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Abstract

The manifestation of risk versus resilience has been considered from varying perspectives 

including genetics, epigenetics, early life experiences, and type and intensity of the challenge with 

which the organism is faced. Although all of these factors are central to determining risk and 

resilience, the current review focuses on what may be a final common pathway: metabolism. 

When an organism is faced with a perturbation to the environment, whether internal or external, 

appropriate energy allocation is essential to resolving the divergence from equilibrium. This 

review examines the potential role of metabolism in the manifestation of stress-induced neural 

compromise. In addition, this review details the current state of knowledge on neuroendocrine 

factors which are poised to set the tone of the metabolic response to a systemic challenge. The 

goal is to provide an essential framework for understanding stress in a metabolic context and 

appreciation for key neuroendocrine signals.
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1. Introduction

1.1. Defining Resilience in the Context of Metabolism and Neuroendocrinology

Resilience is broadly defined as an individual’s ability to endure and recover from major life 

adversity. In the context of neuroendocrine function, resilience can be understood as one’s 

ability to withstand stress exposure without the development of significant maladaptations. 

A common endpoint for defining resilience is the resistance to developing stress-induced 

neuropsychiatric syndromes, which can include mental health disorders such as major 

depressive disorder or post-traumatic stress disorder (PTSD). Although not widely linked to 

metabolism, there is an emerging body of evidence that many of these stress-induced 

neuropsychiatric syndromes are correlated with, and possibly driven by, disruptions in 

metabolic processing within key peripheral and brain tissues, suggesting that stress 

resilience may be linked to pro-adaptive metabolic processing within these tissues.
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When considering the interaction between stress resilience and metabolism it is necessary to 

first establish how we should conceptualize metabolism. The historical (and most widely 

accepted) consensus on metabolism regards the most important metabolic function as the 

ability of an organism to produce sufficient energy to perform biological functions. 

However, there are other equally important functions of metabolism necessary for an 

organism, such as the production of intermediates for the biosynthesis of macromolecules 

and for the regulation of directionality of metabolic pathways. Therefore, it is necessary to 

not think about metabolic pathways within a vacuum, but rather in the context of integrated 

physiological functions, where metabolic pathways are constantly in a state of flux, 

responding to a diverse set of ever-changing stimuli and demands. For the purposes of this 

review, we will consider metabolism within the four essential functions of metabolism for 

cells, as laid out by Navdeep Chandel in his publication, Navigating Metabolism (Chandel, 

2015). According to Chandel, metabolism provides energy through the generation of ATP in 

order to carry out cellular functions. In addition, metabolism converts nutrients into simpler 

structures (catabolism), which may contribute to energy production. In the other direction, 

metabolism serves to convert simpler structures, such as amino acids and fatty acids, into 

macromolecules through anabolism, a process which requires the input of energy. Finally, 

metabolism operates outside of the confines of energy production, catabolism, and 

anabolism to participate in cellular functions such as signaling and gene transcription.

Of the stress-induced neuropsychiatric syndromes, PTSD has a particularly robust link to a 

metabolic phenotype. The concept that PTSD encompasses metabolic aberrations that are 

similar to those present in individuals with metabolic disorders was discussed in a relatively 

recent review (Michopoulos et al., 2016). Of particular interest is the observation that, within 

populations suffering from PTSD, there is the recurrent theme of disrupted glucose 

metabolism and increased abdominal obesity (Cohen et al., 2009; Li et al., 2016; 

Rosenbaum et al., 2015; Thorp and Schlaich, 2015). Notably, both of these metabolic 

phenotypes are routinely correlated with insulin resistance. Additionally, even though 

peripheral glucocorticoid receptor (GR) expression has, at least in some reports, been 

documented to increase in both metabolic syndrome and PTSD (Gola et al., 2014; Kang et 

al., 2015; Moraitis et al., 2017), there are contradictory cortisol stress responses. Individuals 

with PTSD tend to demonstrate an increased cortisol response, while individuals with 

metabolic syndrome demonstrate a decreased cortisol response to stress (Epel et al., 2000; 

Kolassa et al., 2007). A meta-analysis establishing a correlation between physical exercise 

with the reduction in symptom severity for individuals with PTSD suggests a potential role 

for peripheral metabolism in influencing PTSD symptoms (Rosenbaum et al., 2015). In an 

earlier review, Michopoulos and colleagues highlighted metabolic factors that have been 

identified as potential biomarkers for the pathogenesis of PTSD (Michopoulos et al., 2015). 

These findings, in conjunction with the observed increase in pro-inflammatory cytokines 

(Michopoulos, 2017; Miller et al., 2017; Monteiro and Azevedo, 2010; Paoletti et al., 2006; 

Sharma, 2011; Speer et al., 2018), suggest that there is overlap in the metabolic features of 

PTSD and metabolic syndrome.

While the links between many mental health disorders and metabolism remain poorly 

understood, the correlation between depression and metabolism is becoming increasingly 

clear. Both patients diagnosed with depression and rats exposed to chronic stressors, a 
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common technique for inducing depression-like phenotypes in rodents (Golden et al., 2011), 

demonstrate altered cerebral metabolic activity as quantified by positron emission 

tomography (Kumar et al., 1993; Su et al., 2014; Wang et al., 2014). The reduction in 

metabolic activity has been attributed to reduced glutamate release from neurons which 

thereby decreases local glucose transport (Popoli et al., 2012). Contrary to this traditional 

dogma, it is possible that a primary reduction in facilitated glucose transport subsequently 

suppresses neuronal activity. Facilitated glucose transport is mediated by a family of 

transmembrane glucose transporters (GLUT) expressed in endothelial cells that comprise the 

blood-brain barrier and mediate the transport of glucose to become accessible for the 

metabolic processing of astrocytes and neurons. Previous work has demonstrated that 

exposure to chronic stress in rats causes sex and age specific alterations in GLUT expression 

(Kelly, Harrell, and Neigh, 2013) and treatments that are currently effective in treating 

depression (i.e., pharmacological serotonin and norepinephrine selective reuptake inhibitors) 

have been shown to alter GLUT function (Hajduch et al., 1999; Shimizu et al., 1998).

Furthermore, the links between depression and metabolic syndrome have been discussed in a 

recent review (Chan et al., 2019). Potential commonalities between metabolic syndrome and 

depression may be explained, in part, due to the related underlying genetics among the 

disorders (Postolache et al., 2019). However, the role of diet as a means of altering 

peripheral metabolism and contributing to depression pathogenesis remains an active area of 

research. Indeed, dietary influences that shift metabolism increase the risk of manifestation 

of depressive-like behaviors in animal models. For example, maternal exposure to high fat 

diet in rats demonstrated increased depressive-like behavior in their offspring (Giriko et al., 

2013). In addition, exposure to a high fructose diet starting in adolescence increases 

depressive-like behaviors in adult rats (Harrell et al., 2015a). In humans, a Mediterranean 

diet or vegetable-based diet were positively associated with improved resilience to 

psychological stress when compared to a Western-style diet consisting of higher fat and 

sugar intake (Appleton et al., 2015; Bonaccio et al., 2017; Freeman and Rapaport, 2011; Li 

et al., 2017). Collectively, many of the parallels drawn between PTSD and metabolic 

disorders by Michopoulos and colleagues, are also present with mood disorders (Gragnoli, 

2014). A few of the main metabolic factors that are frequently mentioned in this context are 

glucocorticoids, leptin, and NPY, which are discussed in further detail later in this review 

along with less commonly considered neuroendocrine factors.

