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Abstract

Purpose: The natural history and prognosis of appendiceal adenocarcinomas (AA) differ from 

those of adenocarcinomas arising in other large bowel sites. We aimed to compare the molecular 

profiles exhibited by AAs and CRCs, or between the histopathological subtypes of AA.
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Experimental Design: A total of 183 samples from AA (46 adenocarcinoma, not otherwise 

specified (NOS), 66 pseudomyxoma peritonei (PMP), 44 mucinous adenocarcinoma (MU), and 27 

signet ring cell carcinoma (SR)), 994 from right-sided colorectal cancer (R-CRC), and 1080 from 

left-sided CRC (L-CRC) were analyzed by next-generation sequencing (NGS) and 

immunohistochemical (IHC) markers. Microsatellite instability (MSI) and tumor mutational 

burden (TMB) were tested by NGS, and PD-L1 by IHC.

Results: We observed high mutation rates in AA samples for KRAS (55%), TP53 (40%), GNAS 
(31%), SMAD4 (16%), and APC (10%). AA exhibited higher mutation rates in KRAS and GNAS, 

and lower mutation rates in TP53, APC, and PIK3CA (6%) than CRCs. PMP exhibited much 

higher mutation rates in KRAS (74%) and GNAS (63%), and much lower mutation rates in TP53 
(23%), APC (2%), and PIK3CA (2%) than NOS. Alterations associated with immune checkpoint 

inhibitor response (MSI-high, TMB-high, PD-L1 expression) showed similar frequency in AA 

compared to L-CRC, but not R-CRC, and those of NOS were higher than other subtypes of AA 

and L-CRC.

Conclusion: Molecular profiling of AA revealed different molecular characteristics than noted 

in R-CRC and L-CRC, and molecular heterogeneity between the histopathological subtypes of 

AA. Our findings may be critical to develop individualized approach for AA treatment.
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Introduction

The natural history and prognosis of appendiceal adenocarcinomas (AA) differs from those 

of adenocarcinomas arising in other large bowel sites (1, 2). Compared to colorectal 

adenocarcinoma, AA more commonly are associated with peritoneal dissemination and 

increased mucin production, and are distinguished by the diagnostic classification as 

pseudomyxoma peritonei (PMP) (3, 4). Histological variants of appendiceal epithelial 

neoplasia include low- and high-grade mucinous neoplasms, goblet cell tumors, 

neuroendocrine neoplasms, adenoma, and adenocarcinomas (common colonic type, 

mucinous type, and signet ring cell carcinoma) (2, 5). The primary treatment for these 

neoplasms is surgical resection (6). Also in PMP, cytoreductive surgery (CRS) and 

hyperthermic intraperitoneal chemotherapy (HIPEC) are associated with favorable outcome 

when conducted in specialized centers of excellance (6-8). However, both patient selection 

and the expertise of the treating team are critical to best outcomes. Furthermore, in patients 

with metastatic AA or recurrent PMP, the most effective chemotherapy and molecular 

targeted therapy is controversial. At present, AA patients typically receive therapies 

approved for colorectal cancer (CRC) (3, 9, 10), although their efficacy, especially in low 

grade tumors, suggests lower vulnerability of these slow growing tumors to conventional 

therapies as compared to CRCs (11, 12).

Molecular profiling has been used effectively to identify novel treatment options for 

malignant diseases. In CRC, genetic profiling, such as RAS and BRAF alterations, has 

Tokunaga et al. Page 2

Clin Cancer Res. Author manuscript; available in PMC 2020 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggested phenotypic clustering with profiles that are prognostic as well as predictive of 

different susceptibilities to molecularly targeted therapeutics (13). In addition, assessment of 

the presence or absence of microsatellite instability (MSI), tumor mutational burden (TMB), 

and programmed death-ligand 1 (PD-L1) expression can be predictive of the likelihood that 

an individual patient will see a tumor response to treatment with immune checkpoint 

inhibitors (14). With molecular profiling, differences in the genetic and immune 

characteristics between the right-sided (R-CRC) and left-sided CRC (L-CRC) have been 

reported and have developed a personalized treatment strategy in CRC (15). On the contrary, 

studies on molecular profiling of AA have been handicapped due to the rarity of AA and 

assay failures in available PMP samples because of low cellularity (2), and these analyses 

have provided limited genetic data (16, 17). Although the prognosis varies according to the 

histopathological subtypes of AA (18), studies are lacking that correlate molecular profiles 

with AA subtypes (19). Identification of molecular alterations of AA is critical for the 

development and selection of more effective therapeutic strategies.

