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Abstract

Background: Protein-protein interactions(PPls) engage in dynamic pathological and biological procedures
constantly in our life. Thus, it is crucial to comprehend the PPIs thoroughly such that we are able to illuminate the
disease occurrence, achieve the optimal drug-target therapeutic effect and describe the protein complex structures.
However, compared to the protein sequences obtainable from various species and organisms, the number of revealed
protein-protein interactions is relatively limited. To address this dilemma, lots of research endeavor have investigated in
it to facilitate the discovery of novel PPIs. Among these methods, PPl prediction techniques that merely rely on protein

examining the PPI networks.

learning

sequence data are more widespread than other methods which require extensive biological domain knowledge.

Results: In this paper, we propose a multi-modal deep representation learning structure by incorporating protein
physicochemical features with the graph topological features from the PPI networks. Specifically, our method not only
bears in mind the protein sequence information but also discerns the topological representations for each protein
node in the PPl networks. In our paper, we construct a stacked auto-encoder architecture together with a continuous
bag-of-words (CBOW) model based on generated metapaths to study the PPI predictions. Following by that, we
utilize the supervised deep neural networks to identify the PPIs and classify the protein families. The PPI prediction
accuracy for eight species ranged from 96.76% to 99.77%, which signifies that our multi-modal deep representation
learning framework achieves superior performance compared to other computational methods.

Conclusion: To the best of our knowledge, this is the first multi-modal deep representation learning framework for

Keywords: Protein-protein interaction network, Multimodal deep neural network, Knowledge graph representation

Backgrounds

Protein-protein interaction (PPI) networks are becoming
increasingly crucial for analyzing biomedical functions,
retrospecting species evolution and analyzing different
compounds that cause diseases. Moreover, comprehend-
ing the intrinsic patterns behind PPI networks facili-
tates the understanding of cancer-related protein-protein
interfaces and the topological structures of the cancer
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networks. Normally, two groups of research methods
can be formulated when analyzing PPI networks: com-
putational biology methods and high-throughput exper-
imental methods. Given a PPI network, computational
biology methods calculate the distances between pro-
teins according to network theory metrics (e.g. between-
ness, centrality, average degree) or machine learning algo-
rithms[1-3]. High-throughput techniques, on the con-
trary, including yeast two-hybrid screens (Y2Hs)[4], mass
spectrometry protein complex identification (MS-PCI) [5]
and Nuclear Magnetic Resonance (NMR)[6], etc. pro-

© The author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=s12859-019-3084-y&domain=pdf
mailto: zhang.1855@miami.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Zhang and Kabuka BMC Bioinformatics 2019, 20(Suppl 16):531

duce large amounts of data for constructing primary
protein databases. These databases provide primary and
rich sources for developing molecular and functional
networks. Nevertheless, these genome-based techniques
demand expensive wet-lab investment and exhaustive
lab work. Also, because of the equipment biases in the
experimental environment, the results generated by these
genome-based methods are subjected to inevitable inac-
curacy. Moreover, compared with the significant amount
of protein sequence data, the functional units that have
been discovered are comparatively restricted. Previously,
traditional machine learning algorithms such as deci-
sion trees (DT), naive bayes (NB) and nearest neigh-
bor (NN)[7] have been utilized efficiently in lots of
data mining tasks. Yet, these traditional machine learn-
ing techniques lack the capacity of discovering hidden
associations and extracting discriminant features from
the input complex data. Lately, accompanied with the
advancement of Al techniques, deep learning methodolo-
gies[8] extracting non-linear and high dimensional fea-
tures from the protein sequences [9, 10] have emerged
as a new tendency. These deep learning techniques and
frameworks have been recently applied in tremendous
biomedical research fields, biological network analysis,
and medical image examination. However, since natu-
ral and real-world data distributions are highly complex
and multimodal, it is essential to incorporate different
modalities and patterns from the data to attain satis-
factory performance. Additionally, discovering biological
pattern from the graph topology of these protein net-
works is fundamental in comprehending the functions of
the cells and their constitutional proteins. When applying
deep learning techniques to biological network analysis,
these modalities include topological similarities such as
1st-order similarity, 2nd-order similarity, and homology
features extracted from protein sequences. Additionally,
next-generation sequencing technologies also generate
large amounts of DNA/RNA sequences which are then
translated into protein peptides in the form of stacked
amino acid residues. These protein sequences consist of
fundamental molecules which perform biological func-
tions for various species [11-13]. Thus, the functionality
of a protein is encoded in the amino acid residues. To rec-
ognize the protein functionalities, researchers categorize
proteins into various families such that proteins within the
same family share similar functions or become the parts
on the same pathway. In this paper, we propose a advanced
multi-modal deep representation learning framework
preserving different modalities to harvest both pro-
tein sequence similarity and topological proximity. This
framework leverages both relational and physicochemi-
cal information from proteins and successfully integrates
them using a late feature fusion technique. These concate-
nated features are provided to the interaction identifier
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and protein family classifier for the training and testing
tasks.

