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Abstract

Most peptide hormones originate from secretory protein precursors synthesized within the 

endoplasmic reticulum (ER). In this specialized organelle, the newly-made prohormones must fold 

to their native state. Completion of prohormone folding usually occurs prior to migration through 

the secretory pathway, as unfolded/misfolded prohormones are retained by mechanisms 

collectively known as ER quality control. Not only do most monomeric prohormones fold 

properly, but many also dimerize or oligomerize within the ER. If oligomerization occurs before 

completion of monomer folding then when a poorly folded peptide prohormone is retained by 

quality control mechanisms, it may confer ER retention upon its oligomerization partners. 

Conversely, oligomerization between well-folded and improperly folded partners might help to 

override ER quality control, resulting in rescue of misfolded forms. Both scenarios appear to be 

possible in different animal models of endocrine disorders caused by genetic defects of protein 

folding in the secretory pathway. In this paper, we briefly review three such conditions, including 

familial neurohypophyseal diabetes insipidus, insulin-deficient diabetes mellitus, and 

hypothyroidism with defective thyroglobulin.

1. INTRODUCTION

Peptide hormone-secreting endocrine tissues have an especially highly developed protein 

secretion pathway designed for a high level of secretory protein synthesis, trafficking, 

processing, and storage of peptide hormones within secretory granules. These cells are 

among those considered as “professional secretory cells” (1), which have an extensive 

network of membrane-bound secretory organelles that carry their proteinaceous cargo 

progressively through increasingly mature stages of processing, packaging, and 

concentration. Throughout these stages, secretory proteins remain within the lumen of the 

membrane-bound organelles, and thus they communicate only indirectly with the packaging, 
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processing, and signaling activities occurring on the cytosol side of the membrane, through 

proteins (and lipids) residing in the bilayer and on its cytosolic surface. The secretory cargo 

proteins themselves thus live two lives - one that takes place within the cell from which they 

are synthesized and secreted, and a second when they are finally allowed to explore the 

extracellular environment for which much of their biological function is encoded (2).

In the first life, within the secretory cell, the newly-made peptide prohormones and other 

secretory proteins must find a way to develop their native biological structure. While this is 

happening, there is strong reason to believe that the process of advancing through the series 

of intracellular compartments comprising the secretory pathway, is determined by “go / no-

go” signals encoded within the structure of the young secretory proteins (3). Such proteins 

may need to expose anterograde transport signals that could lead to capture by a forward-

going transport receptor, or they may expose structural information that triggers their 

retention within an individual compartment, preventing further forward transport.

The first hurdle for most newly-made secretory proteins occurs within the endoplasmic 

reticulum (ER). There, the majority of secretory preprohormones are injected across the ER 

membrane upon ribosome docking by virtue of the presence of a signal peptide (the “pre” 

piece) and its interaction with the signal recognition particle (SRP), followed by anchoring 

to the ER membrane via the SRP receptor, with guidance to the Sec61 translocon (4). This 

process usually begins when secretory preprohormone mRNAs have only begun to be 

translated; the bulk of the translocation of the growing polypeptide across the ER membrane 

tends to occur co-translationally (5). As it is being synthesized, the nascent secretory 

polypeptide chain finds itself in an entirely different environment from that of the cytosol, 

and it is in this new environment that preprohormones must first fold to their native 

conformation (6).

Many things may potentially go wrong during these early stages of peptide hormone 

biosynthesis. The preprohormone might not be properly or fully delivered across the ER 

membrane. The signal peptide (which is designed like a booster rocket, intended to be 

cleaved and jettisoned even as the first 80 amino acids of translation product are being 

injected across the ER membrane) – may not separate in a proper, timely way (7). Even if 

these events go well, the nascent prohormone may not find its way to the native state. The 

ER is a compartment filled with chaperones and processing enzymes (8). Many secretory 

proteins are designed to acquire N-linked glycosylation, which functions critically in ER 

protein folding. Additionally, the ER is a far more oxidizing milieu than the cytosol, 

promoting conversion of cysteine thiols into protein disulfide bonds. When those disulfide 

bonds are part of the native state of the mature peptide hormone then they are a stabilizing 

force, but they can wreak havoc if they result in intramolecular or intermolecular disulfide 

mispairing. There are numerous additional secretory protein structural modifications that can 

occur in the ER, including glucose and mannose trimming of N-linked carbohydrate side 

chains, proline isomerization (and hydroxylation), gamma carboxylation (of Glu residues), 

and many others (9).

Additionally, most peptide prohormones homo- or hetero-dimerize or oligomerize in the ER, 

with additional higher order assembly destined to occur in the Golgi complex or in secretory 
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granules (10). Within granules, mature peptide hormones may be stored at concentrations 

that exceed 100 mg/mL – the kinds of levels that cannot be achieved in a test tube. It is 

likely that many peptide hormones and prohormones have been evolutionarily selected for 

self-association to very high concentration (in addition to their ultimate biological function) 

and with this in mind, it is not surprising that misfolded prohormones may retain features 

that both permit and promote the formation of aggregates, fibrils, and non-native polymers.

The physiological consequences of these various kinds of prohormone misfolding are as 

various as the biological activities of the peptide hormones themselves (11). In so-called 

“conformational diseases”, at a very minimum, a loss-of-function can be expected either 

from failure to secrete a peptide hormone, or from failure of a non-native secreted peptide 

hormone to fulfill its intended biological function. Beyond this, misfolded, unsecreted 

prohormones may accumulate in the cells from which they are synthesized, often clogging 

the ER and triggering a behavior known as the ER stress response (12). From there, the 

misfolded, unsecreted peptide prohormones may be cleared internally by protein degradative 

pathways such as ER-associated degradation (ERAD), or ER autophagy (ER-phagy), or 

other ER-to-lysosome (ERLAD) routes (13). Alternatively, the misfolded, unsecreted 

prohormones may accumulate at toxic levels, culminating in devastating biological 

consequences within the host cell, including de-differentiation, or cell death (14). In this 

review, we cite a few well-known examples of animal models of endocrine disorders caused 

by defects of protein folding in the secretory pathway, with defects that include loss-of-

function, and gain-of-proteotoxic function, each leading to endocrine disease.