Collectively, this review aims to present a framework linking stress-induced disorders and 

the concepts of risk and resilience to the biological mediators of metabolism. We will 

recapitulate the foundations of stress and allostasis as developed by field founders Selye and 

McEwen. We will then analyze the connections between stressor exposure and metabolic 

responses both at the system level and at the level of cellular metabolism with a focus on 

mitochondria. Finally, we will examine the roles of neuroendocrine mediators of metabolism 

and their potential roles in risk and resilience. This review aims to provide the essential 

background and landscape of the current knowledge related to possible metabolic influences 

of risk and resilience through a neuroendocrine lens in order to provide a platform from 

which to design and implement critically needed research to explain the manifestation of 

stress-induced neural disruptions and improve the outcomes of individuals faced with such 

challenges.
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1.2. Building a Context for Risk and Resilience: From Selye to McEwen

In 1926, Hans Selye, a second-year medical student at the University of Prague, remarked to 

his professor that all his patients, regardless of their diagnosis, appeared to have a similar 

syndrome. All the patients exhibited a loss of energy, reduced appetite, depressed mood, and 

general apathy. Selye described these collective observations as the “syndrome of being 

sick”. His ideas were dismissed as inconsequential at the time, but he went on to study this 

“syndrome” and in 1936 published his landmark paper on the topic in Nature (Selye, 1936). 

The degree to which a patient’s body changes in response to some other force, perhaps an 

infection or injury, and the phenotypic manifestation of that degree of change, which Selye 

first noted. What we now commonly refer to as stress, is actually ‘strain’. As Selye himself 

acknowledged, he originally chose the wrong word (Selye, 1956). Also central to this 

concept is the relationship between stress and strain. The fields of physics and materials 

science have established clear models for the relationship between stress and strain in elastic 

materials. Initially, as stress is applied to a material, the relationship between the applied 

stress and the resulting deformation (strain) is linear and reversible for a certain degree of 

interaction - the ‘elastic region’ (Figure 1). As stress is continuously applied, the relationship 

crosses the ‘elastic point’ the interactions are no longer linear yet remain reversible until the 

final, irreversible, breaking point is reached. Applying these concepts in a biological context 

provides a useful framework for understanding the principles of stress resilience. Changing 

the terms adopted by Selye, we replace ‘strain’ with ‘biological stress’, which has since been 

shortened to just ‘stress’. Given that Selye realized he had used ‘stress’ incorrectly, he had to 

generate a new term to replace it in order to describe the forces applied on the organism. For 

this, he chose ‘stressor’; which could include anything that applies biological stress to an 

organism. This could include physical insults like infection or injury, or physiological 

insults, such as grief, abuse, or being the subject of social stigma. When we think about 

resilience, it usually can be imagined in the ‘elastic region’. Biological adaptations, 

including alterations in metabolic function, will occur in response to stressors, commonly 

called an ‘acute stress response’. These changes are predictable and reversible. However, in 

the inelastic region of resilience, we begin to see permanent adaptations. These changes may 

help facilitate the survival of the organism, though they vary by individual, they may be 

associated with long-term maladaptations, and may be much harder to reverse. These long-

term alterations in the response of an organism to stressors bring us to the concept promoted 

by Bruce McEwen: allostasis.

Allostasis is a modern expansion of the concept of physiological homeostasis. This concept, 

first introduced in 1988 by Sterling and Eyer, was proposed as a model to account for 

physiological and behavioral systems that exhibit variable regulatory responses in order to 

maintain homeostasis (McEwen; Figure 2). Under certain conditions, such as chronic stress, 

when the human body is no longer able to effectively maintain allostasis, a state of 

“allostatic load” arises to compensate for the abnormal performance of allostatic systems. 

Extensive allostatic load can contribute to disease, and overall dysregulation of the organism 

in question (Ghini et al., 2015). In one study, allostatic load was utilized as a measure of 

physiological frailty, and increased allostatic load correlated with increasing age (Crimmins 

et al., 2003). However, an organism’s ability to maintain allostasis is difficult to quantify, 

and biological measures must be used. Ghini and colleagues utilized metabolic phenotype, 
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or metabotype, as a measure of an individual’s capacity to adapt to external stimuli or 

maintain allostasis (Ghini et al., 2015). Using long term tracking of the urine metabotype it 

was demonstrated that an individual has the ability to maintain a relatively narrow metabolic 

phenotype, within a much broader scale. In the same study, individuals that experienced a 

short-term stressor demonstrated metabotype drift but were able to return to their original 

metabotype range upon termination of the stressor. When the same individuals experienced 

longer term, chronic stressors, their metabotype was irreversibly changed. The ability to 

return to baseline metabotype confers a measure of resilience in the response to stress, and 

may dictate that metabolic parameters can be further used to quantify allostatic load in the 

face of events such as chronic stress.

An organism’s ability to maintain allostasis is in direct correlation with their capacity for 

resilience, and allostatic load can be utilized as an inverse measure of an organism’s 

resilience. Allostasis integrates the role of metabolism in the manifestation of stress-related 

repercussions and the concepts of stress originally introduced by Selye. As we build towards 

understanding the roles of neuroendocrine mediators of these phenomena, it is essential that 

we orient stress in a more complete metabolic context.

2. Defining ‘Stress’ in a Metabolic Context

2.1. Organism-level Responses to Acute and Chronic Stress

The sympathetic nervous system (SNS) and the hypothalamic pituitary adrenal (HPA) axis 

are both activated during the stress response; however, there are differences in the manner 

through which acute and chronic stressors activate these systems. These differences have 

both metabolic and neuroinflammatory implications. In general, the goal of a stress response 

is to mobilize energy in order to adequately remedy the impact of the stressor. Energy 

mobilization can occur through increased gluconeogenesis, lipolysis, ketosis or any other 

catabolic process that provides components that can be utilized as an energy source. In the 

context of acute stress, these energy mobilization demands are short-lived and generally do 

not have a lasting global effect on the system. In response to an acute stressor, activation of 

the SNS stimulates the release of catecholamines which have been shown to cause activation 

of brown adipose tissue (BAT) resulting in elevated thermogenesis through subsequent 

activation of mitochondrial UCP1 (uncoupling protein; Lowell and Spiegelman, 2000). As 

its name suggests, UCP1 is an uncoupling protein located in the mitochondria that works to 

effectively dissociate energy production from thermogenesis. This is achieved through 

bypassing the electron transport chain to allow for the oxidative energy to dissipate as heat. 

Unlike other proteins in the uncoupling protein family, UCP1 is specific to BAT (Klaus et 

al., 1991). Initially BAT was thought to be negligible in the context of adult human 

metabolism, with significance only in infants (Drubach et al., 2011; Gilsanz et al., 2011). 

This view has since changed with evidence that BAT can be generated in adults and exert 

metabolic activity under the appropriate conditions (Lee et al., 2011; Wang et al., 2015). In 

mice and rats, central activation of GLP-1R or activation of GLP-1R in the VMH 

respectively, led to increased UCP1 expression causing the “browning” of white adipose 

tissue (Beiroa et al., 2014). While we have talked about acute stress activation of BAT, it is 

important to note that chronic stress leads to an adaptive mechanism where brown adipose 
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tissue is no longer activated as consistent thermogenesis through this mechanism would 

expend too much energy in a situation where the stressor is prolonged (Rabasa et al., 2019). 

This illustrates the flexible functionality of normal stress-induced metabolic responses 

which are programmed to address perturbations to homeostasis in the most efficient manner. 

Interestingly, an acute stressor of increased severity has been demonstrated to induce 

temporary anorexic effects, essentially reducing food intake and thereby limiting the supply 

of exogenous energy sources (Valles et al., 2000). A previous review examining the 

reciprocity between energy balance and stress response, elucidated the complex interactions 

between the HPA-axis, sympathetic nervous system and metabolic energy demands in the 

context of diet, calling for further research on the implications of sex differences on these 

associations (Harrell et al., 2016).