To the best of our knowledge, this is the first multi-
modal deep representation learning framework for ana-
lyzing protein-protein interaction networks. Specifically,
the contributions of our method are listed as follows:

¢ A novel multi-modal deep representation learning
framework is presented that integrates both
unsupervised learning and supervised learning to
predict Protein-protein interactions and identify
protein families.

¢ In the unsupervised learning phase, we integrate the
multi-modality features learned from Continuous
Bag of Word (CBOW) model based on generated
metapaths and a stacked auto-encoder (SAE) model
to combine topological proximity features and the
physicochemical sequence features for each protein.
The SAE model is effective when denoising the
systems and is capable of reconstructing useful
representations from the partial raw data.

e In the supervised learning phase, we feed the output
from the unsupervised model into the supervised
model and achieve the higher PPI prediction
accuracy and protein family classification accuracy.
We apply our model on the DIP and the HPRD
networks to formulate low-dimensional
representations for high-level protein features.

The remainder of the paper is organized as follows. We pre-
sent the data preprocessing strategies, theoretical background
and algorithms of our methods in the “Methods” section.
The “Results” section describes the framework parame-
ter settings, dataset statistics, and experimental results.
Finally, we conclude the paper and envision the future
work in the conclusion part.

Methods

In this section, we illustrate our proposed framework
which can be divided into three phases including a protein
sequence preprocessing phase, an unsupervised learning
phase, and a supervised learning phase. Comprehensive
illustrations of each phase associated with their inputs and
outputs are examined in the following sections.

Protein sequence preprocessing phase

For computational intelligent machine learning and data
mining methods, it is demanded that the lengths of the
feature dimensions are the same. Consequently, encoding
protein sequences with various length amino acids into
equivalent length feature vectors are necessary for the fol-
lowing machine learning tasks. Therefore, in this phase,
we extract physicochemical information from the protein
residues consisting of stacked amino acids and trans-
form them into equal length numerical vectors. In this
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procedure, we maintain the constitutional protein residue
information as much as possible by obtaining the inherent
information in the protein peptides. We use the follow-
ing four methods for converting various lengths protein
sequences into fixed length numerical vectors[14].

Amino Acid Composition

The amino acid composition(AAC) statistics is the pro-
portion of each amino acid type inside a protein sequence.
The AAC computes the ratio of each type of amino acid
and convert the peptides into equal length numerical
vectors. The AAC can be computed as follows:

fr(t) = %,t €{A,C,D,...Y} 1)

Here, N(¢) is the number of amino acid type ¢ in a protein
sequence with length N and {A,C,D,...Y} represents
twenty types of amino acids.

Grouped Amino Acid Composition(GAAC)

For the Grouped Amino Acid Composition, the 20 types
of amino acids are classified into five categories according
to their physicochemical properties[15]. These five cate-
gories include the aliphatic group (gl: GAVLMI), aromatic
group (g2: FYW), positive charge group (g3: KRH), neg-
ative charged group (g4: DE) and uncharged group (g5:
STCPNQ)[14]. GAAC computes the frequency of each
group of amino acids as follows:

Ng
f@= ~NEE {g1,42,¢3, ¢4, g5} ()
N(g) =Y N()telg) (3)

Here, N, is the number of amino acids in group g, N(t)
is the number of amino acid for type ¢, and N is the total
length of the peptide sequence.

Conjoint Triad

The Conjoint Triad(CT) takes into account the proper-
ties of one amino acid and its adjacent amino acids by
considering three adjoining amino acids as an individual
feature[16]. We first represent the protein sequence using
a binary space (V, F). For the amino acids that have been
categorized into 7 classes[16], the length of V' can be com-
puted as 7 x 7 x 7 = 343. Therefore, the dimension of
vector V is 343. Each cell V; € V indicates a triad feature.
F is the number of vectors corresponding to V. f; is the
value of the it dimension of F representing the number
of types V; appearing in the protein sequence. Therefore,
the CT descriptor for a protein sequence can be derived
as follows:

d = Ji —min{fr,fa, ..., f33)
l max{fi,fa, . . . f3a3}

Here, d; is the normalization of f;.

