstrates 
significant antitumor effects both in vitro and in vivo, suggesting that targeting MYOF may produce promising clinical benefits 
in the treatment of malignant disease. In the present article, we reviewed the physiological function of MYOF as well as its role in 
cancer, thus providing a general understanding for further exploration of this protein.

1. Introduction

MYOF is a member of the Ferlin family that has six Ferlin 
proteins, Fer-1, Sea urchin Ferlin, Misfire, Otoferlin, MYOF, 
and dysferlin [1]. Fer-1, Sea urchin Ferlin and Misfire are 
reported in C. elegans, Sea urchin, Drosophila, respectively. 
Dysfunction of these proteins is associated with infertility or 
defective exocytosis [2–4]. Otoferlin, MYOF, and dysferlin are 
mainly studied in human tissues. Otoferlin exists in the hair 
cells of the inner ear. Mutation of its gene causes a nonsyn-
dromic prelingual deafness [5]. Dysferlin is highly expressed 
in human muscular tissues and mediates membrane repair in 
a Ca2+-dependent manner [6, 7]. Loss of dysferlin is associated 
with two types of human muscular dystrophy, Miyoshi myo-
pathy and limb girdle muscular dystrophy [8, 9]. Interestingly, 
MYOF also abounds in human muscular tissue. It is important 
for membrane repair and myoblast fusion. MYOF-null myo-
blasts can enter into the initial stage of fusion events, but they 

lose the ability to form large maturate myofibers and to regen-
erate [10].

MYOF and dysferlin seem to have overlapping roles in 
skeletal muscles and they may interact with each other [11]. 
Compared to dysferlin-null mice, mice lacking both myoferlin 
and dysferlin develop severer muscular damage [12], and trans-
genic overexpression of MYOF attenuates membrane fusion 
defects in muscle cells of dysferlin-deficient mice [13]. However, 
MYOF is mainly located in immature “prefusion” myoblasts, 
while dysferlin exhibits abundance in mature myotubes [14]. 
In limb-girdle muscular dystrophy type 2B caused by dysferlin 
mutation, no difference in muscular MYOF protein level has 
been observed between mildly and severely affected patients 
[15]. In dysferlinopathy, compensatory overexpression of 
myoferlin is absent in affected muscles [16]. �ese findings 
indicate that MYOF can partially compensate for the function 
of dysferlin, but this compensation does not occur naturally as 
a rescue mechanism in the absence of dysferlin.
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While dysferlin is mainly found in muscle tissue, MYOF 
has been identified in many other tissues and cells, including 
human airway epithelia [17], human placenta [18, 19], vascu-
lar tissues and endothelial cells (ECs) [20]. Recently, increasing 
studies have revealed that MYOF is overexpressed in many 
kinds of human cancers, including pancreas cancer [21, 22], 
ovarian carcinoma [23], prostate cancer [24], breast cancer 
and renal cell cancer [25, 26], indicating that this protein may 
have important roles in tumorigenesis and malignant progres-
sion. However, the exact role of MYOF in tumorigenesis has 
not been fully elucidated yet. In the present article, we reviewed 
the structure and physiological function of MYOF, and sum-
marized the role of MYOF in malignant disease, thus provid-
ing a general understanding of this protein.

2. The Structure of MYOF

All six ferlins consist of multiple C2-domains, a centrally-po-
sitioned FerA domain and a single C-terminal transmembrane 
helix. Like other Ferlins, typical structure of MYOF is multiple 
C2-domains that regulate the protein’s function by forming 
Ca2+-dependent phospholipid complex [27]. MYOF has seven 
C2-domains (Figure 1). �ese C2-domains can bind to lipid 
layers and change the structure of lipid packing, forming 
regional distorted membrane structure responsible for fusion 
and fission events [28]. C2-domains are surrounded by a ring 
of positive charges. Ca2+-binding to C2-domains causes a 
major change in the electrostatic potential and mediates bind-
ing with target molecules [29]. C2-domains of MYOF have 
equivalent Ca2+-binding affinity, which is weaker than that of 
Dysferlin, however [30]. FerA domain is a four-Helix bundle 
domain associated with the membrane. MYOF FerA domain 
preferably binds to negatively-charged phospholipids. �is 
domain has no Ca2+-binding site, but its binding activity can 
be enhanced by Ca2+ [31]. MYOF and dysferlin have additional 
DysF domain than other Ferlin proteins (Figure 1). DysF 
domain of MYOF can bind to caveolin-3, a protein that func-
tions as a component of the caveolae plasma membrane found 
in most cell types [32].