We performed molecular profiling of AA and compared it with those of R-CRC and L-CRC, 

using integrated data within a total of 183 samples from AA, 994 from R-CRC, and 1,080 

from L-CRC. Our analysis demonstrates that histopathological and molecular classification 

of AA could be a key step towards personalized treatment strategies of AA.

Materials and Methods

Tumor Samples

Figure 1 summarizes the workflow of this study. Consecutive appendiceal cancer (N = 224) 

and CRC (N = 4,600) cases submitted to a commercial CLIA-certified laboratory (Caris Life 

Sciences, Phoenix, AZ) from April, 2015 to January, 2018 were retrospectively analyzed for 

their molecular alterations. Formalin fixed paraffin-embedded (FFPE) samples were sent for 

analysis from treating physicians around the world. The tissue diagnoses were submitted 

based on pathologic assessment of physicians who requested the assays and were further 

verified by a board-certified oncological pathologist at the Caris laboratory. A total of 183 

AAs were analyzed and 41 tumors of neuroendocrine/goblet histology were excluded from 

their analysis. Included in the AA cohort were 66 PMP, 44 mucinous adenocarcinoma (MU), 

and 27 signet ring cell carcinoma (SR). Fourty-six tumors were determined to be 

adenocarcinoma, not otherwise specified (NOS) as no additional detailed histological 

features were noted (Supplementary Figure S1). R-CRC defined as tumors arising from the 

cecum to the hepatic flexure and transverse colon (N = 994) and L-CRC defined as those 

arising from the splenic flexure to the rectosigmoidal colon (N = 1,080) were analyzed; 

while tumors with origin unclearly annotated (N = 2,526) were excluded. Samples taken 

from original tumor sites were considered primary tumors and samples taken from organs 

other than the primary were considered metastases. Tissues were profiled by next-generation 

sequencing (NGS) and immunohistochemical (IHC) analysis using Caris Molecular 

Intelligence. Human subjects were anonymized prior to analysis. This study was conducted 

in accordance with guidelines of the Declaration of Helsinki, Belmont report and U.S. 

Common rule. In keeping with 45 CFR 46.101(b)(4), this study was performed utilizing 
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retrospective, de-identified clinical data. Therefore this study is considered IRB exempt and 

no patient consent was necessary from the subject.

Next-generation sequencing (NGS)

NGS was performed on genomic DNA isolated from FFPE tumor samples using the 

NextSeq platform (Illumina, Inc., San Diego, CA). A custom-designed SureSelect XT assay 

was used to enrich 592 whole-gene targets (Agilent Technologies, Santa Clara, CA). All 

variants were detected with > 99% confidence based on allele frequency and amplicon 

coverage, with an average sequencing depth of coverage of 750 and an analytic sensitivity of 

5%. Prior to molecular testing, tumor enrichment was achieved by harvesting targeted tissue 

using manual microdissection techniques. Genetic variants identified were interpreted by 

board-certified molecular geneticists and categorized as ‘pathogenic,’ ‘presumed 

pathogenic,’ ‘variant of unknown significance,’ ‘presumed benign,’ or ‘benign,’ according to 

the American College of Medical Genetics and Genomics (ACMG) standards. When 

assessing mutation frequencies of individual genes, ‘pathogenic,’ and ‘presumed 

pathogenic’ were counted as mutations while ‘benign’, ‘presumed benign’ variants and 

‘variants of unknown significance’ were excluded.

Microsatellite instability (MSI)

MSI was examined using over 7,000 target microsatellite loci and compared to the reference 

genome hg19 from the University of California, Santa Cruz (UCSC) Genome Browser 

database, and the status was defined as MSI-high (MSI-H) or MSI-low/ microsatellite stable 

(MSS). The number of microsatellite loci that were altered by somatic insertion or deletion 

were counted for each sample. Only insertions or deletions that increased or decreased the 

number of repeats were considered. Genomic variants in the microsatellite loci were 

detected using the same depth and frequency criteria as used for mutation detection. MSI-

NGS results were compared with results from over 2,000 matching clinical cases analyzed 

with traditional PCR-based methods. The threshold to determine MSI by NGS was 

determined to be 46 or more loci with insertions or deletions to generate a sensitivity of 

>95% and specificity of >90%.