(4)
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Quasi-Sequence-Order
For each amino acid type, a quasi-sequence-order descrip-
tor can be defined as the following equation:

Xr = 20 fr nlag _ ’

1 fr +w Zd:l Td

Here, f; is the normalized occurrence of amino acid type
r and w is the weighting factor initialized at w = 0.1[14].
nlag is the maximal value of the looking back parameter
lag. vy = Y N7Ndiira)® d = 1,2,3,.. ., nlag, and d; ;4
is the distance between cell d; and d;; 4 given a distance

matrix. In the experiments, we set the default value of the
lag at 30.

r=121...,20 (5)

Unsupervised Learning Phase

After preprocessing the raw sequential data, we trans-
form various lengths of protein sequences into 468 equal
length vectors using iFeature APIs [14]. In the unsuper-
vised learning phase, we first extract the deep features
from previously generated equal length vectors, which will
be fed into supervised prediction model.

Deep Feature Extraction

To obtain the deep features from the 468 dimensional
vectors, we utilize the Stacked Auto Encoder(SAE) frame-
work as shown in Fig. 1 and in Eq. 6.

Map,,, (p:) = Vi (6)

First, the input layer in the SAE takes the protein p;’s fea-
ture vector v; as the input vector generated during the data
preprocessing phase. After e intermediate encoding layers,
we obtain the output vector h* as shown in Eq. 7 from
the output layer. Here, WX, = € R"*% and bias,,, € R%
are the weight matrix and bias vector for the kz/ hidden
layer in the encoding layers and § represents the output
activation function. e denotes the number of encoding lay-
ers. The output deep representation vector h°# ¢ R%ut
of the input vector v; is then projected back to the space
of v; using the decoding function through decoding lay-
ers. Wflec is the weight matrix for the kth decoding layer
and d represents the number of decoding hidden layers. In
our model, we choose the number of encoding layers the
same as the number of decoding layers, i.e. e = d. Also,
the number of hidden units in encoding layers equals to
the number of hidden units in the decoding layers. Dur-
ing training phase, we update the parameters by using
Stochastic Gradient Descent (SGD) methods to minimize
the Ly loss function defined in Eq. 8. The whole deep fea-
ture extraction process can be depicted in Eq. 6, 7 and
Algorithm 1.

hout =4 (Wle(ncvi + biasenc) ,k = 1, 2,3 ... €
7)

=45 (wgechm + biasdec) k=1,2,3...d
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Fig. 1 Multi-modal Deep Representation Learning Framework

Ly(viy Vi) = (Vi = ¥i)* = (Vi = (Waech + biasgec)” (8)
CBOW Model Based On Metapaths

The CBOW/(Continuous Bag of Words) model from nat-
ural language processing(NLP) techniques approximates
the conditional probability in Eq. 9 [17]. Solving the
optimization problem from Eq. 9 learns the distributive
vectors that capture the proximity in the local network
topology between nodes within the path length w as
shown in Fig. 2. The objective function we try to minimize
can be described in Eq. 9. In this paper, for a center node
ec, we set w = 1. Particularly, we only use the adjacent
neighbors of node e, as contextual nodes to maximize the
structural context-local proximity. Here, the total number
of protein nodes in the network is represented by N in
Eq. 9. In the protein network, given a path consisting of
protein nodes, e; — ey — e3 — --- — ¢, we adopt
CBOW model to minimize the negative log-likelihood
function in Eq. 9. In our method, we define the CBOW
model as the unsupervised model since we did not label
the nodes manually. Instead, the system will automatically
learn the representation vectors of each node.