In the context of energy efficiency, it is important to consider diet as a factor, especially in 

the purview of chronic stress. Dietary intake provides a replenishing source of energetic fuel 

to be further broken down and consumed on a cellular level. The energetic makeup of an 

organism’s diet may have pertinent implications on the efficiency of energy usage and 

therefore impact the rate of energy exhaustion. Recently, a great deal of attention has turned 

to the ability of ketone bodies to act as an alternative energy source to glucose within the 

brain (Courchesne-Loyer et al., 2013). Due to this ability, a variety of studies have 

undertaken exploring the potential neuroprotective effects of a ketogenic diet (KD) in the 

face of neurological dysfunction (Choi et al., 2016; Kelley and Hartman, 2011; Prins, 2008). 

Brownlow and colleagues demonstrated that a KD could have both beneficial metabolic 

effects and provide cognitive protection in the face of chronic stress in rats (Brownlow et al., 

2017) .

If chronic stress creates an energetic shortage in the organism, then in theory, resolution of 

inefficient metabolic patterns, or supplementation with additional metabolic fuel, should 

improve the maladaptations associated with chronic stress. Dallman and colleagues 

demonstrated ameliorative potential of acute sucrose supplementation proximate to stress 

(Dallman et al., 2003; Foster et al., 2009; Pecoraro et al., 2004); however, chronic increases 

in sugars within the diet can lead to adverse effects (Harrell et al., 2018, 2016, 2015a). 

Bypassing the metabolism of sugars and directly supplementing with glycolytic byproducts 

does appear to confer some benefit. Previous work demonstrates that supplementation with 

pyruvate, a product of glycolysis, has a protective effect against immunosuppression caused 

by chronic restraint stress (Neigh et al., 2004b).The idea of energy over-expenditure 

underlying stress effects (Giovambattista et al., 2000; Neigh et al., 2004a) is further 

supported by the finding that inhibiting or knocking down PARP-1, an enzyme linked to 

metabolic energy exhaustion when uncoupled from its cofactors, provides protection against 

immunosuppression induced by chronic exposure to stressors (Drazen et al., 2001; Neigh et 

al., 2005). These findings suggest that energy efficiency and balance play a critical role in 

regulating immune system resilience in conditions of chronic stress and the same principle 

could hold true for other biological systems.

Building on the idea of cellular metabolism as a critical variable in the manifestation of 

stress-induced consequences is evidence from the study of hypoxia induced factor-1 

(HIF-1). HIF-1 is an oxygen responsive transcription factor that is constitutively expressed 
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and regulated by enzymatic degradation (Sharp and Bernaudin, 2004). Because the brain is 

physiologically hypoxic, HIF-1 can play a larger role under systemically normoxic 

conditions as compared to other organ systems. HIF-1 also appears to be responsive to 

activation of the HPA axis via response to corticotropin releasing factor activation (Chen et 

al., 2007). Recent work has demonstrated that pharmacological stimulation of HIF-1α leads 

to an augmented corticosterone response to a brief air puff stressor in rats (Harrell et al., 

2015b). This work not only highlighted interactions between the HIF-1 pathway and the 

HPA axis but also introduced the role of FKBP4 and FKPB5 (co-chaperones for the GR) as 

potential mediators. Earlier literature shows that hypoxia can lead to alterations in the gene 

expression of GR, and in turn allow for GR to regulate expression of other hypoxia related 

genes (Kodama et al., 2003). In a PTSD-like rat model, triple moderate hypobaric hypoxia 

(MH3) served as a substantial metabolic stressor and led to increased HIF-1α expression in 

the hippocampus; however, preconditioning with MH3 reduced HIF-1α overexpression upon 

re-exposure to stress (Baranova et al., 2017). Combined with the relationship between 

HIF-1α, GR activation, and increased glucocorticoids, this finding suggests that 

preconditioning to metabolic stressors may provide protection from dysfunctional stress 

response upon re-exposure. However, this protective effect is stressor specific and further 

investigation into preconditioning with other metabolic stressors is needed. Also, as the body 

and brain are comprised of many tissues and cell-types, each under differing metabolic strain 

in response to chronic stress, it can be appreciated that an increased resolution for 

understanding tissue-specific metabolic vulnerability to chronic stress is required for the 

development of appropriate pro-resilient therapies.

2.2. Cellular Effects of Stress: Mitochondria as Tone Setters

At the cellular level, the mitochondria are critical to consider when examining the bridge 

between organismal stress and long-lasting biological repercussions. Mitochondria are 

dynamic organelles within the cytoplasm of Mammalian cells that are well regarded as the 

primary producers of energy. Within the mitochondria oxidative phosphorylation occurs 

through a series of biochemical reactions, which utilize energetic substrates and oxygen to 

produce ATP for use in energy dependent reactions. Mitochondria are responsible for the 

synthesis of glucocorticoids and catecholamines (Picard et al., 2018). As previously 

discussed, these and other hormones are responsible for substrate mobilization when 

organismal stress increases energy demand. Mitochondria must then respond to this demand 

by transforming these liberated substrates into ATP and metabolic signals in order to 

facilitate allostatic compensation. Due to this reciprocal communication between stress 

hormones and the mitochondria, mitochondrial dysfunction has the potential to inhibit an 

adequate stress response or contribute to excessive allostatic load on the organism.

In a similar reciprocal connection to that of glucocorticoids and mitochondria, the metabolic 

machinery of mitochondria generates reactive oxygen species (ROS) when single electrons 

are passed down the electron transport chain to terminal oxygen during ATP production. At 

low levels, ROS are necessary for essential physiological functions such as redox signaling 

processes (Balaban et al., 2005; Lambert and Brand, 2009; Lambeth, 2004).While they are 

responsible for ROS production, mitochondria contain antioxidant capabilities and are 

responsible for elimination of excessive ROS. Mitochondrial dysfunction or excessive 
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energetic availability can contribute to the production of more ROS than the organelle is 

capable of eliminating. This results in oxidative stress on the organelle and cell, which leads 

to oxidative damage of biomolecules and mitochondrial DNA (mtDNA) (Yakes and Van 

Houten, 1997).

The dynamic relationship that the mitochondria have with both glucocorticoids and ROS 

place mitochondria in the unique position of regulating stress pathophysiology at the 

subcellular level, while also being a particularly vulnerable target of stress (Picard et al., 

2018). Oxidative stress brought on by ROS is akin to the adaptive stress response initiated in 

the hypothalamus as a result of a psychological or biological stressor. ROS production is a 

necessary part of mitochondrial function in order to make sure that biological processes 

continue in balance with one another just as the global stress response is critical to ensuring 

that an organism can overcome the perceived stressor and return to homeostasis (Rhee, 

2006). As previously discussed, allostatic load arises when the stress response does not shut 

off properly or is not efficiently initiated in the organism. The same is true for the 

mitochondria. The mitochondria generate ROS and oxidative stress to regulate allostasis in 

the organism, but when the mitochondria are unable to efficiently control this process, a state 

of allostatic load arises, and the oxidative stress brought on by ROS has the potential for far 

reaching ramifications.

