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Abstract

Antigen-specific immunotherapy (ASI) holds great promise for the treatment of autoimmune 

diseases. In mice, administration of major histocompatibility complex (MHC) binding synthetic 

peptides which modulate T cell receptor (TCR) signaling under sub-immunogenic conditions 

induces selective tolerance without suppressing the global immune responses. However, clinical 

translation has yielded limited success. It has become apparent that the TCR signaling pathway via 

synthetic peptide antigen alone is inadequate to induce an effective tolerogenic immunity in 

autoimmune diseases. Bioconjugate strategies combining additional immunomodulatory functions 

with TCR signaling can amplify the antigen-specific immune tolerance and possibly lead to the 

development of new treatments in autoimmune diseases. In this review, we provide a summary of 

recent advances in the development of bioconjugates to achieve antigen-specific immune tolerance 

in vivo, with the discussion focused on the underlying design principles and challenges that must 

be overcome to target these therapies to patients suffering from autoimmune diseases.

Graphical Abstract

*Corresponding Author haipeng.liu@wayne.edu.
Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
Bioconjug Chem. Author manuscript; available in PMC 2019 December 02.

Published in final edited form as:
Bioconjug Chem. 2018 March 21; 29(3): 719–732. doi:10.1021/acs.bioconjchem.7b00632.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Autoimmune diseases are characterized by aberrant activation of T- and B-cells in vivo 
which results in the immune destruction of the host tissues or organs.1,2 These diseases 

represent a heterogeneous group of disorders with a combination of genetic factors and 

environmental triggers (virus, bacteria, and other infectious pathogens).1–4 According to the 

National Institute of Allergy and Infectious Diseases (NIAID), there are more than 80 

autoimmune diseases affecting nearly 20 million people in the US alone and the prevalence 

is rising each year.5 Some of the most common autoimmune diseases include type 1 diabetes 

(T1D), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel 

disease (IBD), and multiple sclerosis (MS).5 The precise causes of many autoimmune 

diseases remain unknown, and there is no effective screening to detect individuals at risk for 

most autoimmune diseases, making disease prevention almost impossible.1,2 Thus, most 

patients have significant disease progression and tissue destruction before clinical diagnosis 

and initiation of appropriate treatments.

Currently available treatments for autoimmune diseases include physical therapy, 

immunosuppressants, corticosteroids, anti-inflammatory drugs, and cell or tissue 

transplantation, among others.6,7 These treatments alleviate the symptoms but do not alter 

the overall chronic course of diseases. For example, immunosuppressants (i.e., cyclosporine 

A) inhibit the activity of the immune system by reducing the proliferation and function of 

cells associated with immune reactions and show partial efficacy in many autoimmune 

diseases.7 However, their therapeutic effects are dependent on chronic drug administration 

that can lead to systemic immune suppression, with the potential risk of development of 

cancer and opportunistic infections.7 Antigen-specific immunotherapy (ASI) is the treatment 

able to modify the outcome of the diseases by restoring self-tolerance toward autoantigens.
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8–10 Under sub-immunogenic conditions (i.e., in the presence of low levels of stimulatory 

molecules), ASI introduces autoantigens to antigen presenting cells (APCs) in order to 

correct the immune responses, acting directly through T cell receptor (TCR) on effector T 

cells (via clonal deletion or anergy) and/or via regulatory T cells (Tregs) that secrete anti-

inflammatory cytokines.8–10 One of the main implications of this intervention is its 

specificity: compared with other immune therapies, ASI selectively targets disease-relevant 

T cells, while leaving the normal immune system intact. Initial experimental approaches 

have included oral antigen administration,11 particulate autoantigen delivery,12 altered 

peptide ligands,13 and dose escalating immunotherapy,14 among many others. Although 

these approaches have shown efficacy in preclinical models, results from human clinical 

trials have not shown the same level of efficacy as in mice.9,10 In spite of intensive research, 

to date, no FDA approved ASI is available for treating patients with autoimmune diseases. 

Induction of antigen-specific tolerance to dominant immune responses driving autoimmunity 

remains an unmet challenge.

Though our current understanding of the enormously complex human immune system is far 

from complete, it is clear that modulation of the TCR signaling pathway via administration 

of autoantigen alone is insufficient and that alternative strategies which can amplify the 

antigen-specific immune tolerance in animal models are needed to increase the validity and 

predictive power in the development of new treatment in humans.13 In the past two decades, 

many technologies have been developed in the creation of a new generation of ASI in order 

to attenuate the inflammation in autoimmune diseases. Efforts have been devoted to 

designing delivery vehicles which target key antigen-presenting cells,15 or combination 

immunomodulation which codelivers immune-modulators with autoantigens.16 These 

strategies target TCR signaling pathways, cosignaling molecules and cytokines, or inhibit 

the formation of the immunological synapse, enabling the augmentation of TCR-mediated 

tolerance. Among these different approaches, one of the most attractive strategies is to 

incorporate additional immunomodulatory functions into autoantigens through 

bioconjugation (Figure 1). In fact, modification of autoantigen through functional 

conjugation to polymers, nanoparticles (NPs), antibodies, or small molecules have been 

extensively used in vaccines.16–18 In this review, we highlight the recent advances in 

experimental mouse models using various bioconjugate strategies aimed at the induction of 

autoantigen-specific tolerance for the potential treatment of autoimmune diseases. We focus 

our discussion on the design principles for each of the strategies, along with their limitations 

and potential for clinical translation. Some common autoimmune diseases and 

corresponding bioconjugate strategies reviewed in this paper are summarized in Table 1.