L(@)———Z > pleclecios6) )

—w=o=w

w#0

Homogeneous Metapaths Generation

Recently, thanks to the scalability and adaptability of ran-
dom walk technique, lots of research methods utilize
random walk based methods to learn node representa-
tions over graph structured data [17-19]. Among these
methods, metapath is the most recent one. During meta-
paths generation process, we set the length parameter as
length to indicate the walking distance starting from each

Algorithm 1 Algorithm for Unsupervised Learning Phase

Input: Protein Protein Interaction Network N (V, &)
window size win
context embedding size d
neighbors per node neighborSize
walk length /

Output: Matrix of vertex
R| Vix (dcom+dseq)

representation © €

- . Vixd
: Initialize matrix ®,; as W‘ | xdcont

1 cont
2: Oy, < DeepFeaExtrg, (V)

3: forallu € V do

4  MP, < GenMetaPath; (G, u,1)
5 CBOW (®Oos, MP,, win)

6: end for

7

: ® <« Concatenate (O, Oseq)
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1. DeepFeaExtr,, (V, d)
2: for i < 1 to Epochs do
3 forh < 1toH do

4 Sample a batch size of number N as x

5: h < f (x % W £ bgy) (Eq.7)

6 X < f (hx W £ by,

7: L <«Compute reconstructed error between X

and x

8: g < Compute the gradiendts of £ w.r.t Ogq
9: Oseq < Oseq — L * g
10. end for
11: end for
12: GenMetaPath (G, u, [, neighborSize)
13 RW[l]l=u

14: forj=0to/—1do
15 randomNeighbor «<— u.Neighbor[random(0, Neigh-

borSize(v))]
16:  RWI[i+1] = randomNeighbor
17: end for

18: return RW

190 CBOW (®opt, MP,, win)

20: forj=1to/do

21: v <« RW/[j]

22:  fori = max(0,j — win) — min(l,j + win) & q # p

do
23: ¢ < RW[i]
24 Ocont! < Ocons - nEHT
25:  end for
26: end for

protein node in the network. Also, for each protein node,
we set the neighborSize as the contextual sampling param-
eters indicating how many neighbors we take into account
as shown in Fig. 2. After that, we apply CBOW model try-
ing to learn the distributed node representations within
the network structured data and maximizes the likelihood
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of preserving the topological similarities between nodes.
We can regard metapath-based methods as a graph repre-
sentation model that estimates the occurrence likelihood
of observing v; given all the preceding vertices along the
short path as shown in Eq. 10.

Pr(vilvi—w, ..., Vitw) (10)

The metapath approach presumes that within a network,
the nodes co-occur along a short path tend to have intrin-
sic relationships. Therefore, based on random walk statis-
tics [20, 21], metapath-based methods optimize the node
embeddings such that nodes have similar representations
if they co-occur on short random walks over the graph
[22]. The basic idea of this set of approaches is to learn
the encoding matrix such that the following equation is
satisfied.

T,.
ety

ENC,(z;, zj) = T ~ pg,7(Vjlvi) (11)

vkeY e’

Here, v; is the next neighboring node of v;. ENC(z;, zj)
represents the statistical probability of v; given its neigh-
boring node v; along the path p. Since we only have one
type of relationship or edge in the PPI networks, our meta-
paths generation process was defined as the homogeneous
metapaths generation.

In our paper, the PPI networks are undirected graphs
with vertices V representing proteins and edges & rep-
resenting interactions. Accordingly, we generate node-
oriented metapaths for the protein nodes in the PPI net-
work first and then apply CBOW model to learn the
distributed topological representations for each protein
node. The details for the unsupervised learning phase can
be found in Algorithm 1.

eighbors

Fig. 2 Metapath Generation

Contextual Features
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Supervised Learning Phase

After the unsupervised learning phase, deep protein fea-
tures and protein topological representations are learned.
We then employ the feature fusion for those extracted fea-
tures before feeding them as the inputs to the supervised
learning model.

Feature Fusion

Figures 1 and 3 present the integrated structure of our
deep multi-modal representation learning framework,
including the two phases of the leaning process. First,
we fusion features learned from the CBOW model and
SAE model. By doing this, various modalities as the out-
puts from the previous unsupervised learning phase are
integrated.

out u;eq
hu =35|W ycont +b
P

(12)

As shown in Eq. 12, given a protein p, its topological fea-
ture is u;”"‘ and its deep protein sequence feature is u;eq
respectively. We concatenate these two features together
as uy, to represent p.