Tumor mutation burden (TMB)

TMB was measured by counting all non-synonymous missense mutations found per tumor 

that had not been previously described as germline alterations (592 genes and 1.4 megabases 

[MB] sequenced per tumor). The threshold to define TMB-high (TMB-H) was greater than 

or equal to 17 mutations/MB and was established by comparing TMB with MSI by fragment 

analysis in CRC cases, based on reports of TMB having high concordance with MSI-H in 

CRC.

Immunohistochemical (IHC) analysis

IHC analysis was performed on full slides of FFPE tumor specimens using automated 

staining techniques (Benchmark XT, Ventana, and Autostainer Link 48, Dako). The primary 

antibody and details of evaluation for analysis are shown in Supplementary Table S1. 

Staining was scored for intensity (0 = no staining; 1+ = weak staining; 2+ = moderate 
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staining; 3+ = strong staining) and staining percentage (0–100%). Results were categorized 

as positive or negative by defined thresholds specific to each marker, based on published 

clinical literature.

Statistical analysis

All statistical analyses were performed with SPSS v23 (IBM SPSS Statistics, Cary, USA), 

and all tests were two-sided at a significant level of 0.05. The comparison of age was 

analyzed using Student’s t-test and that of molecular profile between groups were analyzed 

using Fisher’s exact test. Cases with missing information in any of the categorical data were 

not included in the analysis.

Results

Patient and tumor characteristics

Baseline patient and tumor characteristics in regard to age, gender, and location of tumor 

sampling are shown in Supplementary Table S2. Patients with AA were significantly 

younger than patients with R-CRC (P < 0.001) and were more likely to be female than 

patients with L-CRC (P = 0.011). In addition, more AA samples were collected from 

metastatic sites than R-CRC (P < 0.001) and L-CRC (P < 0.001) samples. Between 

histopathological subtypes of AA, there is no significant difference in regard to age, gender, 

and location of tumor sampling.

Common gene mutations in AA, and comparison with R-CRC and L-CRC

The observed patterns of common gene mutations were totally different between AA, R-

CRC, and L-CRC. (Table 1) The most prevalent mutations seen in AA were KRAS (55%), 

TP53 (40%), GNAS (31%), SMAD4 (16%), APC (10%), ARID1A (8%), RNF43 (7%), 

PIK3CA (6%) and BRAF (5%). Compared to both R- and L- CRCs, AA had significantly 

higher mutation rates in GNAS (31% vs 2% vs 1%) and SMAD4 (16% vs 11% vs 10%), and 

lower mutation rates in TP53 (40% vs 66% vs 75%), APC (10% vs 70% vs 83%), PIK3CA 
(6% vs 22% vs 17%), FBXW7 (3% vs 11% vs 9%), NRAS (1% vs 3% vs 5%), and AMER1 
(0% vs 9% vs 2%). In addition, compared to R-CRC, AA had significantly lower mutation 

rates in ARID1A (8% vs 26%), BRAF (5% vs 17%), ATM (2% vs 7%), KMT2D (2% vs 

7%), PTEN (1% vs 8%), MSH6 (1% vs 5%), HNF1A (1% vs 5%), PTCH1 (1% vs 5%), and 

CTNNB1 (0% vs 4%); and compared to L-CRC, AA had significantly higher mutation rates 

in KRAS (55% vs 43%) and RNF43 (7% vs 2%). Moreover, the mutation rates in TP53, 

GNAS, APC, PIK3CA, and AMER1 had significant differences between AA, R-CRC, and 

L-CRC. BRAF mutation rate was the highest in R-CRC (AA, R-CRC, L-CRC: 5%, 17%, 

5%), and KRAS mutation rate was the lowest in L-CRC (AA, R-CRC, L-CRC: 55%, 56%, 

43%).

Common gene mutations in the histopathological subtypes of AA

We further evaluated the pattern of common gene mutations in the histopathological 

subtypes of AA (NOS, PMP, MU, and SR). (Table 2) Compared to NOS, PMP exhibited 

much higher mutation rates in KRAS (74% vs 44%) and GNAS (63% vs 7%), and much 

lower mutation rates in TP53 (23% vs 51%), APC (2% vs 22%), and PIK3CA (2% vs 15%); 
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MU exhibited higher mutation rate in KRAS (64% vs 44%) and GNAS (25% vs 7%); and 

SR exhibited lower mutation rate in KRAS (15% vs 44%), GNAS (4% vs 7%), TP53 (33% 

vs 51%), APC (0% vs 22%), and PIK3CA (0% vs 15%). Notably, BRAF mutations were 

identified in NOS (7%), MU (9%), and SR (7%), but not identified in PMP.