3. MYOF Is Involved in a Wide Range of 
Membrane Trafficking Events

MYOF is expressed in various membrane structures, including 
the plasma membrane, perinuclear vesicular puncta, Rab7-
positive endosomes as well as cell periphery [33], indicating 
that it participates in a wide range of membrane trafficking 
processes (Figure 2). Doherty et al. have reported that MYOF 

participates in endocytic trafficking by interacting with EH 
domain containing protein 2 (EHD2) [34]. EHD proteins, 
including EHD1-4, are associated with endocytic transport 
such as cell surface receptor internalization and recycling  
[35, 36]. MYOF depletion decreases EHD2 level and delays 
recycling of foreign protein such as transferrin, resulting in 
delayed recycling and intracellular accumulation of transferrin 
a�er its internalization [34]. In myoblasts, EHD1 is co-local-
ized with MYOF, forming a prefusion complex that is directed 
to surface membrane by the Rho-GAP, GRAF1 (GTPase reg-
ulator associated with focal adhesion kinase-1). Knockdown 
of any of these three proteins can impair myoblast fusion, 
suggesting a multiple, not single protein involvement in 
MYOF-mediated membrane fusion events [37, 38].

MYOF also participates in recycling of insulin-like growth 
factor (IGF) receptor (Figure 2), which initiates an important 
signaling for normal myogenesis. MYOF depletion stalls IGF 
receptor recycling to the plasma membrane and redirects it 
toward lysosomal degradation, resulting in hampered IGF 
receptor related pathway as well as unresponsiveness to IGF1 
stimulation both in vitro and in vivo [39]. In endothelial cells 
(ECs), MYOF forms a complex with vascular endothelial 
growth factor receptor 2 (VEGFR-2) and mediates its mem-
brane-oriented expression [20]. MYOF prevents VEGFR-2 
from polyubiquitination as well as proteasomal degradation 
(Figure 2). Loss of MYOF reduces VEGF-mediated activation 
of key intracellular signaling cascades, such as ERK-1/2, JNK, 
and PLC�. Another EC-specific angiogenic receptor of angi-
opoietin-1, Tie-2, also necessities MYOF for normal mem-
brane localization [40]. MYOF silencing exhibits significant 
antiangiogenetic effects, indicating that it is a potential antian-
giogenic target and targeting this protein may yield potential 
therapeutic benefits in angiogenesis-related disease.

Another study has revealed that MYOF participates in cav-
eolae/lipid ra� and clathrin-mediated endocytosis by forming a 
complex with dynamin-2 (Dyn-2) and caveolin-1 (Cav-1) [41]. 
Dyn-2 is essential for the fission process of endocytic vesicle, 
while Cav-1 is a structural component of caveolae. �e MYOF/
Dyn-2/Cav-1 complex is required for endocytosis and mem-
brane repair. Respective loss of the three proteins impairs endo-
cytosis of transferrin and leads to equal loss of membrane 
resealing following membrane injury [41, 42]. In addition to 
endocytosis, a recently published study has uncovered the role 
of MYOF in lysosomal exocytosis of phagocytes [43]. MYOF 
mediates fusion of exocytotic lysosome to the membrane and 
helps to release lysosome contents, including hydrolytic enzymes, 
which increase cytotoxicity (Figure 2). It is possible that MYOF 
is involved in phagocyte-mediated inflammation and antitumor 
effects by enhancing its cytotoxicity effects.