Supervised Learning Model

After we concatenate both topological proximity rep-
resentations and deep physicochemical features of the
proteins, we use them for the downstream protein interac-
tion identification and protein multi-family classification
tasks. Given two proteins m and n, their deep sequence
features are represented by vectors u,,! and u, | respec-
tively. Their topological proximity features are repre-
sented as #$" and u°™, which are obtained by CBOW
model based on generated metapaths. For the CBOW
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model, we set the window size win = 1 and the walk-
ing length as /. After this unsupervised learning process,
we concatenate the obtained features as u,, and u, and
feed them into the supervised learning model. Then, the
supervised learning model uses these features to perform
PPI identification and Protein Multi-Family classification
tasks as shown in Figs. 1 and 3.

e The PPI identification model consists of two deep
neural networks separately as shown in Fig. 1. One is
for protein m, and the other is for protein n. After the
last layer, we combine the extracted lower
dimensional features of the two proteins and feed
those features into the fully connected layer
connected to the output layer for classification.
During the learning process, we use the binary cross
entropy Eq. 13 as the loss function since the
interaction can only exist or not. Therefore, the final
classification results are the probability y = p(y|m, n)
that the two given proteins m and n interact with
each other.

N
1
LGry) = N E [yilogyi + (1 — y)log(1 — y)] (13)
im1

e For classifying the protein families, we construct the
model as shown in Fig. 3 and utilize the same features
obtained from the unsupervised learning phase. We
employ deep neural networks(DNN) for extracting
non-linear hidden features. Since we are required to
classify proteins into multiple categories, we use the
categorical cross entropy Eq. 14 as the loss function
here. Since this is multi-class classification task, we

Input Layer

DIP-1078N
DIP-199N
DIP-582N
DIP-51N
DIP-257N

Learning
Phase

DIP-704N
DIP-908N

DIP-1043N

dim-|V|

Fig. 3 Protein Family Classification Deep Neural Network
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calculate the individual loss rate for every class label ¢
per observation o and sum the results over all of the
N training samples.

(14)

[ _% Z > Yocll0gGoo)]

i=1 c=1

During the experiments, we use stochastic gradient
descent(SGD) as the optimization method.

Results

In the unsupervised learning phase, we set the the hid-
den layer parameters for the stacked auto-encoder(SAE)
as 256 — 128 — 64 — 128 — 256. 256,128, 64,128 and
256 represent the number of neurons for each hidden
layer separately. During the SAE training phase, we use
the mean squared error(MSE) as the loss function defined
in Eq. 15. After the auto-encoding process, the protein
sequence vectors are projected to the lower dimensional
space with vector length 64 at the layer 'z’ in Fig. 1. For
the graph topology embedding, during the metapath gen-
eration process, we fix the contextual sampling parameter
neighborSize = 4 and the metapath length / = 10 to gener-
ate the metapaths starting from each protein node. Then,
we set the window size win = 1 and the node vector length
v = 128 for each protein such that the CBOW model is
able to learn the distributive node representations.

R S VA
MSE=—3% (Yi =Y (15)

i=1

Dataset Description

During the experiments, we used two complete datasets
including Database of Interacting Proteins (DIP) released
20170205_FULL dataset http://dip.mbi.ucla.edu/dip/ and
Human Protein Reference Database http://www.hprd.
org/ (HPRD), which are the benchmarks and complete
databases most methods were tested on. The DIP dataset
includes eight species D. melanogaster, S. cerevisiae,
E. coli, C. elegans, H. sapiens, H. pylori, M. muscu-
lus, R. norvegicus. After removing the duplicate protein
sequences and the self-interactions, we obtained 3790
PPIs for C.elegans, 22,067 for D. melanogaster, 11,521
for E.coli, 1358 for H.pylori, 6677 for H.apiens, 2385
for M.musculus, 523 for R.norgegicus and 22,502 for
S.cerevisiae. First, we convert the raw protein data with various
sequence lengths into 486 equal length vectors using the
computational methods defined in the “Methods” section.
Then, we generated the negative datasets from eight dif-
ferent subcellular locations including Cytoplasm, Nucleus,
Endoplasmic reticulum, Golgi apparatus, lysosome, Mito-
chondrion, Cell Membrane and Lipid-ancho[10], in which
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different species of proteins reside. After that, we gen-
erated the corresponding negative samples by randomly
matching those proteins with others found in the dif-
ferent subcellular locations. To avoid biased data, we
generate the equal number of negative samples as the pos-
itive samples. The subcellular location information can be
accessed from the UniProt database https://www.uniprot.
org/locations/. After constructing the data, we mixed and
shuffled the data for each species in the DIP dataset. Then,
we split the data into the training dataset and testing
dataset with the ratio of 80% and 20% respectively.