IMMUNOLOGICAL BASIS OF SELF-TOLERANCE AND TARGETING DC–T 

CELL INTERACTIONS FOR THE PROMOTION OF ANTIGEN-SPECIFIC 

TOLERANCE

The central role of the immune system is to discriminate between self-and non-self-antigens 

and respond specifically to remove non-self-pathogens invading the body while leaving the 

self-organs intact. The immune response is a complex process involving multiple 

coordinated actions of diverse immune cells and molecular signals (Figure 2). Specialized 
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sentinel cells known as APCs phagocytose antigens and present fragments of them to T cells 

via major histocompatibility complex (MHC) molecules. In the presence of appropriate 

inflammatory cues, CD8+ and CD4+ T cells with matching receptors are activated by 

interacting with APCs presenting an antigen, and proliferate and differentiate into cytotoxic 

“killer” cells (CD8+ T-cells) or “helper” cells (CD4+ T-cells). The protective functions of T-

cells are collectively known as cellular response. In addition, B-cells acquire and process 

antigen, and with the “help” from CD4+ T cells, differentiate into antibody-producing 

plasma cells. Immune protection mediated by secreted antibodies is referred to as humoral 

response.

In addition to immune activation, the immune system is equipped with mechanisms to 

suppress immune responses. In healthy individuals, the immune system maintains 

unresponsiveness to antigens recognized as “self”, and thus does not react to antigens 

expressed in endogenous tissues. When such self-tolerance is lost, underlying self-

recognition can result in tissue destruction mediated by humoral or cellular mechanisms, or 

both, leading to autoimmune diseases.

Self-tolerance is maintained by a coordinating operation of central and peripheral 

mechanisms (Figure 3). In central tolerance, most T- and B-lymphocytes with receptors 

specific for autoantigens are eliminated at an early stage in lymphoid cell development in the 

thymus and bone marrow, respectively. This process is also known as negative selection and 

it allows most self-reactive B and T cells to be removed before they enter the peripheral. 

However, it is becoming clear that the negative selection is not a perfect process as the 

peripheral repertoire of healthy individuals contains a high frequency of diverse, self-

reactive lymphocytes.19 Fortunately, a healthy immune system can effectively prevent both 

the self-reactive B and T cells that escaped from central deletion from initiating potentially 

dangerous immune responses against the body’s own tissues. This is achieved by a number 

of regulatory mechanisms outside of the primary lymphoid tissues collectively known as 

peripheral tolerance (Figure 3). These mechanisms affect the survival, differentiation, and 

function of T and B cells and play an important role in the induction and maintenance of 

self-tolerance.

Full activation of T cells requires an antigen-specific signal delivered through the TCR and 

appropriate costimulatory signals. However, engagement of TCR alone produces 

intrinsically unresponsive T cells that remain alive for an extended period, a state known as 

anergy.20 These cells are associated with diminished proliferation and cytokine production, 

and compromised effector functions.20 Another peripheral tolerance mechanism is 

activation-induced cell death (AICD) caused by the interaction between Fas receptors (FasR) 

and Fas ligands (FasL).21 AICD in T cells by FasR/FasL-mediated apoptosis is an important 

regulatory mechanism to down-regulate inflammation and promote peripheral tolerance as 

mice with defective FasR or FasL develop a number of autoimmune diseases.21 Unlike 

anergy, activation-induced cell death requires stimulation of T cells by competent APCs and 

it is dependent on IL-2 (interleukin 2), which enhances AICD by up-regulating FasL 

expression.22
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A third mechanism of peripheral tolerance which prevents autoimmune reactions is the 

suppression of self-reactive lymphocytes by Tregs. It is now known that various subsets of 

Tregs exist in the immune system. CD4+ Tregs are classified into thymus-derived natural 

Tregs, which are CD4+CD25+Foxp3+, and peripherally induced Tregs including type 1 

Tregs (Tr1) which secret IL-10 (interleukin 10), Th3 (T helper 3) Tregs which secret IL-10 

and TFG-β (transforming growth factor beta), and Foxp3+ Tregs. Besides, based on their 

regulatory function, other lymphocyte subsets are also recognized as Tregs: inducible CD8+ 

Tregs, double negative Tregs (CD3+CD4−CD8− Tregs), CD4+Vα14+ natural killer T cell, 

and γδ T cells.23 These Tregs have been shown to suppress T-cell responses by either 

induction of effector T cell death or by elaborating soluble immunosuppressive factors such 

as TGF-β and IL-10.23 The most important subset of Tregs expresses the transcription factor 

forkhead box P3 (Foxp3). Evidence has accumulated that Tregs, defined by the expression of 

CD4, CD25, and Foxp3 have an indispensable role in the maintenance of self-tolerance.24 In 

mice, depletion of Foxp3+CD25+CD4+ Tregs results in the spontaneous development of a 

variety of autoimmune diseases, including autoimmune thyroiditis, diabetes, and IBD, and 

that the disease could be reversed by adoptive transfer of Tregs.24,25 Immune suppression 

mediated by Tregs is antigen-dependent. In the secondary lymphoid organs, Tregs encounter 

specific antigens presented on antigen presenting cells and in the presence of IL-2, undergo 

clonal expansion.26 The immune suppression of effector T cells by Tregs is more 

complicated. Both antigen-specific and bystander suppression of effector cells have been 

reported.27,28 However, it is speculated that antigen-specific suppression is more effective 

than bystander suppression.29 Tregs can exert their suppressive functions directly on the 

effector T cells or indirectly on the function and maturation of DCs.29 It has been shown that 

inhibition by Tregs can be mediated by immunoregulatory cytokines such as TGF-β, IL-10, 

and IL-35.29 These cytokines inhibit the production of inflammatory cytokines such as 

IL-12, causing a decrease in the T helper type 1 (Th1) response and IFN-γ (interferon 

gamma) production, thereby inhibiting the self-reactive immune responses.29 Tregs were 

also found to be able to produce granzyme B, which induced apoptosis in effector T cells via 

cell-to-cell interaction. This mechanism decreases the number of effector T cells and 

promotes the induction of self-tolerance.29 In addition to the direct effect of Tregs on 

effector T cells, Tregs can inhibit the maturation and function of DCs by promoting the 

tolerogenic phenotype of DCs. Although the mechanism is unknown, it is believed that 

Tregs achieve this by cell surface molecules or cytokines such CTLA-4, IL-10, and TGF-β.
30

B cell activation and plasma cell differentiation are critically dependent on T cell help.31 T 

helper cells (Th) recognize peptide/MHC II on B cells and provide costimulation via CD40L 

and CD40 interaction as well as cytokines such as IL-4 and IL-21, which in turn sustain B 

cell activation and differentiation into antibody-secreting cells. If helper T cells specific for 

the autoantigens are deleted, suppressed, or rendered anergic, self-reactive B cell responses 

do not occur. Thus, CD4+ T helper cells are ultimately crucial for B cell tolerance.31

Antigen presenting cells especially DCs play essential roles in the initiation and 

maintenance of peripheral tolerance.15,32 Both T- and B-cell-mediated immunity are tightly 

linked to DCs through antigen presentation, costimulatory interaction, and cytokine factors. 