C2A C2C
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C2D C2E C2F C2GC2B

Figure 1: Schematic structure of MYOF. MYOF has seven C2 domains, a Ferlin A domain, a DysF domain as well as a single C-terminal 
transmembrane helix. C2-domains are responsible for Ca2+-dependent lipid binding and interacting with targeting proteins. FerA binds 
to phospholipids in a Ca2+ independent manner. DysF is possibly responsible for receptor-mediated endocytosis.
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Schiller et al. have reported that MYOF is also present at 
extracellular membrane structures [44] and interacts with 
leukocyte specific transcript 1 (LST1), a transmembrane 
MHC class III protein that can induce the formation of tun-
neling nanotubes (TNT) essential for cell-to-cell communi-
cation [45]. MYOF is speculated to drive LST1-induced TNT 
formation by locally deforming the plasma membrane and 
mediating membrane fusion [44]. Blomme et al. have iden-
tified the expression of MYOF in tumor cell derived 
exosomes. MYOF depletion decreases the ability of such 
exosomes to induce migration and proliferation of human 
endothelial cells [46]. However, further studies are required 
to elucidate the exact role of MYOF in extracellular struc-
tures in different cells and tissues and to explore its associa-
tion with human disease.

4. Role of MYOF in Cancer

As reviewed above, MYOF is implicated in a wide range of 
membrane-associated events. It is likely that cancer cells also 
replicate the role of MYOF to facilitate their progression 
because they are highly active in membraneassociated events 
to maintain a malignant phenotype. Recently, emerging stud-
ies have revealed that MYOF is overexpressed in many cancers. 
Overexpression of MYOF is associated with poor prognosis 

in patients with breast cancer, lung cancer, and pancreas can-
cer [47, 48]. In pancreas adenocarcinoma (PAC), MYOF 
expression is negatively correlated with the degree of histo-
logical differentiation and patients with MYOF-overexpressing 
MYOF have poor total survival rate a�er surgical treatment. 
In addition, MYOF has been found to have recurrent muta-
tions which are associated with the clinical outcome of patients 
with non-small cell lung cancer [49]. In oropharyngeal squa-
mous cell carcinoma (OPSCC), nuclear location of MYOF is 
significantly related to poor prognosis, as patients with nuclear 
MYOF+/IL-6+OPSCC have the worst, whereas nuclear 
MYOF−/IL-6−OPSCC have the best outcome [50]. However, 
this is not the same case in all cancers. In endometrioid car-
cinoma, moderate to strong expression of MYOF is observed 
in normal epithelial tissue and low-grade carcinoma tissue, 
whereas weak to negative expression is found in high-grade 
carcinoma tissue [51]. MYOF contributes to tumorigenesis in 
various processes, and the mechanisms are discussed as fol-
lows based on available data.

4.1. MYOF in Breast Cancer.  MYOF has been intensively 
studied in breast cancer, which is one of the most common 
cancers worldwide and represents the leading cause of cancer 
related female death [52]. In human breast cancer cells, MYOF 
regulates cell-matrix adhesion by affecting the strength of focal 
adhesion, structure that plays a crucial role in cell migration 
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Figure 2: �e role of MYOF in membrane trafficking. �ese trafficking processes have been identified in muscle fibers and other 
cells. �ey are also present in cancer cells. MYOF is present at the plasma and nucleus membrane as well as intracellular vesicle. It is 
involved in exocytosis, endocytosis, receptor internalization and recycling. For example, MYOF mediates endocytosis of transferrin by 
interacting with caveolin-1 (Cav-1) and dynamin-2 (Dyn-2). MYOF also directs vesicles containing VEGFR-2 to the plasma membrane 
to promote its surface expression and prevents it from proteasomal degradation. In addition, MYOF is responsible for internalization 
and recycling of receptors like IGF receptor. MYOF depletion redirects IGF receptor from recycling to a degradation pathway, which 
leads to mistrafficking of such receptor and disrupts IGF signaling. �e secretion of lysosomal enzymes also requires MYOF, suggesting 
that this protein is widely involved in membrane trafficking.