During the training phase, for each species, we used the
PPIs in the training dataset to generate metapaths. The
PPIs in the testing dataset are hold-out. We trained the
CBOW model for 10 epochs and the SAE model for 50
epochs during the unsupervised learning phase. Figure 4
presents the MSE loss of training dataset and validation
dataset for S.cerevisiae species during the training process
using SAE framework. From the result, it can be seen that
the validation loss and the training loss are synchronized
with each other. This indicates that our model is not over-
fitting: the validation loss is decreasing instead of increas-
ing, and there is rarely any gap between the training and
validation loss. For the CBOW model, we give an exam-
ple in Table 1 after we train with the H.sapiens dataset.
The float values indicate the cosine similarity between the
query protein node and the top-10 most similar protein
nodes in descending order. Given a query protein with ID
DIP-41844N, which is the protein 5-hydroxytryptamine
receptor 2A, we returned the most similar proteins mea-
sured by cosine similarity with respect to the query. The
returning results can be verified by checking actual neigh-
bors of DIP-41844N in the DIP database. It turns out
that all the 1-hop neighbors of DIP-41844N have been
correctly returned by the CBOW model ranked by their
similarity scores. After the unsupervised learning phase,
we performed late fusion on these deep abstract sequence
vectors and topological feature vectors as 128 + 64 = 192
length vectors. Then, we feed them into the supervised
learning model for downstream interaction identification
and multi-family classification tasks. For the interaction
identification task, the supervised learning model con-
sists of one fully connected layer having 64 hidden units.
The number of units in the output layer is decided by
the number of classes we need to identify. For the pro-
tein interaction identification task, the class label is either
0 or 1 indicating interaction or non-interaction respec-
tively. For the family classification task after the unsu-
pervised learning phase, we build three-layer deep neural
network(DNN) as shown in Fig. 3. We train the DNN
for 200 epochs with a dropout rate at 0.5 and batch
size at 64. The number of units in the output layer is
determined by the number of protein families we aim to
categorize.
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Evaluation Metrics

During the experiments, we used Area Under the
Receiver Operating Characteristic curve(AUC_ROC),
Specificity(SPC), Accuracy(ACC), Precision, and Recall
(or Sensitivity) to measure the prediction accuracy and
data divergence using our method. The metric formulas
are described as the following equations:

.. TP
Precision = ———— (16)
TP + FP
TP+ TN
ACC = + (17)
TP+ TN + FP + FN
TN
SPC = — 18
TN + FP (18)
TP
Recall = ——— (19)
TP + FN

Here, TP, FP, TN, and FN denote True Positive, False
Positive, True Negative and False Negative respectively.

Comparison with traditional methods

In our paper, we extensively compare our multi-modal
deep representation learning framework with the tradi-
tional machine learning methods. We present the results
of our method using all eight species in the DIP dataset
and assess the receiver operating characteristics(ROC)
scores using 5-Cross Validation methods in Fig. 5. Since
the number of neurons in each hidden layer, the number
of layers, and the vector size of the metapath represen-
tations of proteins are all critical parameters, we studied
and tried various combinations to discover the model
with the best performance. After that, the model with
the best performance was selected to test the hold-out
dataset as shown in Table 2. From the results in Fig. 5, we

can see that most of the AUC scores achieved 0.99 using
our model. To evaluate the performance of our method
more thoroughly, we compared our model with traditional
machine learning techniques[23, 24] including Nearest
Neighbors(k=2), Decision Tree, Random Forest and Naive
Bayes in Figs. 6 and 7 respectively using ACC, Recall and
AUC-ROC metrics.

Comparison with state of the art methods

We also compared our model over the DIP dataset across
different species with the cutting-edge methods compris-
ing of deep learning techniques using different evaluation
metrics. Since previous researches use different species
for evaluation, we compare them separately as shown

Table 1 Top-10 Similar Proteins to
DIP-41844N(5-hydroxytryptamine receptor 2A)

Protein ID Protein Name Cosine Similarity

DIP-49960N  Nucleoside diphosphate kinase 3 0.90755

DIP-31554N  Ribosomal protein S6 kinase alpha-3 0.89557

DIP-38298N  NADH dehydrogenase [ubiquinone] 0.85293
1 beta subcomplex subunit 10

DIP-36377N  Microtubule-associated protein 1A 0.82932

DIP-61575N  Cannabinoid receptor 1 0.82696

DIP-41406N  Ankyrin repeat and sterile alpha motif 0.82623
domain-containing protein 1B