Recently, several groups have conducted studies elucidating the integrative connection 

between chronic stress and oxidative stress by way of the mitochondria. Chakravarty and 

colleagues found that subjecting zebrafish to chronic unpredictable stress (CUS) resulted in 

altered brain proteome profile, in particular proteins involved in the regulation of 

mitochondrial function, oxidative stress, and glycolysis (Chakravarty et al., 2013). An earlier 

study, exposed altered proteomic and metabolomic profiles in mice with high anxiety-related 

behavior in comparison to mice exhibiting normal and low anxiety-related behavior. These 

proteins and metabolites were indicative of alterations in mitochondrial structure and 

functions, revealing that the mitochondria play a substantial role in stress-related 

pathophysiology (Filiou et al., 2011). In mice subjected to chronic social defeat, it was 

observed that the stress-susceptible animals experienced elevated levels of the antioxidant 

glutathione within the anxiety-processing brain region of the ventral hippocampus, and 

aberrant antioxidant levels could be normalized upon antidepressant treatment (Hamilton et 

al., 2018). In another study, the neuroprotective effect of A68930, a selective D1 agonist that 

inhibits oxidative stress by modulating the antioxidant system was investigated in an acute 

stress and chronic unpredictable stress model in rodents. A68930 administration was shown 

to normalize stress induced modifications of the cell’s antioxidant machinery (Rasheed et 

al., 2011).

Genetic influences also appear to influence the mitochondrial response to challenges. The 

deletion of p66SHC, a gene linked to metabolic regulation, apoptosis and ROS, provided the 

benefit metabolic resilience in the context of both high fat diet and stress in mice, suggesting 

a genetic link to resilience (Bellisario et al., 2014). Further, investigation of p66shc revealed 

that it has dual functions, serving as a mediator of insulin signaling through generation of 

ROS and acting in a pro-apoptotic capacity (Bhat et al., 2015). Although the precise 

mechanisms for genetic alterations to central metabolism remain unclear, it is apparent that 
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espousing mechanisms for resilience requires a better understanding of genetic influences on 

metabolic responses. Collectively, these studies shed light on the contribution of excess 

organismal stress on the mitochondria and subsequent oxidative stress, but further 

investigation is needed to determine if these mechanisms are correlative or causal in driving 

behavioral adaptations to stress.

3. Key Neuroendocrine Mediators of Metabolic Influences on Risk & 

Resilience

Neuroendocrine signals are well-positioned to influence metabolism broadly and 

mitochondria specifically. While it is already known that the HPA axis has reciprocal 

communication with metabolically active hormones including leptin and ghrelin; the 

primary messenger of the HPA axis, glucocorticoids, are themselves metabolically active. In 

addition, neuroendocrine signals that are less commonly associated with metabolism can 

play essential roles through interaction with classic metabolic regulators and through direct 

actions. In this section we will review existing knowledge of neuroendocrine regulators of 

metabolic responses at both the systemic and cellular levels. A brief overview of each 

candidate is also available in Table 1.

3.1. HPA-axis: metabolic driver during the stress response

One of the main information centers for metabolic regulation is the hypothalamus, which is 

responsible for functions related to energy balance, thermoregulation, reproductive 

behaviors, and stress response. The hypothalamus receives input from the hippocampus and 

prefrontal cortex to assist in the modulation of the stress response. While many of these 

inputs are in the form of negative feedback, they help regulate the duration and intensity of 

responses to a stimulus within the context of stress (Heidbreder and Groenewegen, n.d.; 

Mizoguchi et al., 2003). The HPA-axis is activated when the paraventricular nucleus (PVN) 

of the hypothalamus releases corticotropin releasing hormone (CRH or CRF) which binds to 

its receptor (CRHR1) in the anterior pituitary gland. Binding of CRH to CRHR1 results in 

the release of adrenocorticotropic hormone (ACTH) from the pituitary. ACTH then acts on 

the adrenal glands to promote synthesis of glucocorticoids. One of the important 

glucocorticoids released by the adrenal gland is cortisol, corticosterone in rodents. Under 

normal circumstances, cortisol binds to the mineralocorticoid receptor and provides resting 

regulation of the HPA axis. When presented with a stressor, the glucocorticoid receptor 

binds cortisol and results in negative feedback to the hypothalamus and pituitary, causing a 

reduction in HPA axis activation. Chronic stress exposure causes desensitization to cortisol 

feedback and, over time, allows for inappropriate continuation of HPA axis activation. CRH 

has been described as the catalyst to HPA- axis cascade activation. It is important to note 

that CRH activity is modulated by the type and intensity of the stressor (Aguilera and Liu, 

2012). Metabolic adaptations occur during stress which increase caloric efficiency (Rabasa 

and Dickson, 2016), and these adaptations may be linked to the actions of cortisol/

corticosterone given that CRHR1/CRHR2 knockout mice do not exhibit the benefit of 

increased caloric efficiency (Preil et al., 2001)).
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3.2. Cortisol: classic metabolic-acting stress hormone

Cortisol is a glucocorticoid produced by the zona fasciculata in the cortex of the adrenal 

gland. It is a steroid hormone that operates as the body’s main stress hormone, which affects 

a variety of organ systems, with a number of implications towards metabolism. Cortisol is 

released in response to a variety of stimuli, notably when the organism encounters a stressful 

situation, and this allostatic response is intended to help the organism overcome the stressor 

until it is able to return to physiologic homeostasis. When the stressful situation resolves 

negative feedback employed by cortisol acts on sections of the HPA axis to inhibit CRF, 

arginine vasopressin (AVP), and ACTH release. Once released, the primary role of cortisol is 

to increase blood glucose through promotion of gluconeogenesis, counteracting insulin. 

Cortisol also impacts protein and fat metabolism leading to further support of the CNS 

during an HPA axis response. Cortisol increases the levels of free amino acids in the 

bloodstream, inhibiting protein synthesis and muscle uptake of amino acids (Brillon et al., 

1995). Furthermore, studies have shown that increased glucocorticoid levels promote 

lipolysis, increasing serum free fatty acid levels (Serr et al., 2011). Taken together, cortisol 

serves to mobilize components of macronutrients, shifting physiological systems away from 

anabolic efforts, in order to support the body during times of stress in an energy efficient 

manner. Cortisol levels also interact with other classical metabolic hormones, such as leptin 

and ghrelin, as discussed in further portions of this review. In conjunction with metabolic 

effects, cortisol plays a role in cardiovascular function, through the increase of blood 

pressure (Kelly et al., 1998) and suppression of the immune system. Furthermore, 

glucocorticoids are profoundly influential on the function of mitochondria as recently 

reviewed (Lapp et al., 2019; Picard et al., 2014).

3.3. Leptin: counteracting cortisol

Leptin, a peptide hormone primarily produced by adipose tissues, plays a key role in 

metabolic homeostasis via the inhibition of hunger. Plasma leptin levels have been shown to 

be higher in humans with higher BMI and higher body fat percentage (Schwartz et al., 

1996). Following release by the adipose tissues, leptin signals to the brain regarding the 

energy available from said adipose tissue reserves. In both rodents and humans, this 

signaling results in an inhibition of hunger and an increase in energy expenditure in order to 

account for food intake and maintain metabolic homeostasis (Halaas et al., 1995; Jorgensen 

et al., 1998). In addition to the ability of leptin to modulate feeding behavior, leptin 

possesses the ability to inhibit glucocorticoid secretion from the adrenal gland (Pralong et 

al., 1998) and circulating leptin levels have been shown to be inversely related to HPA axis 

activity (Aschbacher et al., 2014; Licinio et al., 1997). In instances of chronic stress, HPA 

axis function is disrupted, and given leptin’s reciprocal relationship with glucocorticoids and 

the axis in general, this provides implications for metabolic energy balance.

Furthermore, adequate leptin signaling is essential for cell survival following injury, at least 

in part, through modulation of mitochondrial function (Hu et al., 2019). Mitochondrial 

modulation by leptin has also been demonstrated in hepatocytes, where peripheral injection 

of leptin stimulated mitochondrial fusion and attenuated high glucose-induced fatty acid 

accumulation (Hsu et al., 2015). Evidence of leptin’s direct impact on mitochondria and 
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integral relationship with the HPA axis provides basis for the connection between 

metabolism and implications for risk and resilience.