BioMed Research International4

potent antitumor effects similar to that of MYOF depletion 
[64]. Such MYOF-targeting compounds are expected to yield 
promising therapeutic benefits in the treatment of cancer.

Blomme et al. have described that MYOF is involved in 
lipid trafficking and mitochondrial function [65]. Intracellular 
transportation of lipids is blocked in cells deficient in MYOF, 
leading to increased accumulation of lipids and fatty acids, 
which impairs mitochondrial function and results in marked 
alteration of cell metabolism [65]. It is widely acknowledged 
that tumor cells tend to favor metabolism via glycolysis rather 
than oxidative phosphorylation, which is termed as the 
Warburg effect [66]. However, accumulating evidence has 
revealed that they also tend to produce energy through oxi-
dative phosphorylation to sustain survival and metastasis [67]. 
MYOF depletion decreases the oxidative phosphorylation 
(OXPHOS) as well as ATP production and redirects tumor 
cells toward glycolysis. However, this metabolic change ren-
ders tumor cells more susceptible to metabolism-targeting 
drugs, which might be a potential combined therapy for the 
prevention of tumor invasion [65].

4.2. MYOF in Digestive Organ Cancers.  MYOF has also been 
explored in cancers of digestive organs, including pancreas, 
liver and colon. High expression of MYOF is associated with 
high density of blood vessels in pancreas cancer [68]. MYOF 
can facilitate secretion of vascular endothelial growth factor 
A (VEGFA) (Figure 2), a key factor for angiogenesis, while 
MYOF silencing impairs exocytosis of VEGFA by blocking 
the fusion process of VEGFA-containing vesicles with plasma 
membrane, which reduces VEGFA secretion from tumor 
cells and in return attenuates tumor-related angiogenesis 

[53] and matrix degradation [54]. MYOF depletion increases 
focal adhesion maturity and cell-substrate adhesion, which 
renders tumor cells a more epithelial-like morphology [55]. 
Another study has reported that MYOF increases cell migration 
by functioning in the postligand pathway of epidermal growth 
factor receptor (EGFR) [56]. MYOF-silencing impedes the 
proteasomal and lysosomal degradation of cargo containing 
EGFR (Figure 2), leading to intracellular accumulation of 
EGFR and continuous activation of phosphorylated EGFR 
(p-EGFR) [56]. Increased intracellular EGFR has detrimental 
effects on cells [57], which causes unresponsiveness of tumor 
cells to EGF stimulation and induces apoptosis.

Other studies have revealed that MYOF depletion can stall 
invasion and reverse epithelial to mesenchymal transition 
(EMT) [58, 59]. Decreased cell invasion by MYOF silencing 
may partially result from down-regulation of several matrix 
metalloproteinases (MMPs), especially of MMP1, which plays 
a pivotal role in degrading ECM components to facilitate can-
cer invasion [59, 60]. EMT is characterized by downregulation 
of E-cadherin and upregulation of vimentin [61]. MYOF can 
reduce E-cadherin by enhancing the enzymatic activity of a 
disintegrin and metalloproteinase 12 (ADAM12), a metallo-
proteinase that is highly upregulated in multiple tumors [62]. 
MYOF depletion results in high levels of E-cadherin and low 
levels of fibronectin and vimentin, indicating that MYOF pre-
cipitates EMT to promote tumor invasion. Recently, a small 
molecule, WJ460, has been identified to target the C2-domain 
of MYOF. �is molecule can reverse EMT of breast cancer and 
decrease pulmonary metastasis [63]. Another diaryl-1,2,4-tri-
azole derived compound targeting MYOF also demonstrates 
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Figure 3: Role of MYOF in EGFR-related pathway. MYOF gene is induced by MKL1/2 and SRF. MYOF directs p-EGFR to lysosome 
degradation and shuts off EGFR related signaling. Inhibition of MYOF leads to continuous phosphorylated EGFR, which further 
activates Ras/MEK/ERK and results in Oncogene-induced senescence.
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cancer cells (HCCs) [74]. Both MLK 1/2 and SRF are onco-
genic drivers for hepatocellular cancer [75, 76]. MLK1/2 and 
SRF can bind to the promoter of MYOF gene and activate its 
expression. Either MKL1/2 or SRF depletion decreases 
MYOF level and triggers EGFR phosphorylation similar to 
that in breast cancer cells [56]. In HCCs, phosphorylated 
EGFR activates its downstream Ras/MEK/ERK cascade and 
induced oncogene-induced senescence (OIS) (Figure 3). As 
senescence induction is an emerging strategy for the treat-
ment of HCC, it is possible that intervening in the MKL1/2—
SRF-MYOF signaling pathway may contribute to the 
treatment of hepatocellular cancer [74].