As outlined above, induction of antigen-specific tolerance is a complex process that involves 
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activation and/or inhibition of multiple immunological pathways. Therapeutic manipulation 

of these pathways by different strategies provides mechanisms to induce antigen-specific 

immune suppression without compromising the ability for global immune responses. One of 

the first targets in tolerance induction is the MHC/peptide/TCR interaction. T cell tolerance 

can be achieved by inducing a partial or altered signal through the MHC/peptide/TCR 

trimolecular interaction.8–10 Typically, TCR stimulation in the absence or low levels of 

costimulation leads to T cell anergy, depletion, or differentiation to Tregs.8,9 Targeting 

MHC/peptide/TCR based on administration of autoantigens is being pursued treating 

autoimmune diseases, such as MS, SLE, and T1D.8–10 Antigen dose, routes, and kinetics 

that promote tolerance have been explored to modulate disease progression but with limited 

success.11–14 These failures may be related to the choice of antigen, dose, frequency, route, 

and mode of delivery, but most probably suggest TCR signal alone is insufficient in 

reversing the disease-causing autoimmunity in vivo.

Exogenous targeting the costimulatory and/or coinhibitory pathways appears to be a logical 

approach for therapeutic manipulation to down-regulate the pathologic immunity.16,33–35 It 

is now clear that both costimulatory and coinhibitory molecules are essential for the initial 

induction and function of Tregs. Along with this line of research, a variety of costimulatory 

and coinhibitory pathways have been explored. CD28, B7 (CD80/CD86), CTLA-4, CD40, 

CD154, ICOS, OX40, and 4–1BB have been targeted with agonists or antagonists to 

modulate the APC–T cell interaction.16,36 These treatments alone or combined with 

autoantigen have sparked enormous research. Much work has been conducted on the B7-

CD28/CTLA-4 costimulatory system which plays a critical role in effector T cells activation 

versus suppression. For example, Abatacept is an FDA approved B7-binding fusion protein 

used to treat RA.37 It has also been shown to be effective in treating T1D.38 Blockade of 

CD28 with anti-CD28 antagonists promotes the engagement of CTLA-4 with B7, delivering 

a negative signal into effector T cells and inhibiting their activation. Several antagonists 

against CD28 have been developed and inhibited disease progression in both rodents and 

humans.39 In line with this research, similar pathways have been targeted for autoimmune 

modulation. Efficacy in several murine autoimmune diseases has been demonstrated where 

4–1BBL/4–1BB, PD-1/PD-L1 were targeted alone or in combination with TCR stimulation.
16,36 These studies demonstrated the potential of targeting DC/T cell interaction in tolerance 

induction. However, immunomodulatory effects of targeting costimulatory or coinhibitory 

molecules are potentially more complex. Achieving a delicate balance appears to be 

important for an effective tolerance induction: while costimulation through 4–1BB, OX40 

promotes Tregs proliferation, it also reduces Tregs suppressive capacity.40,41 Similarly, in an 

EAE (experimental autoimmune encephalomyelitis) mouse model of MS, mice were 

immunized with MOG35–55 (myelin oligodendrocyte glycoprotein) and then treated with 

CTLA-4Ig (anti-B7 monoclonal antibody) to achieve B7 blockade. Surprisingly, it was 

revealed that CTLA-4Ig treated mice had about two times higher disease scores compared 

with PBS treated control mice, implying that the B7 blockade exacerbated disease. This 

study suggested that a certain level of B7/CD28 engagement was required for Tregs 

proliferation and function.42

Another promising target is the CD40/CD154 interaction. Engaging CD40/CD154 delivers 

activating intracellular signals to ACPs and subsequently controls T-dependent B cell 
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response and T cell priming. Thus, disrupting CD40/CD154 interaction is likely a viable 

strategy in treating autoimmune diseases in which activated T and B cells are involved.43,44 

In fact, CD154-blocking antibodies (Ab) can prevent or ameliorate autoimmunity in several 

disease models, including T1D,45 RA,46 SLE.47 However, anti-CD154 Ab treatment led to 

thromboembolic complications.48 Alternative small molecules which target CD40 are 

emerging in autoimmunity. For example, a CD40 blocking peptide derived from human 

CD154 was discovered recently.49 Daily administration of CD40 blocking peptide 

successfully reversed T1D in NOD (nonobese diabetic) mice.49

BIOCONJUGATE STRATEGIES FOR THE INDUCTION OF ANTIGEN-

SPECIFIC TOLERANCE

Antibody–Antigen Conjugates.

Monoclonal antibody (mAb)-based therapies have become a critical part of the treatment for 

patients with autoimmunity, cancer, and infectious disease. In autoimmune diseases, 

antigen–antibody conjugates are mainly used to target DCs, the most efficient antigen 

presenting cells, to enhance the antigen uptake, processing, and presentation.15,32,50 A direct 

delivery of antigens to DCs subset in the most appropriate tissue in the absence of 

costimulatory stimuli not only leads to the deletion of antigen-specific T cells, but also to the 

induction of peripheral tolerance mediated by Tregs, as demonstrated in murine models of 

autoimmune arthritis, EAE, and T1D.51–54 One of the early examples was demonstrated by 

Finkelman et al. in 1996.55 The authors showed a rat IgG2b anti-DC antibody induced rat 

IgG2b-specific T cell and B cell tolerance, unresponsive to the subsequent challenge. The 

tolerance induction appeared to be dependent on the specific DC surface receptor, as 

injection of a DC-specific hamster anti-CD11c mAb stimulated antibody responses rather 

than tolerance.55 Since then, a variety of different antibodies which deliver autoantigens via 