Immune profiling of AA, comparison with R-CRC and L-CRC, and differences between the 
histopathological subtypes of AA

The immune profile of AA was similar to that of L-CRC but not that of R-CRC. (Figure 2) 

MSI-H, TMB-H, and PD-L1 high expression rates were much lower in AA (MSI-H, TMB-

H, PD-L1 high: 2.2%, 2.2%, 2.8%) than in R-CRC (MSI-H, TMB-H, PD-L1 high: 14.5%, 

14.9%, 6.7%), but similar to L-CRC (MSI-H, TMB-H, PD-L1 high: 3.4%, 4.6%, 2.7%). The 

positive ratio of any of immune check point inhibitor markers (MSI-H, TMB-H, PD-L1 

high) is much higher in R-CRC (19.8%) than in AA (5.1%) and in L-CRC (6.7%). Notably, 

some differences were observed between the histopathological subtypes of AA: PMP had no 

MSI-H or TMB-H case; and the positive ratio of any one marker (MSI-H, TMB-H, PD-L1 

high) was higher in NOS (11.4%) than in PMP (1.6%), in MU (4.8%), and in SR (3.9%).

Protein expression of chemotherapeutic sensitivity markers in AA, comparison with R-
CRC and L-CRC, and differences between the histopathological subtypes of AA

As shown in Table 3, expression status of protein markers for chemotherapeutic sensitivity 

varied between AA, R-CRC, and L-CRC, and between the histopathological subtypes of 

AA. The positive ratios of ERCC1, TOPO1, PTEN, and MGMT were higher in AA than in 

R-CRC and L-CRC. Further, TS was overexpressed most frequently in R-CRC. Between the 

histopathological subtypes of AA, although the protein expressions were similar in NOS, 

MU and SR, those expressions were significantly different between NOS and PMP: ERCC1, 

TOPO1, PTEN, and MGMT were overexpressed in PMP, and TS was suppressed in PMP.

Comparison of molecular characteristics between the locations of tumor sampling

Finally, we analyzed the association of molecular characteristics with the location of tumor 

sampling (primary or metastatic sites). (Supplementary Table S3) In AA, the molecular 

characteristics had no difference between the locations of tumor sampling. On the other 

hand, in both R-CRC and L-CRC, the positive ratios of ARID1A mutation and MSI-H were 

significantly lower in metastatic sites.

Discussion

To the best of our knowledge, we performed so far the largest study to determine molecular 

profiling of AA and to compare it with R-CRC and L-CRC, using integrated data within a 

total of 183 samples from AA, 994 from R-CRC, and 1,080 from L-CRC. We found that AA 

had higher mutation rates in GNAS and KRAS, and lower mutation rates in TP53, APC, and 

PIK3CA than R-CRC and L-CRC; gene mutation rates differed between the 

histopathological subtypes of AA; and although the immune profile results (MSI, TMB, and 

PD-L1 expression status) of AA were similar to those of L-CRC (not to those of R-CRC), 

those of NOS had higher likelihood of overexpression than did other subtypes of AA and L-
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CRC. Our results support developing a personalized treatment strategy in patients with AA 

that is tailored to the individual’s histopathological subtypes.

The molecular feature of AA is different from CRC. As in the past reports (16, 20-22), our 

current study showed that AA had higher GNAS and KRAS mutation rates in comparison 

with CRC. The mutations of GNAS, a member of the G-protein family, cause constitutive 

activation of the protein kinase A (PKA) pathway via elevated levels of cyclic AMP 

(cAMP), and affected the MAPK and Wnt signaling pathways (20). GNAS mutation is 

common in benign tumors such as villous adenomas of the stomach (23) and colon (24), and 

intraductal papillary mucinous neoplasm (IPMN) of the pancreas (25, 26) and bile duct (27). 

Although the cAMP-PKA pathway can stimulate cell proliferation via MAPK or Wnt 

signalings, exogenous GNAS mutation in CRC (28) and pancreatic ductal adenocarcinoma 

(29) did not promote cell proliferation but increased expressions of MUC2 and MUC5AC 

(which induce mucin production). Additionally, Taki et al. demonstrated that transgenic 

mice with pancreas-specific GNAS and KRAS mutations developed a cystic pancreatic 

tumor (30). However, intraperitoneal injection of CRC cells with exogenous GNAS mutation 

in mice did not produce PMP but resulted in the formation of solid tumors (28). These data 

suggest that both GNAS and KRAS may contribute to the oncogenesis of PMP. Further, the 

mutation rates in GNAS and KRAS increased from NOS to MU and to PMP in our data, 

implying a functional interaction of these two oncogenes on mucin production. Moreover, 

several studies showed that GNAS and KRAS mutations were independent from 

pathological grade which is related to PMP activity (31-35). In support of these findings, 

both GNAS and KRAS mutations were not reported to be prognostic in patients with PMP 

(32, 36). GNAS and KRAS mutations might be a genetic feature of PMP but not be easy 

therapeutic targets.