3.4. Ghrelin: more than just appetite

Another classical metabolic hormone, ghrelin, is produced within cells in the gastrointestinal 

tract and acts on the hypothalamus to stimulate appetite, gastric acid secretion, and 

gastrointestinal motility. Ghrelin is also implicated in food reward associated behavior (Klok 

et al., 2007; Perello and Dickson, 2015). Considering ghrelin’s opposing action to that of 

leptin, it is unsurprising that the receptor for ghrelin is located in the same places within the 

brain as the leptin receptor. Together with leptin, ghrelin plays a key role in maintaining 

energy homeostasis. Aside from the adjustment of hunger levels, ghrelin provides insight 

into the connection between an organism’s response to stress and metabolism. Ghrelin 

plasma concentrations increase in parallel with cortisol plasma concentrations in humans 

following a psychological stress (Kristenssson et al., 2006); however, the physiological 

underpinnings for this relationship are presently unknown. Further studies have been 

conducted solidifying this relationship. Azzam and colleagues showed that increased cortisol 

serum levels are positively associated with serum ghrelin levels following ACTH stimulation 

and hydrocortisol administration, and subsequent blocking of HPA axis stimulated cortisol 

synthesis was associated with decreased ghrelin levels (Azzam et al., 2017). This suggests 

that circulating cortisol, and possibly central increases in ACTH and CRH, are necessary for 

elevations in ghrelin plasma concentration. In animal models, acute and chronic 

psychological stresses are associated with increased ghrelin secretion (Asakawa et al., 2001; 

Kristenssson et al., 2006; Ochi et al., 2008; Patterson et al., 2010). The mechanism behind 

stress induced ghrelin increases is not completely understood, but these studies suggest that 

ghrelin levels are not only based solely on energy availability and output but are affected by 

other neuroendocrine stimuli such as a chronic stress environment. Furthermore, additional 

studies have shown that ghrelin plays an important role in HPA axis regulation. Spencer and 

collaborators, demonstrated that following an acute stressor, endogenous ghrelin attenuates 

HPA axis activity and anxiety-like behavior utilizing ghrelin knockout mice (Spencer et al., 

2015). Other studies have demonstrated an anxiolytic effect of ghrelin in the presence of 

chronic stress conditions, demonstrating an interesting duality to ghrelin’s regulation of the 

HPA axis in relation to experimental conditions (Lutter et al., 2008). The reciprocal nature of 

communication between the HPA axis and ghrelin in the context of stressful conditions 

denotes the need for further studies, especially in relation to the possibility of increasing 

resilience to stress through the manipulation of metabolic factors, such as ghrelin and leptin. 

Highlighting this point is the finding that, similar to leptin, ghrelin has neuroprotective 

functions through improved mitochondrial function in the face of neural challenge via 

modification of ROS (Ishii et al., 2018). Ghrelin has also demonstrated neuroprotective 

effects via suppression of apoptotic pathways within the mitochondria (Dong et al., 2009). 

Other neuroprotective effects of ghrelin have been shown to be dependent on UCP2, a 

mitochondrial protein that functions in mitochondrial respiration, mitochondrial biogenesis, 

and ROS production (Andrews et al., 2009, 2005). Although not directly connected to 

psychosocial stress, the well-documented neuroprotective effects of ghrelin via 

mitochondrial mechanisms provides additional backing to the prospect of regulating risk and 

resilience through modulation of metabolic components.
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3.5. Oxytocin: exertion of metabolic control

Other hypothalamic hormones also have profound consequences on metabolism. Oxytocin is 

a neuropeptide produced in the paraventricular nucleus and supraoptic nucleus of the 

hypothalamus and secreted by the posterior pituitary. Oxytocin has well-defined roles in 

social bonding, parturition, reproduction, appetite regulation, and is a key modulator of HPA 

axis activity (Feldman et al., 2007; Kosfeld et al., 2005)With such diverse functions, all of 

which are associated with metabolic efficiency, it is not surprising that there is evidence that 

oxytocin exerts control over metabolic homeostasis. Injection of oxytocin both centrally and 

peripherally has been shown to induce anorexia (Herisson et al., 2016; Maejima et al., 

2011). Rodents deficient in oxytocin have demonstrated obesity without changes in total 

food intake (Camerino, 2009; Takayanagi et al., 2008). In diet-induced obese mice, plasma 

oxytocin levels were shown to decrease and central oxytocin infusions have shown to induce 

weight loss in mice (Deblon et al., 2011). Other studies outline the importance of oxytocin 

in feeding behavior rhythm (Zhang and Cai, 2011) and in food preference. Oxytocin 

knockout mice exhibited enhanced intake of carbohydrates, but not fats, and these effects 

were dissociated from palatability (Miedlar et al., 2007; Sclafani et al., 2007). Collectively, 

these studies suggest a strong input of oxytocin on metabolic integrity.

The social function of oxytocin may also confer some aspects of resilience. Seeking and 

maintaining strong social support before, during, and after stress exposure encourages 

quicker recovery following a traumatic or stressful incident (Fitzsimmons and Bardone-

Cone, 2010; Gunnar and Hostinar, 2015; Mahmoud et al., 2015; Perreault et al., 2017). 

Muroy and colleagues demonstrated that stress exposure in the “threatening” context of 

predator odor led to decreased social support seeking behavior, increased social withdrawal -

akin to PTSD- and reduced oxytocin signaling (Muroy et al., 2016). In the same study, rats 

that were exposed to the same moderate stressor in a neutral context displayed the opposite, 

with increased social support seeking behaviors as well as increased oxytocin signaling. In a 

related study, rats that were exposed to an odor-shock stimulus while still in close proximity 

to their mother displayed a preference for that odor as well as suppression of corticosterone 

release compared to the counterparts who were exposed to the odor-shock in the absence of 

their mother (Moriceau et al., 2006).

Oxytocin also influences mitochondrial function through the reduction of damage from ROS 

and is protective of cardiomyocytes during injury (Gonzalez-Reyes et al., 2015). Although 

not yet extended to the context of psychosocial stress, it is possible that oxytocin provides 

some of its resilience-promoting features via mitochondrial influence.

3.6. Arginine Vasopressin: connections to metabolism

Another hypothalamic hormone connected to energy homeostasis is arginine vasopressin 

(AVP), also known as antidiuretic hormone (ADH). Akin to oxytocin, it is a peptide 

hormone produced in the hypothalamus that is subsequently released by the posterior 

pituitary. The primary role of AVP revolves around the maintenance of water and electrolyte 

balance, and its release is stimulated in instances of extracellular fluid tonicity. While 

connections to metabolic homeostasis are not as prevalent as other hormones previously 

discussed, studies have been done connecting copeptin to global energy maintenance. 
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Copeptin is a peptide derived from the same pre-prohormone as AVP and is a useful 

measurement for studies because of AVP’s relatively short half-life (Katan et al., 2007). 

Increased levels of copeptin have been associated with insulin resistance and incidence of 

metabolic syndrome (Saleem et al., 2009)

AVP is also cardio-protective during ischemic injury through reduction of mitochondrial 

permeability and reduced ROS (Nazari et al., 2015). It is possible that in addition to global 

metabolic effects, AVP could influence resilience at the level of mitochondrial function. This 

could be either a direct action as proposed in the case of cardiac ischemia or through 

interactions with the HPA axis. Studies suggest that AVP serves as an activator of the HPA 

axis in instances of chronic psychosocial stress, subsequently amplifying the release of 

ACTH from the anterior pituitary (Katan et al., 2008). This mechanism is the proposed basis 

for the connection between insulin resistance and metabolic syndrome, as heightened ACTH 

and subsequent heightened cortisol levels often result in a variety of endocrine disruptions 

that negatively impact metabolic homeostasis. Studies conducted in humans and cows have 

additionally shown that AVP directly stimulates cortisol release through receptors present on 

adrenal cortex cells (Perraudin et al., 1993; Senn et al., 1995).