DC surface receptors have been explored for tolerance induction. DEC-205 is one of the 

well-studied DC surface receptors with tolerogenic potential.51,54–62 Autoantigens 

conjugated to anti-DEC-205 in the absence of activating stimuli are selectively delivered to 

DEC-205+ DCs, inducing profound peripheral T cell tolerance.51,54 Antigen targeted 

DEC-205 is internalized by receptor-mediated endocytosis, and traffics to late endosomal 

compartments where high concentrations of MHC II molecules are present (Figure 4).56 

Low-dose of antigen delivered via DEC-205 exhibited 100-fold increase in antigen 

presentation (Figure 4),57 and favored the conversion of naïve CD4+CD25−Foxp3− T cells 

into functional CD25+Foxp3+ Tregs.51,54,58 These regulatory responses were very efficient 

as mice administrated with appropriate autoantigens fused with anti-DEC-205 were 

protected from autoimmune arthritis,59 and EAE,60 and T1D.61,62 In the T1D studies, 

linking either CD4+ or CD8+ epitope to anti-DEC-205 led to the deletion of autoreactive T 

cells and protected mice from disease in two different mouse T1D models, strongly 

suggesting this specific endocytic receptor is a valid target for tolerance induction.61,62

Antigen–antibody conjugates targeting plasmacytoid DCs (pDCs) via sialic acid binding Ig-

like lectin H (Siglec-H) have been shown to inhibit Th cell-dependent autoimmunity in an 

antigen-specific manner in mice, even in the presence of strong immune stimulation.63 

Siglec-H is an efficient endocytic receptor on plasmacytoid DC precursors and Siglec-
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mediated antigen delivery of myelin autoantigen induced a hyporesponsive state in CD4+ T 

cells without conversion to Foxp3+ Tregs, and effectively delayed the onset of EAE.63

Targeting several other receptors on DCs has been shown to be effective in Tregs and 

tolerance induction. Antigen–antibody conjugates targeting migratory DCs promoted 

peripheral tolerance induction as delivering to Langerin+ (CD207) DCs and pDCs induced 

Foxp3+ Tregs proliferation and EAE suppression.64 Furthermore, DCs expressing CD103 in 

the intestine primed Foxp3+ Tregs.65 These specialized CD103+ DCs in the gut lymphoid 

tissues produced both TGF-β and retinoic acid and efficiently promoted the differentiation 

of Tregs.65

Protein expression pattern differs between mice and humans. To test whether antigen 

targeting autoantigens to human DCs could suppress autoimmunity, the human IgE Fc 

domain was fused with autoantigen.66 In human FcεRIα-transgenic mice, such antigen-Fcε 
conjugate was efficiently delivered to DCs, enhanced antigen presentation by at least 1000-

fold, and resulted in the deletion of antigen-specific T cells.66 These results warrant 

consideration of DC targeting for further clinical studies.

Antibody–antigen conjugate represents a simple and effect approach for the induction of 

antigen-specific immunosuppression. However, like all therapeutic proteins, antibody–

antigen conjugates induce antibody responses in patients.67 Such antidrug antibodies are a 

common cause for the treatment failure and adverse hypersensitivity reaction. Nevertheless, 

management of the immunogenicity of therapeutic antibody by optimizing the antibody 

design67 or by tolerogenic strategies68 have been tested to overcome this limitation.

Albumin–Antigen Conjugate.

The effectiveness of antigen-specific immunotherapy is dependent on the accumulation of 

antigens in the antigen presenting cells. Subunit peptides and proteins have a short half-life 

in vivo due to rapid renal clearance, degradation, and nonspecific tissue accumulation. One 

effective approach is to tag antigens to albumin, a natural transporter protein with long 

circulating half-life.69 Recently, Tregitopes,70 MHC class II epitopes in the Fc fragment of 

IgG which were capable of specifically activating Tregs, were fused with albumin.71 

Administration of Tregitope-albumin extended antigen half-life. Compared to antigen alone, 

mice that received a single dose of Tregitope-albumin fusion protein showed a significant 

reduction of antigen-specific T cell proliferation in OVA-specific T cell proliferation. 

Albumin fusion, administered either prophylactically or therapeutically ameliorate the 

disease progression in chronic inflammatory demyelinating polyneuropathy (CIDP) in a 

spontaneous mouse model.71 In addition to increased half-life, recent studies demonstrated 

that amphiphilic vaccines bind to albumin in situ efficiently accumulated in the antigen 

presenting cells in the lymph node (LN) following subcutaneous injections, leading to up to 

30-fold increase over unmodified vaccines in antigen-specific CD8+ T cell proliferation.72,73 

These studies provide evidence that autoantigen–albumin conjugate improves antigen 

presentation by prolonging antigen half-life and enhancing lymphatic accumulation.

As a natural transporter protein with long circulatory half-life, albumin has been considered 

as one of the most attractive carriers for delivery of therapeutic agents in 
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immunomodulation.74,75 In addition, the successes of albumin-based conjugates such as 

long-acting insulin (Levemir) and glucagon-like peptide (Victoza), which are attached to an 

albumin-binding moiety, potentially promote the development of albumin-based biologicals 

in clinical studies.75 While an albumin-based conjugate platform demonstrated superior 

immunomodulation effects, how the modification impacts on antigen uptake, processing, 

and presentation have not been elucidated. In addition, it remains to be investigated whether 

antigen–albumin conjugates can be a general approach in other autoimmune diseases.

Soluble Peptide–MHC Complex.