Our data for the first time demonstrated that all the subtypes of AA had much lower TP53, 

APC, and PIK3CA mutation rates in comparison with CRC, and the mutation rates were 

further much lower in PMP and SR than in NOS and MU. In CRC, TP53, APC, and 

PIK3CA are key driver genes for “adenoma-to-carcinoma sequence”, and the mutation rates 

are high in any stage or tumor status (37, 38). Our findings suggest that carcinogenic 

mechanisms of AA may be different from that of CRC. Wilson et al. showed that GNAS 
mutation cooperated with inactivation of APC leading to colorectal tumorigenesis, but not 

carcinogenesis (39). In addition, Noguchi et al. demonstrated that TP53, PIK3CA, and 

AKT1 mutations were detected in peritoneal mucinous adenocarcinoma but not in PMP 

(21). Although GNAS mutation might contribute to APC-driven tumorigenesis, mutations in 

TP53 and/or genes related to the PI3K-AKT pathway may be necessary for malignant 

transformation in PMP. On the other hand, SR exhibited lower mutation rates not only in 

TP53, APC, and PIK3CA, but also in KRAS and GNAS. In addition, the mutation rate of 

BRAF was much lower (7%) compared to SR of CRC (about 40%) (40, 41), suggesting that 

SR might differ from both other histopathological subtypes of AA and SR of CRC in both 

development and treatment strategies.

Recently, immune checkpoint based therapy has demonstrated better survival and tolerance 

in subsets of patients with both solid and hematological malignancies. Studies further 

showed benefit in immune checkpoint blockade in patients whose tumors with MSI-H, 
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TMB-H, and PD-L1 high expression (14). There is a need for molecular markers which can 

identify patients who are likely to benefit from immune checkpoint inhibitors. Therefore, 

overall immune profiling is an important emerging biomarker for cancer treatment. The 

appendix originated from the cecum, has many lymphoid clusters, and regulates IgA 

production in the large bowel sites (42), suggesting that AA may be subject to lymphocytic 

regulation more than R-CRC and L-CRC. However, interestingly, our study showed that 

immune profile of AA was similar to L-CRC but not R-CRC. In addition, NOS had a higher 

positive likelihood of expressing any of the evaluated immune check point inhibitor markers 

(11.4%) than other subtypes of AA (PMP: 1.6%, MU: 4.8%, SR: 3.9%) and L-CRC (6.7%). 

Although the carcinogenic mechanism of NOS is different from that of R-CRC and L-CRC, 

the immune characteristics might be closer to R-CRC. Further experimental studies are 

necessary to better understand this mechanism.

The efficacy of systematic chemotherapy and molecular targeted therapy for AA has not 

been well studied so far. Although a phase II trial in unresectable PMP suggested 

capecitabine combined with mitomycin C, the combination of fluorouracil (5-FU) and 

oxaliplatin/irinotecan is commonly used for the treatment of metastatic AA and PMP despite 

the paucity of efficacy data (3, 43). Our data showed that the positive ratios of ERCC1 and 

TOPO1 were higher in AA, especially in PMP, than in R-CRC and L-CRC, and that of TS 

was lower in AA, especially in PMP. ERCC1, a protein of the nucleotide excision repair 

(NER) complex, is essential for repairing platinum-DNA adducts and is involved in drug 

resistance to oxaliplatin (44); TOPO1, a molecular target of SN38, is a plausible positive 

predictive marker for irinotecan (45); and TS, a rate-limiting enzyme in the synthesis of 

pyrimidine nucleotides, is required for DNA synthesis and the activity is a negative 

predictive marker for 5-FU (44, 46). Thus, compared to CRCs, combination therapy with 5-

FU and irinotecan (due to lower TS and higher ERCC1 and TOPO1) may be more effective 

for AA, especially for PMP treatment. However, the predictive protein expressions for 

chemosensitivities are still controversial even in CRC. As increased mucin production is 

responsible for major complications and fatal outcome in patients with PMP, GNAS-related 

pathways (cAMP-PKA, MAPK, and Wnt signaling pathways) might be a potential 

therapeutic target: PKA inhibitor (28), BIM-46174 (inhibitor of heterotrimeric G-protein 

complex) (47), and a MEK-inhibitor (48) were reported to cause mucin production reduction 

in tumors with GNAS mutation. Biomarker studies according to the histopathological and 

molecular subtypes are needed to determine individualized treatment strategies for AA.