3.7. Somatostatin: stress and metabolism

Somatostatin is a peptide hormone synthesized both in the pancreatic islet in the digestive 

system and by neural sub-populations. Its actions are mediated through five G-protein 

coupled receptor subtypes (sst1-5). Traditionally, somatostatin is thought of in the context of 

diet and nutritional metabolism. However, somatostatin signaling has been implicated in the 

reduction of CRH release, and therefore, exerts metabolic regulation of stress response that 

is independent of mitochondrial involvement at this level. Engin and Treit found that 

intracerebroventricular administration of somatostatin was sufficient to provide 

antidepressant-like effects as modeled by elevated plus maze and forced swim behavioral 

testing (Engin et al., 2008; Engin and Treit, 2009). The actions of somatostatin on the 

release of CRH and overall HPA axis activation appear to be mediated by somatostatin 

receptor subtype sst2 in the pituitary (Engin and Treit, 2009; Prévôt et al., 2017). 

Additionally, somatostatin signaling led to reduced corticosterone elevation in hippocampus 

following a foot shock stressor (Prévôt et al., 2017). Although it remains unclear if 

somatostatin acts directly at the level of the PVN where CRH release occurs, it is evident 

that regulation of CRH via somatostatin signaling could play a role in the development of a 

resilience phenotype through interactions with the HPA axis.

Furthermore, somatostatin expression is a common molecular marker for local inhibitory 

GABAergic interneurons localized to key brain regions. Somatostatin positive neurons 

represent approximately one-third of the total interneuron population (Lee et al., 2010), and 

are increasingly implicated in regulating the pathogenesis of neuropsychiatric syndromes, 

like addiction and depression (Ribeiro et al., n.d.). Indeed, somatostatin positive interneurons 

are depleted in postmortem limbic and cortical tissues from humans diagnosed with 

depression (Guilloux et al., 2011; Sibille et al., 2011; Tripp et al., 2012, 2011), and their 

disinhibition within cortical and hippocampal regions of the rodent brain promote an 

antidepressant-like phenotype (Pryce and Fuchs, 2017). Specifically in the prefrontal cortex, 
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a brain region central in stress processing (Duman, 2014), somatostatin positive interneurons 

regulate the balance of local excitatory and inhibitory neurotransmission, which has been 

shown to be dysregulated in stress and depression-related disorders (Ghosal et al., 2017a). 

Collectively, this emerging evidence suggests that the function of neuropeptide expressing 

GABAergic interneurons, like somatostatin positive interneurons, are required for 

normalizing the excitatory/inhibitory tone in a brain-region specific local micro-circuit, and 

their long-term dysregulation could be a cellular substrate of allostasis in response to chronic 

stress.

3.8. Neuropeptide Y: psychiatric resilience at a potential metabolic cost

Another signaling molecule of interest is Neuropeptide-Y (NPY), which is a hypothalamic 

orexigenic peptide that stimulates food intake (Beck, 2006). NPY, which is found in high 

concentrations in the hippocampus, hypothalamus, cortex, and amygdala, is released with 

norepinephrine under normal circumstances in response to sympathetic nervous system 

activity. NPY signaling leads to increased circulating corticosterone in rodents, suggesting 

an appropriate response to stressors (Cohen et al., 2012). This also demonstrates the 

integrated signaling that occurs between the SNS and HPA-axis, where SNS activation 

causes hypothalamic stimulation leading to both NPY release and HPA-axis activation, 

resulting in increased stress hormones. It is important to note that as a mediator of energy 

expenditure, mitochondria engage in a unique relationship with NPY signaling. In instances 

of food deprivation or reduced energy sources, the mitochondria found in NPY neurons 

undergo fusion to increase their size in an attempt to maximize energy efficiency and storage 

(Dietrich et al., 2012). Additionally, increased NPY leads to a reduction in UCP1, thereby 

decreasing the thermogenic potential of the mitochondria in instances where positive energy 

balance is favorable (Billington et al., 1994). Lack or reduction of NPY in the context of 

stress can produce a blunted stress response which has been linked to increased 

susceptibility to depression, and anxiety (Cohen et al., 2012; Hou et al., 2006; Rasmusson et 

al., 2000; Sah et al., 2009). A reduction in NPY signaling was discovered in rats displaying 

PTSD-like behaviors compared to their counterparts (Cohen et al., 2012). Reinforcing the 

idea that NPY plays a role in the resilience phenotype, Sabban and colleagues demonstrated 

that intranasal NPY prior to stress exposure reduced anxiety-like behavior in rats (Sabban et 

al., 2015). In humans, a study found higher levels of NPY in war veterans without PTSD in 

comparison to their counterparts with PTSD, again suggesting a potential role for NPY in 

resistance to PTSD manifestation (Yehuda et al., 2006). The benefits of NPY extend beyond 

PTSD and anxiety resilience as anti-depressant effects have also been demonstrated with 

increased NPY (Gelfo et al., 2012). NPY also interacts with brain derived neurotrophic 

factor (BDNF) to encourage neural growth in the hippocampus and may serve as a support 

for the resuming homeostasis following stress-induced disruptions (Cohen et al., 2012). 

Similarly to NPY, the actions of BDNF have also been linked to the resilience phenotype 

seen in the context of chronic stress with increased BDNF expression linked to reductions in 

anxiety-like and depressive-like behaviors in rodent models (Taliaz et al., 2011; Tyagi et al., 

2015; Yao et al., 2016). However, these stress protective effects of BDNF are brain region 

specific; with positive effects linked to elevated BDNF in the hypothalamus and 

hippocampus, whereas elevations in the nucleus accumbens and ventral tegmental area 

(VTA) are associated with increased depressive-like behaviors; suggesting differential roles 
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of BDNF (Berton et al., 2009; Eisch et al., 2003; Wook Koo et al., 2016). Taken together the 

actions of hippocampal or hypothalamic BDNF and NPY seem promising, however, NPY is 

potently stimulated by stress models that have been associated with increased adiposity 

(Rabasa and Dickson, 2016). While NPY is considered an element of the resilience 

phenotype for PTSD, and mood disorders, it appears to be linked to excess energy 

availability which is implicated in the development of metabolic dysregulation. This 

contradictory involvement of NPY suggests that like many components of the 

neuroendocrine and metabolic systems, NPY requires tight regulation to promote resilience 

from psychosocial impairments in the context of stress.

3.9. Insulin-like Growth Factor: from cells to cognitive behavior

Insulin-like growth factor-I (IGF-I) belongs to a family of hormones that primarily regulate 

cell growth and differentiation. The liver serves as the main site for IGF-I production in 

mammals (Yakar et al., 1999), but IGF-I has various roles throughout the body and is 

implicated in many functions of the brain, including astrocyte mediated neurogenesis (Aberg 

et al., 2000; Torres-Aleman, 2010). Although IGF-I has been linked to improved cognition 

(Trejo et al., 2007; Tronson and Collette, 2017; Vidal et al., 2016), it also plays a role in 

stress regulation through metabolic actions. One such action is its modulation of insulin 

sensitivity and carbohydrate metabolism, both of which are integral to energy availability 

and expenditure at baseline and in the activation of a stress response. IGF-I activity has been 

shown to increase BDNF activity, which may also contribute to its potential actions in 

conferring stress resilience (Carro et al., 2000; Landi et al., 2009). Depressive-like behaviors 

were observed in mice with prolonged IGF-I deficiency, and increased anxiety-like 

behaviors were seen in diabetes induced rats who exhibited an IGF-I deficiency (Aksu et al., 

2012; Mitschelen et al., 2011). Similarly older adults exhibiting depressive symptoms who 

were otherwise healthy were found to have reduced levels of IGF-I (Lin et al., 2014). 