Soluble peptide-MHC II complexes (pMHC II) have long been recognized for their ability to 

blunt autoimmune responses.76–79 This method directly targets cognate T cells without the 

need of APCs for antigen presentation. Early studies using pMHC monomers have shown 

promise in the preclinical study in EAE but with limited clinical beneficial effects in Phase I 

trial in MS patients.80,81 Similarly, a Phase I/II clinical trial for RA using an epitope of 

human cartilage glycoprotein (HCgp39) loaded pMHC II monomer yielded only short-term 

effects.82 Clinical responses were seen in patients treated with 7 infusions of 150 μg/kg 

peptide/MHC over 6 weeks. One possible limitation for monomeric pMHC is that, in 

general, pMHC/TCR interaction is very weak and classically lasts for no longer than a few 

seconds, especially for autoantigens.83 To improve the direct stimulation of antigen-specific 

T cells, multivalent pMHC complexes have been designed. Unlike the monovalent pMHC, 

the multivalent interaction between pMHC and T cells greatly enhances both the TCR 

binding affinity and stability.83 Soluble peptide-MHC multimers, in addition to being a 

powerful tool in the monitoring of T cell response, can mediate downstream signaling after 

T cell receptor engagement.84,85 In the absence of costimulation, peptide-MHC multimer 

leads to anergy, deletion of cognate T cells, or induction of Tregs.85 To avoid the transfer of 

peptides from multimers to cell surface MHC molecules which could possibly exacerbate 

autoimmune responses, peptide antigens are often covalently linked to MHC. Such pMHC 

class II multimer can inhibit autoreactive CD4+ T cells in T1D85–88 or MS.77,89 Masteller et 

al. developed soluble peptide/I-Ag7 dimer with a linked peptide specific for islet-reactive 

BDC2.5 transgenic CD4+ T cells in NOD mice.87 These dimers were shown to specifically 

bind BDC2.5 T cells. Treatment with BDC2.5 peptide I-Ag7 dimer protected mice from 

diabetes mediated by adoptive transfer of diabetogenic BDC2.5 CD4+ T cells.87 In a similar 

approach, Casares et al. demonstrated soluble dimeric peptide-MHC II chimera not only 

prevented the onset of T1D disease but also restored normoglycemia in diabetic animals.86 

In a spontaneous T1D model, administration of soluble IAg7 dimers covalently linked to β-

cell autoantigen-derived peptide GAD65 blocked the progression of insulitis and the 

development of diabetes.88 In addition to pMHC class II dimers, pMHC class I complexes 

have been reported to inhibit alloreactive CD8+ CTL (cytotoxic T lymphocyte) in vivo,90,91 

and covalent linkage of MHC class I with long rigid linkers efficiently inhibited CTL target 

cells by interfering with TCR-mediated activation of lymphocyte function-associated antigen 

1 (LFA-1).92 Another intriguing idea is to deplete the autoreactive T cells with a pMHC 

multimer immunotoxin.93–96 In this approach, cytotoxic drugs such as 225Actinium, saporin, 

and doxorubicin were conjugated to pMHC multimer, resulting in a rapid antigen-specific T 

cell deletion. Together, though long-term efficacy and toxicity data are lacking, these results 
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suggested that multimeric peptide-MHC might be useful in the development of 

immunospecific therapies for autoimmune diseases.

Antigen–NPs Conjugates.

NPs delivery has recently been investigated to promote tolerance induction. The use of NPs 

for tolerogenic vaccine delivery improves the antigen stability, targets key immune cells, and 

enhances antigen presentation. For these purposes, autoantigens and/or suppressive signals 

are often encapsulated or conjugated to nanosized vehicles. Here we limit the scope of the 

discussion to techniques and approaches that can modulate the immune system via 

molecular conjugates.

Antigen-Linked NPs as APC Targeted Delivery.

The efficacy of NPs in immune modulation largely depends on their ability to target and 

alter the functions of antigen presentation cells in vivo.15,32,52 NP’s physical and chemical 

characteristics such as size, shape, geometry, and surface chemistry affect their 

biodistribution, uptake, and intracellular trafficking.97 Because their sizes are comparable to 

those of microorganisms, a particulate system is more efficient in antigen delivery than 

soluble antigens.97,98 In the absence of danger signals, the presentation of autoantigens on 

APCs can induce antigen-specific tolerance. Getts et al. showed that antigen-decorated 500 

nm polystyrene NPs induced long-term T cell tolerance in mice with EAE.99 Intravenous 

injection of disease-relevant peptide such as PLP139–151 (proteolipid protein) conjugated 

polystyrene NPs enhanced the antigen uptake in splenic phagocytes via Macrophage 

Receptor with Collagenous Structure (MARCO), a scavenger receptor, and prevented the 

onset of EAE, a model of human MS.99 These beneficial effects are associated with the 

vaccine-elicited Tregs and inhibition of effector T cell activation.99 A more biocompatible 

poly(lactic-co-glycolic acid) (PLG) NPs have also been shown to function as a safe, cost-

effective, and efficient carrier for the induction of antigen-specific T cell tolerance.100 

Myelin antigen-coupled PLG NPs were able to ameliorate the ongoing diseases in an EAE 

model and, importantly, minimize epitope spreading when administered systemically.100 

Autoantigen–polymer conjugate PLGA NPs with favorable release kinetics were developed 

in a recent study. It was found the Tregs induction was dependent on antigen density as well 

as nanoparticle concentration.101

Using NPs to codeliver antigen and immunomodulators is an emerging trend in antigen-

specific immunotherapy. Yeste et al. used small gold NPs (60 nm in diameter) for delivery of 

EAE-relevant peptide antigen MOG35–55 and 2-(1Hindole-3-carbonyl)-thiazole-4-carboxylic 

acid methyl ester (ITE), a small molecular agonist activating aryl hydrocarbon receptor 

transcription factor (AhR) (Figure 5A).102 The addition of ITE promoted the differentiation 

of CD4+ CD25+ Foxp3+ Tregs. Using gold nanoparticle incorporated with β-cell antigen 

proinsulin, the same group reported the induction of a tolerogenic phenotype in DCs and 

Tregs generation in vivo, which in turn suppressed autoimmune diabetes in a mouse model.
103 Similarly, poly(lactic-co-glycolic) NPs combined autoantigen and rapamycin were 

shown to efficiently induce tolerogenic DCs, and suppress both T-and B-cell-mediated 

immunity in mice.104
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Targeting antigen to APCs in the lymph nodes is emerging as an efficient strategy for 

tolerance induction.105,106 NPs with optimized parameters such as size, charge, and shape 

were able to drain to the lymph nodes and accumulated in the LN-resident APCs.97 

Immunological tolerance can thus be elicited by conjugating autoantigens to size-optimized 

NPs (5–100 nm) such as quantum dots. Hess et al. in a recent study showed quantum dots 

(QDs) with uniform size (<20 nm) efficiently concentrated in the draining lymph nodes 

following subcutaneous injection, colocalizing with macrophages expressing the scavenge 

receptor MACRO.107 Treatment of autoantigen loaded QDs markedly reduced disease 

incidence when compared with soluble antigen group in an EAE mouse model of MS. 