4.3. Role of MYOF in Other Cancers.  As an oncogenic 
protein, MYOF is ubiquitously expressed in human epithelial 
cancers. Study by Leung et al. has revealed that MYOF is 
overexpressed in Mouse Lewis lung carcinoma (LLC) cell. It 
is essential for plasma membrane integrity and LCC tumor 
cell proliferation [77]. In vivo, mice bearing LCC solid tumor 
exhibit significant reduction in tumor body in the absence 
of MYOF. In melanoma, MYOF contributes to the formation 
of Vasculogenic mimicry (VM), an important mechanism 
to facilitate tumor metastasis. MYOF depletion decreases 
exocytosis of MMP2 and VM formation, which further 
attenuates migration and invasion [78]. In the molecule level, 
MYOF serves as a chaperone protein in IL6/STAT3 signaling 
cascade and its activity is naturally suppressed by EHD2 
in resting cells [79]. Upon the stimulation of IL-6, IL-6R 
triggers STAT3 phosphorylation and MYOF dissociation from 
EHD2. �en, phosphorylated STAT3 translocates to nucleus 

[68]. MYOF also abounds in lipogenic pancreatic cancer 
cell lines and is important for mitochondrial fitness as well 
as energy production through OXPHOS. Contribution of 
MYOF to cancer cell migration is also OXPHOS-dependent 
in Pancreatic ductal adenocarcinoma [69]. MYOF depletion 
activates autophagy as a rescue mechanism in response to 
decreased energy production, but this rescue mechanism fails 
to restore proliferation to a controlled level [70]. It is possible 
that blocking autophagy may enhance the antitumor effects 
of MYOF depletion.

In colon cancer, MYOF silencing leads to accumulation of 
reactive oxygen species (ROS) and DNA damage. Increased 
ROS triggers p53 activation [71], which then provokes cell 
cycle arrest and results in p53-dependent reduction of cell 
growth. Reactivation of p53 can enhance the inhibition effects 
of MYOF-silencing on tumor cell growth, indicating that 
MYOF drives oncogenesis in colon cancer possibly by inhib-
iting the function of p53 [72]. It is anticipated that combina-
tion of MYOF-targeting and p53 modulation might yield new 
perspectives in the treatment of colon cancer.

Most studies on MYOF in human cancer are mainly cen-
tred on its oncogenic functions, but little has been known 
about how MYOF gene expression is regulated. Previous 
study has shown that nuclear factor of activated T cells 
(NFAT) can bind to the promoter of MYOF gene and upreg-
ulate MYOF expression in fusing myoblasts and damaged 
MYOF fibers [73], but little is known about how MYOF gene 
expression is regulated in cancer cells. Hermann et al. have 
identified MYOF as a target gene downstream of the MLK1/2-
SRF signaling axis in human and marine hepatocellular 
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Figure 4: �e role of MYOF in IL-6R related pathway. Activity of MYOF is inhibited by EDH2 on cell membrane. Upon stimulation 
by IL-6, IL-6R phosphorylates STAT3, which interacts with MYOF and translocates to the nucleus. Phosphorylated STAT3 activates 
its target gene expression and promotes tumor progression.
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