DIP-61135N 39S ribosomal protein 128, 0.82200
mitochondrial

DIP-5723N  neurotrophin-3 receptor precursor 0.81994

DIP-61136N  Serum paraoxonase/arylesterase 2 081177

DIP-59826N  Metabotropic glutamate receptor 2 0.79176
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in Tables 3, 4, 5, 6, and 7. For instance, for S.cerevisiae
species, compared to the other four most advanced meth-
ods, our multi-modal deep learning predictor still outper-
forms them. The ACC, Precision, Recall and AUC scores
reach 2.76%, 4.27%,5.73% and 0.0158 higher than Du’s
work, which proves the advantage of our model. And
for E.coli, Drosophil and C.elegans datasets, we compare
our model with two other most advanced methods [10]
and [25] using the same metrics including Recall, ACC
and SPC. For E.coli and C.elegans species, we outperform
them using all three metrics. While, for Drosophil species
we achieve higher performance using ACC and SPC met-
rics but slightly lower than other two methods using the
Recall metric.

Prediction Across Species

We not only tested our model within the same species,
but also used the S.cerevisiae training dataset as the
overall training dataset and assess the prediction
performance on the rest seven species using various
metrics. In the experiment, the S.cerevisiae training
dataset includes 36,006 negative and positive samples.
The prediction performance of the rest seven species
is presented in Table 8. We can see from the table that
the accuracy for D. melanogaster, E. coli, C. elegans,
H. sapiens, H. pylori, M. musculus, R. norvegicus are
96.76%, 97.70%, 98.44%, 98.50%, 98.84%, 98.69%, 99.77%
respectively. Consequently, although only using single
species training dataset, our multi-modal deep repre-
sentation learning framework is still outperforms other
methods using various evaluation metrics. Further-
more, we also examines D. melanogaster species and R.

norvegicus species, which have not been explored by
other methods yet and also achieves promising prediction
accuracy.

Prediction using HPRD dataset

To compare other methods comprehensively and extend-
ing our previous work[29], we used HPRD as another
benchmark dataset for testing. For the HPRD dataset, we
only retrieved human proteins with family information
from the Uni-Prot database while disgarded the human
proteins without family annotations. After that, we have
16,915 human PPI interactions and 4185 human proteins.
Then, we performed PPI prediction on the HPRD dataset.
During this process, we generated the same amount of
negative instances with positive samples using five sub-
cellular positions consisting of Cyptoplasm, Endoplasimic
reticulum, Golgi apparatus, Lysosome, Mitochondrion,
Nucleus. The five cross validation ROC curve is plotted in

Table 2 Hyper-parameter settings

Parameter Settings

Batch Size 64

Learning Rate 0.01

Stacked Auto Encoder Architecture 256-128-64-128-256
Optimization Method SGD

Window size 1

CBOW Node Embedding Size 128

Neighboring Node 4

Metapath Length 10
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Fig. 8. We compared our method with [10] and [30] using
the same DIP H.sapiens dataset in Table 7 and the HPRD
dataset and proved that our prediction accuracy is higher
than those methods.

Protein Family Classification

In addition to interaction prediction, we performed down-
stream multi-family protein classification tasks as well
using the same features from the unsupervised learn-
ing phase. In our experiments, family annotations are
obtained from the UniProt database https://www.uniprot.
org/. We use all the proteins in the DIP dataset and acquire
the families they belong to from the database. Amongst
the protein families in the dataset, we only choose those
families with more than 15 samples. This results in the

top frequent 99 protein families to verify our results. We
present the training accuracy and validation accuracy in
Fig. 9 to show our model is not subjected to overfitting.
Then, we evaluate using 5-CV and compare our predic-
tion accuracy with traditional methods including Random
Forest, SVC and GaussianNB classifiers. Since classifying
proteins according to their family annotations is a multi-
class classification task, we therefore use F1 score to assess
the models’ performance defined as the following Eq. 20:

precision X recall
x

F (20)

[—y

precision + recall

As can be seen in Figs. 10 and 11, our multi-modal
deep representation learning framework outperforms the
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Table 3 Comparison of 5-CV prediction performance between our method and state of the art methods using S.cerevisiae
dataset(Note: N/A: Not Available)