Importantly, the antigen density has been correlated with the efficacy of tolerance induction, 

with low-density antigen displayed on high numbers of tolerogenic particles driving the 

most efficient tolerance.107 Though the underlying mechanism is still not clear, this finding 

suggests, in addition to efficient antigen delivery to APCs in the LN, an antigen display in 

which the spatial organization of the antigens on the surface of NPs regulates autoimmunity.

NPs Coated with Autoimmune Disease Relevant Peptide/MHC.

To improve the therapeutic outcomes of soluble peptide-MHC multimers in autoimmune 

diseases, pMHC conjugated NPs has been proposed.108–111 pMHC coated NPs can provide 

protection of the pMHC molecules from degradation, which would prolong the circulating 

half-life. In addition, the particle size, pMHC valency, spacing, and density can be fine-

tuned to optimize the regulation of T cell responsiveness.109,112,113 Tsai et al. coated iron 

oxide NPs with T1D-relevant pMHC complexes and found such pMHC class I-coated NPs 

elicited TCR clustering and expanded memory-like autoregulatory T cells, which 

subsequently inhibited the activation of other autoantigen-specific autoreactive CD8+ T cell 

populations in the pancreas.108 Treatment of pMHC-NPs not only blunted T1D progression 

in prediabetic mice but also restored normoglycemia in newly diagnosed diabetic NOD 

mice.108 Similarly, NPs coated with autoimmune-disease relevant peptides bound to MHC II 

(Figure 5B) profoundly induced antigen-specific T cells with regulatory function, and led to 

the suppression of disease in mouse models of RA, T1D, and MS, without compromising the 

global immunity.110 These pMHC-NPs provide a “plug and play” vaccine platform to 

reprogram the immune responses, with the possibility to codeliver other tolerogenic signals, 

such as costimulatory inhibitors or suppressive cytokines.

However, the major barrier for pMHC-NPs approach lies in the complexity of the production 

of pMHC-NPs that match human leukocyte antigen of individuals.114 Although NPs-based 

approaches are promising in the treatment of autoimmune diseases, the clinical translation of 

these strategies remains in its infancy due to the concerns underlying immunogenicity and 

toxicity associated with synthetic NPs.

Small Molecule–Antigen Conjugates.

Compared with protein drugs, small molecular compounds have the advantages in 

manufacturability, cost, stability, and safety. Small molecular ligands that specifically block 

the engagement of costimulatory molecules or inhibit the formation of the immunological 

synapse are thus conjugated to autoantigens to amplify the tolerance induction. Such 

bispecific heterodimers are designed to selectively inhibit the maturation of T cells specific 
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for autoantigens. Siahaan and colleagues have designed a bifunctional peptide inhibitor 

(BPI, Figure 6), which consists of an antigenic peptide epitope conjugated to an inhibitory 

peptide blocking DC-T cell interaction.115–119 Conjugating peptide autoantigens to LFA-α-

blocker left (LABL) peptide inhibited the formation of the immunological synapse by 

binding to both MHC II and intercellular adhesion molecular-1 (ICAM-1), and skewed the 

differentiation of T cells from stimulatory to regulatory cells.107 Similarly, BPI composed of 

an antigenic peptide and a B7 binding peptide derived from CD28 receptor was designed to 

simultaneously target MHC II and B7 on the surface of antigen presenting cells.119 

Administration of low concentrations of BPI consisting of appropriate disease-specific 

antigens was highly potent in T1D, and RA.115–119 To overcome the short in vivo half-lives 

of peptide, White et al. in a recent study covalently conjugated the bifunctional peptide to 

the fragment crystallizable (Fc) region of the human IgG1 antibody via a sortase-ligation 

strategy.120 The initial tests of the conjugate showed significantly reduced EAE symptoms.
120

The LEAPS (Ligand Epitope Antigen Presentation System) platform represents another 

technology to the development of antigen-specific immunomodulating peptide vaccines for 

autoimmune diseases.121 In this technology, disease-specific peptide epitopes were 

conjugated to an Immune Cell Binding Ligand (ICBL), a short peptide which activates 

precursors to initiate and redirect appropriate T cell responses. Depending upon the nature of 

the attached ICBL, the LEAPs technology can direct the antigen-specific T cell responses 

toward Th1, Th2 orTregs.121 Conceived in the late 1980s, LEAPS technology has since been 

demonstrated to be able to block the progression of several autoimmune diseases, including 

RA in the collagen-induced arthritis model122 and experimental autoimmune myocarditis in 

a mouse model.121

Small molecule immunomodulators, including vitamin D3,123,124 mycophenolic acid, 

dexamethasone,123 D-man-nose,125 and rapamycin104,123 have been shown to be effective in 

augmenting the tolerance induction through a variety of mechanisms which include the 

induction of Tregs, or by altering the profile of pathogenic immunity. However, the 

combination of most of these “tolerogenic” adjuvants with immunogens is achieved by 

coadministration or encapsulation in particulate carriers. Chemical conjugation of antigen 

and immunomodulators ensures delivery to the same antigen presenting cells and are widely 

used in the generation of immune responses.126 Due to the lack of direct head to head 

studies, it remains to be determined whether covalent linkage can be more effective in 

immune suppression. Nevertheless, small molecules have been conjugated to autoantigen for 

immune suppression. In a recent study, Perdicchio et al. conjugated sialic acid to 

autoantigens for the induction of Tregs. Sialic acids bind to Ig-like lectins (Siglecs), which 

are inhibitory receptors expressed on DCs.127 The authors suggested that modification of 

antigens with sialic acids targeted DCs via Siglecs and altered the immunogenicity of 

antigens.127 Administration of sialylated antigens led to inhibition of the proliferation and 

functions of effector T cells and induction of Tregs, even under inflammatory conditions.127 

Modulation of T cell responses via myelin antigen sialylation was effective in mice with 

EAE, providing evidence that sialic acid–antigen conjugates could induce antigen-specific 

immune tolerance.127
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Although cross-linking antigen to immunomodulatory is a straightforward design for 

immune suppression, one of the potential complications with using chemical conjugation is 

that it offers limited protection to the immunogen, resulting in premature degradation once 

exposed to the harsh physiological environments.