Exercise has been demonstrated to increase IGF-I levels in the hippocampus (Carro et al., 

2000). However, it appears that IGF-I may exert sex-specific effects on exercise mediated 

stress resilience, though there seems to be conflicting evidence. In mice, the protective 

interaction between IGF-I and exercise was only evident in females with re-exposure to a 

stressor, although male mice exhibited a greater reduction in anxiety-like behavior following 

an initial stress exposure (Munive et al., 2016). In male mice given human IGF-I and 

exposed to exercise, a reduction in depressive-like behaviors was demonstrated, which was 

then blocked by administration of Anti-IGF-I (Duman et al., 2009). While Duman and 

colleagues did not re-expose their mice to the stressor, the results seen upon initial stress 

exposure with the male mice matches what Munive and colleagues reported. The actions of 

IGF-I in males suggest that a short-term benefit of reduced depressive-like behavior can be 

achieved by increasing IGF-I, potentially through exercise, whereas in females it is likely 

that a longer-term benefit is conferred with the resilience to stressor re-exposure. In a study 

with elderly men, an increase in serum IGF-I along with an improvement in anxiety and 

mood was observed after strength training exercise (Cassilhas et al., 2010). This reinforces 

the synergistic action of IGF-I and exercise on the promotion of anti-depressive-like 

behavior. the interaction between IGF-I and estrogen to promote anxiolytic effects is 

strengthened by physical activity (Munive et al., 2016). Given the higher prevalence of 

psychiatric disorders in females in comparison to males, the integrated impact of estrogen, 
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IGF-I and exercise on mood regulation sound promising in terms of potential therapeutic 

regimens. However, it is important to note that aside from the animal models, there is a lack 

of studies that investigate the relationship between IGF-I and exercise in females within the 

context of stress and psychosocial outcomes. Additionally, given discrepancies in the 

intensity and duration of various exercise regimens, it has been difficult to pinpoint the 

combination that yields optimal IGF-I levels to promote resilience (Berg and Bang, 2004; 

Nindl et al., 2009). Because of these gaps in information, the question remains as to whether 

an equivalent intervention is just as efficacious in individuals with lower estrogen levels, or 

if hormone supplementation would boost the effects in males, hypogonadal individuals, and 

postmenopausal women.

3.10. GLP-1: estrogen specific promoter of energy balance

GLP-1 (Glucagon-like peptide-1) is an incretin peptide hormone expressed in both the gut 

and the brain. In addition to an emerging role for GLP-1 in regulating the addictive actions 

of drugs ranging from cocaine (Reddy et al., 2016)to nicotine (Tuesta et al., 2017), it plays a 

role in metabolism by acting in conjunction with estrogen to promote energy balance, and 

reduction in weight gain through modulating food intake and reward (Maske et al., 2017; 

Richard et al., 2016; Vogel et al., 2016). GLP-1 activity has been known to stimulate the 

HPA-axis leading to increases in ACTH, arginine vasopressin (AVP), and cortisol/

corticosterone (Bojanowska and Stempniak, 2000; Gil-Lozano et al., 2010; Kinzig et al., 

2003; Larsen et al., 1997). Given that its receptor; GLP-1r colocalizes with CRH neurons in 

the PVN, it follows that GLP-1 has the ability to act as an HPA axis modulator. Exposure to 

chronic stress has been linked to downregulation of the GLP-1 precursor, preproglucagon 

(PPG) and thus a reduction in GLP-1 (Zhang et al., 2010). This suggests an innate 

mechanism to reduce overstimulation of stress response mediators, especially given that 

chronic activation of the HPA axis often leads to diminished negative feedback from 

cortisol/corticosterone because of desensitization. However, deletion of GLP-1r resulted in a 

reduction of HPA response to stress, and a reduction in anxiety-like behaviors as modeled by 

elevated plus maze, further validating the effect of GLP-1 signaling on cortisol/

corticosterone release via GLP-1r (Ghosal et al., 2017b). In contrast, chronic administration 

of the clinical analog and GLP-1r agonist, Exendin-4, reduced depression-like behaviors in 

rats (Anderberg et al., 2016), indicating that the brain-region specific actions of GLP-1 need 

to be further elucidated.

3.11. Traditional sex hormones: estrogen and testosterone

Previous work has demonstrated that the response to chronic stress is sex-dependent and 

heavily influenced by the developmental time period during which the initial stressor was 

encountered (Pyter et al., 2013). While females tend to be more susceptible to the 

development of affective disorders with exposure to early life stress, males display an 

increased risk of metabolic dysfunction (Bekhbat and Neigh, 2018; Bourke and Neigh, 

2011; Neigh et al., 2009; Yang and Kozloski, 2011). There is also a distinction between 

symptomology with males expressing more externalization, marked by aggression; whereas, 

females demonstrate internalization through social avoidance. These distinctions result in 

dimorphic behavioral and metabolic phenotypes. Given the differences in susceptibility, 
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many studies have investigated the role of sex-specific hormones in stress response 

outcomes and the resulting phenotypes.

Estrogen exerts powerful influence over both metabolic and stress-related outcomes. 

Assessment of the impact of estrogen therapy on the metabolic profile of post-menopausal 

women demonstrates significant alterations in pathways related to metabolism and stress 

responses, energy production, and inflammation (Stevens et al., 2018) In a purely metabolic 

context, estrogen encompasses antioxidant properties and promotes anti-apoptotic pathways 

in the mitochondria (Borrás et al., 2009; Engler-Chiurazzi et al., 2017; Simpkins et al., 

2008). Given the previously described relationship between oxidative stress and negative 

outcomes, estrogen’s protective effects on the mitochondria serve as a mechanism to reduce 

metabolic stress. Furthermore, social stress interacts with estrogen and genotype to dictate 

metabolic and HPA axis outcomes for females (Michopoulos and Wilson, 2011) and this 

literature is thoroughly reviewed (Michopoulos, 2016; Novais et al., 2017). Therefore, we 

will focus here on estrogen influences on mechanisms and phenotypes related to resilience. 

Long-term ovarian hormone deprivation caused by ovariectomy in rats has been 

demonstrated to increase vulnerability to depressive-like and anxiety-like behaviors 

following stress exposure (Lagunas et al., 2010; Mahmoud et al., 2016). This aligns with 

increased incidence of depression among postmenopausal women (Ryan et al., 2011; Scott 

et al., 2012). In the context of estrogen, administration of estrogen receptor β (ERβ) agonist 

or estradiol replacement in ovariectomized female rats resulted in a reduction of anxiety-like 

and depressive-like behaviors (Bredemann and McMahon, 2014; Lund et al., 2005; Walf et 

al., 2004; Walf and Frye, 2005). Similar outcomes have been seen with estradiol 

supplementation in hypogonadal and postmenopausal women (Lee et al., 2012).

Postmenopausal women are more susceptible to anxiety and depression, which may be 

linked to the lower expression of circulating estradiol (Zanardi et al., 2007). While estrogen 

therapy seems like a promising option to combat anxiety/depression in both males and 

females, it remains unclear how efficacious it is in humans. Studies with postmenopausal 

women who naturally have severe reductions in circulating estrogen have either yielded very 

little or no change to anxiety behaviors with estrogen supplementation (Charney, 2004; 

Demetrio et al., 2011; Gleason et al., 2015). Additionally, a recent study on the use of 

hormone replacement therapy in postmenopausal women demonstrated an increased risk of 

Alzheimer’s disease, but concluded that the risk was also dependent upon the application of 

therapy, suggesting the need for further investigation (Savolainen-Peltonen et al., 2019). 