Method Precision ACC Recall AUC

Our Method 100.00% =£0.00% 99.08% +£0.13% 98.15%=0.27% 0.9908+0.13
Du's work[9] 96.65%=0.59% 94.43% £0.30% 92.06% £0.36% 0.9754
Wong's work[26] 96.45%=0.45% 91.10%=0.31% 93.92%=0.36% 0.94 £0.002
You's work[27] 91.94%=+0.62% 91.36%=+0.36% 90.76%=+0.69% 0.9707+0.12
Guo's work[3] 88.87%=+6.61% 89.33%+2.67% 87.37%=+0.22% N/A

Table 4 Training performance between our method and other methods over the E.coli species(5-CV)

Method Recall ACC SPC

Our Method 97.20% 97.85% 99.08%
Sun’s work[10] 96.89% 96.05% 95.28%
Guo's work[25] 95.11% 92.73% 90.35%

Table 5 Training performance between our method and other methods over the Drosophil species(5-CV)

Method Recall ACC SPC

Our Method 99.06% 99.20% 99.78%
Sun’s work[10] 99.51% 97.84% 96.28%
Guo's work[25] 99.53% 90.09% 80.65%

Table 6 Training performance between our method and other methods over the C.elegans species(5-CV)

Method Recall ACC SPC

Our Method 98.28% 98.81% 100.00%
Sun’s work[10] 99.35% 97.23% 95.28%
Guo's work[25] 96.46% 97.51% 98.55%

Table 7 Prediction accuracy comparison between our method and state of the art methods over the H.sapiens and HPRD dataset

Method HPRD DIP

Our Method 97.61% 95.94%
Sun’s work[10] 97.14% 93.77%
Pan’s work[30] 86.70% 90.04%

Table 8 Prediction Results on Seven Species using Our Proposed Framework, Based on S.cerevisiae Training Dataset as the Overall
Training Dataset (Note: N/A: Not Available)

Species Our Method Du’s work[9] Huang's work[28] Zhou's work[2]
C.elegans 98.44% 94.84% 81.19% 75.73%
H.sapiens 98.50% 93.77% 82.22% 76.27%
M.musculus 98.69% 91.37% 79.87% 76.88%
H.pylori 98.84% 93.66% 82.18% N/A
D.melanogaster 96.76% N/A N/A N/A

E.coli 97.70% 92.19% 66.08% 71.24%

R.norvegicus 99.77% N/A N/A N/A
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traditional methods using both Micro-F1 and Macro-F1
scores.

Discussion

In this paper, we compare our multi-modal deep learning
framework with representative traditional machine learn-
ing methods and state of the art methods. These state of
the art methods include deep learning methods. Then,
we verify our method across all eight species provided
by DIP_FULL and HPRD datasets. For instance, for the
S.cerevisiae dataset in DIP, our accuracy achieved 99.79%
while the performance of the other four methods was

95.28%,95.15%, 99.40% and 74.56% respectively. As for
the Recall score for S.cerevisiae species, our recall scores
achieved 98.13% while the values of the other four meth-
ods are 97.07%, 93.92%, 94.14% and 37.25% respectively.
For the HPRD dataset, we can see from the results that the
mean ROC score achieves 0.9942, which is consistent with
other species in the DIP dataset.

Additionally, we predict protein families based on the
deep protein representation features with our models
on the DIP dataset. Our method achieves up to 33.9%
improvements in terms of Micro-F1 score and achieves up
to 74.4% improvements in terms of Macro-F1 score over
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the best performance among Random Forest, SVC and
GaussianNB classifiers. Different from other protein fam-
ily classification methods[31-33] which require at least
200 instances for each family, our method does not heavily
rely on large dataset.

Conclusions

In summary, our multi-modal deep representation learn-
ing framework harvest features that are highly predictive
of protein function. It captures both sequential protein
raw information with the topological structure to improve
the PPI prediction accuracy and multi-class classification

accuracy given the complex, non-linear interaction net-
works PPI network. We apply our methods on both DIP
and HPRD datasets. After applying the CBOW model
based on generated metapaths, our model is able to
take into account the graph topological information into
account. We use various mainstream metrics to assess
the performance over the new released DIP_20170205
FULL dataset including eight species and HPRD datasets.
Through extensive comparisons with both traditional
machine learning methods and state of the art deep learn-
ing methods, we prove that our method outperforms most
of them over the same datasets.
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