We also compared the molecular profiles of samples from primary and metastatic tumors to 

identify features that are associated with distant metastasis in AA. In consensus with the data 

from past reports (38), a high level of genomic concordance was detected. However, 

ARID1A mutation and MSI-H were specifically enriched in primary tumors compared with 

distant metastases in both R-CRC and L-CRC, suggesting their potential protective effects. 

Recently, ARID1A, a subunit of the chromatin remodeling complex SWI/SNF, mutation was 

reported to contribute to impaired mismatch repair and mutator phenotype in cancers (49). 

ARID1A could be a promising target for novel treatment strategies for immune checkpoint 

based therapy.
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Limitations in our study need to be mentioned. First, the retrospective study design could not 

exclude selection bias. Second, due to the loss of clinical data, such as precise TNM stage, 

treatment, and patient outcome, the direct effect of our findings in clinical perspectives is 

unclear, as well as the protective effect of ARID1A mutation and MSI-H for CRC patients. 

However, using the biggest dataset (183 samples from AA, 994 from R-CRC, and 1,080 

from L-CRC), our results may support the past findings and compare molecular profiles 

between AA, R-CRC, and L-CRC, and also between minor histopathological subtypes of 

AA. In addition, our dataset included immune profile and protein expressions, which could 

lead to selection of treatment strategies. Further large-scale prospective studies with detailed 

clinical data may be warranted to validate our findings and provide us more information for 

treatment strategies of AA.

In conclusion, molecular profiling of AA revealed different characteristics from R-CRC and 

L-CRC, and heterogeneity between the histopathological subtypes of AA. Our data suggests 

that these molecular differences should be recognized in treating the patients with AA. Upon 

validation with clinical features, our findings may provide novel insight to develop 

individualized approach for AA treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

AA appendiceal adenocarcinoma

CRC colorectal cancer

CRS cytoreductive surgery

FFPE formalin fixed paraffin-embedded

HIPEC hyperthermic intraperitoneal chemotherapy

IHC immunohistochemistry

IPMN intraductal papillary mucinous neoplasm

L-CRC left-sided colorectal cancer

MSI microsatellite instability

MSI-H MSI-high
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MU mucinous adenocarcinoma

NGS next-generation sequencing

NOS adenocarcinoma, not otherwise specified

PD-L1 programmed death-ligand 1

PMP pseudomyxoma peritonei

R-CRC riight-sided colorectal cancer

SR signet ring cell carcinoma

TMB tumor mutational burden

TMB-H TMB-high
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Translational relevance:

Compared to colorectal cancer (CRC), appendiceal adenocarcinoma (AA) is more 

associated with peritoneal dissemination and increased mucin production. However, AA 

patients typically receive therapies approved for CRC in spite of lower vulnerability. The 

molecular profiling of AA and to compare it with those of right-sided CRC (R-CRC) and 

left-sided CRC (L-CRC) is needed for personalized treatment strategy. We found that AA 

had higher mutation rates in GNAS and KRAS, and lower mutation rates in TP53, APC, 

and PIK3CA than CRC, and gene mutation rates differed between the histopathological 

subtypes. Although the immune profile results (microsatellite instability, tumor 

mutational burden, and PD-L1 expression status) of AA were similar to those of L-CRC 

(not to those of R-CRC), not otherwise specified AA (NOS) had higher overexpression of 

the markers than did other subtypes of AA and L-CRC. This molecular profiling may 

support developing a personalized treatment strategy in patients with AA.
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Figure 1. CONSORT diagram.
Flow chart showing the inclusion/exclusion criteria in this study.
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Figure 2. Immune profiling (the status of MSI, TMB, and PD-L1 expression) of AA, R-CRC and 
L-CRC, and the histopathological subtypes of AA.
A: The characteristics of immune profiles in AA, R-CRC, and L-CRC. B: The 

characteristics of immune profiles in the histopathological subtypes of AA.

Abbreviations: AA, appendiceal adenocarcinoma; L-CRC, left-sided colorectal cancer; MSI, 

microsatellite instability; PD-L1, programmed death-ligand 1; R-CRC, right-sided colorectal 

cancer; TMB, tumor mutational burden.
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