Cell–Peptide Conjugates.

Although the precise mechanisms have not been determined, physiological cell death 

(apoptosis) is intrinsically tolerogenic.128 Unlike pathological cell death (necrosis), under 

homeostatic conditions, apoptotic cells are engulfed and processed by antigen presenting 

cells and are presented to induce tolerance to autoantigens.128 Exploiting this intrinsic 

peripheral tolerance process, several groups have tried to target autoantigens to different 

types of cells.129–139 One of the most studied approaches to induce tolerance is intravenous 

treatment with antigen-coupled, ethylene carbodiimide (ECDI)-fixed splenocytes.129–135 In 

this approach, splenocytes were isolated from the donner mice and were chemically coupled 

with antigen via a small molecular linker ECDI. ECDI also induces apoptosis of 

splenocytes, creating a cell-based autoantigen processed by tolerogenic pathways.128 It has 

been shown that ECDI-coupled splenocytes induce tolerance via both direct and indirect 

mechanisms.130 In the direct pathway, peptide-coupled cells directly present auto-antigens to 

antigen-specific T cells via T cell receptor, leading to anergy through TCR stimulation in the 

absence of costimulation. In an indirect pathway, intravenous infusion of antigen-coupled 

cells accumulates in the marginal zone of the spleen where they are phagocytosed and 

presented on the surface of macrophages, which produce IL-10, upregulating the expression 

of the immunomodulatory costimulatory molecules PD-L1.131 Antigen-coupled cell infusion 

also induces Tregs that are essential for long-term tolerance maintenance.131 Notably, 

antigens chemically conjugated ex vivo to splenocytes have been shown to induce antigen-

specific tolerance in T1D132,136 and EAE.133 Recently, autologous peripheral blood 

mononuclear cells chemically coupled with an array of myelin peptides were tested in MS 

patients.134 This first-in-man, phase 1 clinical trial demonstrated that the treatment was safe, 

and a high dose of treatment reduced antigen-specific T cell responses.134 This study 

established the safety and feasibility of using antigen-coupled cells in MS patients, 

providing evidence to justify further clinical investigations on the treatment of autoimmune 

diseases.

Immunological tolerance can also be induced by antigen coupled red blood cells (RBCs).
137–139 Transfusion of RBCs covalently modified with disease-relevant autoantigen payload 

has been shown to blunt the contribution to immunity from B cells, CD4+, and CD8+ T cells 

in an antigen-specific manner.138 Mice treated with autoantigen-coupled RBCs 

demonstrated prophylactic and therapeutic efficacy in EAE, and this strategy also protected 

the majority of NOD mice from T1D.138

The strategies just described rely on the isolation and ex vivo manipulation of autologous 

cells. Such ex vivo cell approaches have in general been tedious, complex, and inefficient. 

Kontos and co-workers reported an innovative strategy by which an antigen was coupled to 

circulating RBCs via in situ binding.139 Autoantigens were fused to an erythrocyte binding 

domain and following intravenous infusion, bound to RBCs avidly, deleting both CD8+ and 
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CD4+ T cells in an antigen-specific manner. Using mimetope peptides, the authors reported 

complete prevention of hyperglycemia was achieved by injection of RBC-targeted peptide 

conjugate in an adoptive T cell transfer-induced T1D model.139 As this strategy uses 

molecularly defined peptide conjugates for in situ erythrocyte targeting and avoids the ex 
vivo cell manipulation, it could be, at least in principle, readily translated to the clinic for 

human studies.

Polymeric Peptide Antigens.

The physicochemical properties, and thus the immunological fate of an antigen, can be tuned 

by conjugating to different types of polymers. For example, while antigen conjugated to 

oxidized mannan has been shown to induce cellular and humoral immune responses,140 

reduced mannan conjugates skewed the predominant T-helper 1 responses to T-helper 2 

responses.141 Protein antigen conjugated with polyethylene glycol (PEG), a non-

immunogenic synthetic polymer, induces immune tolerance of antigen-specific Th cells.142 

Interestingly, size, structure, and linker chemistry have been found to play an important role 

in the levels of tolerance induction in a peptide-polyglycerol conjugate.143 Polyglycerol with 

an ester linkage was the most tolerogenic, while the same polymer with an amide linkage 

induced strong effector T cell proliferation.143

An autoantigen delivery platform based on Soluble Antigen Arrays (SAgAs) has been 

developed recently.144–146 This delivery system has a polymeric backbone with grafted 

autoantigens and inhibitory signals. One of the advantages with this system is that it is 

highly tunable: by varying the polymer backbone and the type, density of peptide 

attachment, a wide variety of design parameters such as molecular size, solubility, flexibility, 

antigen valency, spacing, and binding avidity can be controlled.145 These parameters have 

been correlated with therapeutic efficacy in murine models of autoimmune diseases.145

CONCLUSION AND FUTURE PERSPECTIVE

The continued development of ASI depends highly upon our understanding of human 

immunology, as well as discovery and delivery of tolerogenic adjuvants which can 

effectively amplify the immune suppression across a wide range of autoimmune disease 

types. As outlined above, bioconjugates hold great promise in immunomodulation of 

autoimmune diseases, bridging synthetic molecular functions with immunological features. 

Bioconjugates can be tailored and functionalized to target DCs, to codeliver autoantigens 

and immunomodulators, or to target specific immunological pathways. Among all the 

strategies we reviewed here, myelin peptide-coupled blood mononuclear cells represent the 

most clinically advanced strategy to date, showing good tolerance and safety in MS patients. 