Animal studies, mainly using rodents have demonstrated both anxiolytic and anxiogenic 

effects of estradiol supplementation that appears to be dose-dependent and may also be 

reliant on the estrogen receptor subtype being activated (Spiteri et al., 2010). Several studies 

in ERβ knockdown rats have shown increased anxiety-like behaviors, suggesting that ERβ is 

critical to the anxiolytic functions of estradiol (Lund et al., 2005; Walf et al., 2008). 

Conversely, studies of ERα knockdown rats demonstrated decreased anxiety-like 

behavior(Spiteri et al., 2012, 2010). Together these reaffirm the idea that estrogen receptor 

subtypes are crucial in mediating the effects of estradiol on anxiety. Other research has 

shown the link between polymorphisms of the ESR1 and ESR2 genes that encodes for 

estrogen receptors ERα and ERβ respectively and susceptibility to anxiety(Ryan et al., 

2011; Tiemeier et al., 2005). These studies focused primarily on elderly populations, so 
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there is a possibility that age also plays a role in susceptibility. It is known that estradiol 

causes increased ACTH release via its interaction with the ERα, but this may also be part of 

its joint effect with GLP-1.

Testosterone is the sex steroid hormone associated with physiological male defining 

characteristics. However, testosterone is present in both sexes and plays a role in metabolic 

function as well as modulation of mood disorders and anxiety phenotypes. ADIOL (5-

androsten-3β, 17β-diol) and 3β-diol(5α-androstane-3β,17β-diol), two androgen metabolites 

of dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT) respectively, have been 

shown to reduce anxiety-like behaviors through their actions on ERβ (Frye et al., 2008; 

Handa et al., 2008). Much like estrogen, they have also demonstrated anti-inflammatory 

properties, which are likely mediated through ERβ as well (Zuloaga et al., 2012). Given its 

status as a steroid hormone, testosterone is able to modulate downstream gene expression 

through its interactions with the androgen receptor (AR) and interactions of its metabolites 

with ERβ. While the mechanistic actions behind testosterone’s involvement with 

mitochondrial function still remain unclear, evidence suggests that testosterone plays a 

critical role in maintenance of mitochondrial integrity as testosterone levels have been linked 

to regulation of oxidative stress (Kang et al., 2018; Pintana et al., 2015; Rovira-Llopis et al., 

2017; Tostes et al., 2016; Yan et al., 2017). Attesting to its significance, testosterone has 

positive implications for cellular outcomes following neural injury. Administration of 

testosterone reduces ROS, improving mitochondrial membrane potential (Toro-Urrego et al., 

2016) and apoptosis and this is further highlighted following laboratory-induced traumatic 

brain injury such that neurodegeneration is reduced (Carteri et al., 2019; Kang et al., 2018).

The precise mechanisms by which testosterone interacts with both the HPA axis and cellular 

metabolism are not fully defined and the extent to which these effects replicate in humans is 

still being ascertained. Currently the missing link is more extensive investigation into 

whether effects seen in animal models are conserved in humans. Rubinow and colleagues 

demonstrated increased ACTH with testosterone replacement but found that cortisol 

modulation only occurred with hormone stimulation and not induced hormonal activity 

(Rubinow et al., 2005). This suggests that cortisol is more tightly regulated by endogenous 

hormones in comparison to ACTH. Interestingly, testosterone administration in 

gonadectomized male rats resulted in a reduction of depressive-like outcomes but was found 

to be mediated through its aromatization to estradiol (Carrier et al., 2015; Carrier and 

Kabbaj, 2012). Elevated testosterone expression has been documented in individuals who 

are engaged in a positive social environment and has been loosely linked to the concept of 

social inclusion/belonging (Edwards, 2006). In instances where a stressor is encountered, it 

has been shown that testosterone levels decrease. This decrease in testosterone allows for 

susceptibility to anxiety and depressive behaviors as demonstrated by outcomes of stress 

exposure in hypogonadism (DiBlasio et al., 2008; Jaime Herrera-Pérez et al., 2012; Shores 

et al., 2004; Wainwright et al., 2011; Zarrouf et al., 2009).

4. Harnessing Resilience: Interventions to Promote Positive Outcomes

Metabolic regulation is integral to the stress responses implicated in PTSD and mood 

disorders like depression and anxiety. For this reason, future research should focus on 
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interventions that encourage pro-adaptive metabolic function. Given what is known about 

neuroendocrine signaling and its interdependent relationship with metabolic function, it 

seems imperative to explore the combined actions of both traditional neuroendocrine 

regulators of metabolism such as cortisol, leptin, and ghrelin, as well as less commonly 

associated neuroendocrine mediators including oxytocin and somatostatin. Evidence of 

synergism suggests that resilience is likely hinged upon some combination of 

neuroendocrine factors. For instance, Sadagurski and colleagues demonstrated that caloric 

restriction reduced hypothalamic inflammation in both male and female mice, while the use 

of anti-aging drugs acarbose (ACA), nordihydroguaiaretic acid (NDGA) and 17-α-estradiol 

(17αE2) only provided benefits to the male mice (Sadagurski et al., 2017). This highlights 

an important area of study which is the interaction of sex steroids and sex chromosomes 

with metabolic regulation and mitochondrial function. This area is a burgeoning point of 

focus and may lead to essential new findings related to the sex differences epidemiologically 

observed in stress-related disorders including depression and PTSD. Collectively, the 

information summarized in this review demonstrates that the neuroendocrine system is in a 

key regulatory position to contribute to the establishment of risk and resilience at the level of 

mitochondrial function and the level of systemic metabolism. Additional research efforts 

focused on improving energetic responses to stressors may confer resilience at both the 

cellular and organism levels and neuroendocrine substrates are likely key variables in the 

establishment of resilience.
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Highlights

• Risk and resilience are important areas of study to improve human health.

• The concepts of stress and allostatic load are metabolic concepts.

• Metabolism and mitochondrial function may be an essential to risk vs. 

resilience.

• Neuroendocrine signaling facilitates risk and resilience through multiple 

mechanisms.
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Figure 1. 
Selye’s ground-breaking concept of ‘stress’ was based on physics concepts. Selye initially 

confused the terms such that he labeled ‘strain’ as ‘stress’ and thereby had to rename the 

physics concept of ‘stress’ to ‘stressor’. The concepts of stressor, the external force applied 

to the organism, and stress, the internal response of the organism, exist in a dynamic 

relationship. Initially, there is a reversible and predictable relationship between the stressor 

applied and the stress on the system. This ‘elastic region’ is most akin to homeostasis and 

the changes that occur during an acute stress response. After repeated or extreme stressors, 

the relationship between stressors and the stress response passes the ‘elastic point’ and 

enters the plastic region where the relationship is less predictable, but the organism can 

compensate for the stressor(s) with systemic and cellular reorganization. This would be akin 

to allostasis. Finally, with repeated and cumulative stressor burden, the organism reaches the 

‘breaking point’ and crosses the line to allostatic load such that significant negative 

adjustments begin to occur within the organism due to an inability to efficiently resolve the 

energetic demands placed by the cumulative stressor burden.
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Figure 2. 
Adapted from McEwen et al., 1998. Allostatic load is the end result of the cumulative 

biological stress placed on an organism after attempts to adapt and regain allostasis. The 

biological stress experienced by the organism computational exposure influenced by the 

current environment (external and internal), previous exposures (genetics, epigenetics, early 

life experiences), and the behavioral responses to the stressor experienced. Collectively, 

these factors influence the physiological response and dictate the path to adaptation, 

allostasis, or cross-over to allostatic load.
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