Despite the progress, it has become clear that current strategies for ASI are not sufficiently 

active for many diseases. There is clearly a need to improve therapeutic efficacy in humans. 

As the field of immunomodulation continues to evolve, new bioconjugate strategies will 

emerge as innovative treatment modalities. For example, bioconjugate strategies might be 

developed to control the localization, dose, and kinetics of tolerogenic vaccines. 

Bioconjugates might also be engineered to program immune cell differentiation and thus 

control immune cell fates. Future efforts will explore the biological functions of 
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biomaterials, and combination therapy by which disease-modifying biologics and 

autoantigens are conjugated should provide a framework to improve efficacy and reduce side 

effects of antigen-specific immunotherapy. In the long term, these efforts will continue 

guiding the rational design of ASI to improve current treatment and ultimately lead us 

toward a cure.
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ABBREVIATIONS

ASI Antigen-specific immunotherapy

MHC Major histocompatibility complex

TCR T cell receptor

NIAID National Institute of Allergy and Infectious Diseases

T1D Type 1 diabetes

RA Rheumatoid arthritis

SLE Systemic lupus erythematosus

EAE Experimental autoimmune encephalomyelitis

IBD Inflammatory bowel disease

MS Multiple sclerosis

APCs Antigen presenting cells

Tregs regulatory T cells

Th T helper cell

MMR Macrophage mannose receptor

NPs nanoparticles

AICD Activation-induced cell death

FasR Fas receptors

FasL Fas ligand

DCs Dendritic cells

Foxp3 Forkhead box P3

CTLA-4 Cytotoxic T-lymphocytes-associated protein 4
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ICOS Inducible T-cell costimulatory

PD-1 Programmed cell death protein 1

PD-L1 Programmed death ligand 1

NOD Nonobese diabetic

mAb Monoclonal antibody

pDCs Plasmacytoid dendritic cells

Siglec-H Sialic acid binding Ig-like lectin H

HSA Human serum albumin

CIDP Chronic inflammatory demyelinating polyneuropathy

LN Lymph node

HCgp39 Human cartilage glycoprotein 39

CTL Cytotoxic T lymphocyte

LFA-1 Lymphocyte function-associated antigen 1

PLGA Poly(lactic-co-glycolic acid)

MARCO Macrophage receptor with collagenous structure

AhR Aryl hydrocarbon receptor

QDs Quantum dots

PLP Proteolipid protein

MOG Myelin oligodendrocyte glycoprotein

ITE 2-(1Hindole-3-carbonyl)-thiazole-4-carboxylic acid methyl ester

BPI Bifunctional peptide inhibitor

LABL LFA-alpha blocker left

ICAM-1 Intercellular adhesion molecular-1

Fc Fragment crystallizable

LEAPS Ligand epitope antigen presentation system

ICBL Immune cell binding ligand

ECDI Ethylene carbodiimide

RBCs Red blood cells

PEG Polyethylene glycol
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SAgAs Soluble Antigen Arrays

IL-2 Interleukin-2

IL-4 Interleukin-4

IL-10 Interleukin-10

IL-12 Interleukin-12

IL-21 Interleukin-21

IL-35 Interleukin-35

IFN-γ Interferon-γ

TGF-β Transforming growth factor beta
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Figure 1. 
Bioconjugate-based strategies for the induction of antigen-specific tolerance in autoimmune 

diseases. Bioconjugates have been engineered to target autoantigens and tolerogenic 

molecules to dendritic cells (DCs) (1); to facilitate antigen-processing via endocytic 

receptors (2); to inhibit costimulation (3); to link to apoptotic cells for tolerogenic 

presentation (4); and to deliver toxin to autoantigen-specific T cells (5). These strategies lead 

to peripheral tolerance as results of anergy and deletion of cognate T cells, or induction of 

Tregs.
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Figure 2. 
Induction of adaptive immune responses. DCs and B cells acquire antigens and in the 

presence of inflammatory cues (costimulatory signals), activate T- and B-cells. Activated 

CD4+ T cells differentiate into T helper cell subtypes and CD8+ T cells differentiate into 

cytotoxic T effector cells. In parallel, activated B cells differentiate into antibody-producing 

plasma cells.
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Figure 3. 
Central and peripheral tolerance mechanisms in T cells and B cells. Central tolerance occurs 

in the primary lymphoid organs where high-affinity self-reactive T cells and B cells are 

deleted in the thymus and bone marrow (negative selection), respectively. Peripheral 

tolerance occurs as mature self-reactive T cells and B cells escape central tolerance and enter 

the periphery, where they are inactivated (anergy), deleted (activation induced cell death, 

ACID), or suppressed.
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Figure 4. 
Antigen delivered via DEC-205 enhances antigen presentation. (A) Anti-DEC-205, but not 

anti-MMR (Macrophage Mannose Receptor), is internalized by receptor-mediated 

endocytosis, and traffics to late endosomalcompartments where high concentrations of MHC 

II molecules are present. (B and C) Antigen delivered via anti-DEC-205 greatly enhances its 

presentation to T cells. Reproduced with permission from ref 57.
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Figure 5. 
Tolerogenic NPs for antigen-specific immunotherapy. Schematic representation of antigen 

(MOG35–55) and AhR ligand (ITE) conjugated gold NPs (A) and NPs coated with peptides 

bound to MHC class II (B). Reproduced with permission from ref 102 (A).
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Figure 6. 
Proposed mechanism of action of bifunctional peptide inhibitor (BPI). BPI prevents the 

formation of immunological synapse by binding to MHC-II and ICAM-1 on the surface of 

APC, which leads to inhibition of T cell activation. (A) Around the central zone, LFA-1/

ICAM-1 and TCR/MHC-antigen complexes are first formed at the early stage of T cell 

activation; (B) both pairs are translocated to form complete immunological synapse. (C) In 

the presence of BPI, BPI binds to MHC-II and ICAM-1 on the surface of APC; (D) it 

inhibits their migration, which leads to inhibition of the immunological synapse formation. 

Reproduced with permission from ref 115.
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