2.1. Familial Neurohypophyseal Diabetes Insipidus

Arginine vasopressin (AVP) is an antidiuretic hormone synthesized in magnocellular 

neurons of the supraoptic (SON) and paraventricular nuclei (PVN) of the hypothalamus, and 

delivered via axonal transport for storage in the posterior pituitary gland (15). The primary 

site of action of AVP is the collecting ducts of the kidney, where AVP promotes water 

reabsorption into the circulation. The subfornical organ (SFO) and the organum vasculosum 

laminae terminalis (OVLT) are osmosensors — when plasma osmolality rises, these 

hypothalamic nuclei send neural signals (via the nucleus medianus) to the SON and PVN, 

resulting in AVP secretion as well as AVP biosynthesis (16). This, along with an intact thirst 

mechanism, are essential to maintain water balance in the body.

Central diabetes insipidus (central DI) is caused by a deficiency of AVP secretion, and the 

affected patients excrete a large volume of hypotonic urine due to the insufficient water 

reabsorption in the renal collecting ducts. When AVP secretion is completely lost, urine 

excretion rates may reach up to 20 mL/min with a concentration as low as 50 mOsm/L (17). 

For long term management, desmopressin supplementation lowers urine volume with 

improved urine concentration (18).

The AVP gene encodes the signal peptide, AVP, neurophysin II (NPII) and glycopeptide 

(19). The prepro-AVP-NPII is converted to pro-AVP-NPII by excision of the signal peptide 

in the ER (20). In AVP neurons, in parallel with AVP mRNA up-regulation, the BiP mRNA 

(which encodes the major hsp70 family member of the ER and is highly expressed even 

under normal conditions) is further elevated under conditions of water-deprivation (21).
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Independent of pharmacologic causes, familial neurohypophyseal diabetes insipidus (FNDI) 

is an autosomal dominant central DI caused by AVP gene mutations — most of which reside 

in the NPII region (22,23). A limited number of autopsy reports have shown that AVP-

immunostained cells were reduced in the hypothalamus of patients with FNDI (24–26). 

From this it has been surmised that FNDI may lead to cell death of hypothalamic neurons 

that synthesize the protein (Figure 1). Indeed, a mouse model of FNDI was created with a 

C98X heterozygous nonsense mutation at the NPII locus, which is known to cause FNDI in 

humans (27). In these mice, accompanying the progressive polyuria was the finding that BiP 

protein levels were highly elevated in the AVP neurons (28). The mutant was postulated to 

have a high toxicity on neuronal cells in culture as demonstrated by the observation that the 

number of NPII immunostained cells progressively decreased over time (29).

However, another group independently created FNDI model mice with the same mutation 

and found that AVP neurons survived until late stages of DI. Using in situ hybridization and 

ultrastructural analysis in AVP producing cells, protein aggregates were observed in limited 

regions of the ER, which were called “ER Associated Component (ERAC)” (30,31). 

Aggregate formation was ameliorated by treating the mice with exogenous desmopressin, 

which decreases endogenous AVP expression (32). Similarly, administration of 4-

phenylbutylate (4-PBA), considered to be a “chemical chaperone”, also reduced protein 

aggregation in the ER of AVP neurons in FNDI mice and helped to restore endogenous AVP 

release, ameliorating the DI phenotype (33). On the other hand, a high salt (2.0 %) diet 

accelerated formation of AVP protein aggregates as well as central DI (32). Interestingly, 

under intermittent water deprivation, protein aggregates were scattered all over the ER 

(34,35), accompanied by autophagy activation and autophagic cell death (Figure 1). 

However, in yet another related model, transgenic rats expressing the mutant AVP-C98X in 

their hypothalamic neurons showed an expanded ER with trapping of wild-type and mutant 

AVP that was targeted for lysosomal degradation by activated autophagy, but the rat model 

did not exhibit cell death or atrophy (36). Therefore, there remains an element of uncertainty 

whether the diminished hypothalamic AVP immunostaining in FNDI reflects downregulated 

protein expression (i.e., diminished synthesis ± enhanced degradation) or truly reflects 

hypothalamic cell death.

Ablation of the ATF6α gene in FNDI mice [by crossing them with ATF6α−/− mice (37,38)] 

resulted in diminished ERAC formation while exacerbating apparent AVP neuronal loss. 

These results seem to suggest that ERAC formation may serve a protective function, perhaps 

by isolating the aggregated protein within a subcompartment of the ER, resulting in 

decreased ER stress and its adverse downstream consequences.

ER-associated degradation (ERAD) is one of the main mechanisms of clearance of 

misfolded ER proteins, which involves degradation via cytosolic proteasomes (39). Indeed, 

both wild-type and mutant AVP-G57S were found to be substrates of Sel1L-Hrd1 ERAD 

(40,41). The core ERAD components include the E3 ubiquitin ligase HRD1 and its adaptor 

protein SEL1L, which are regulated by the ATF6 pathway (42). Recently, both whole-body 

and AVP neuron-specific SEL1L knock-out mice were found to exhibit a central DI 

phenotype. These results seem generally consistent with findings noted above in ATF6α 
deficient FNDI (C98X) mice. Interestingly, poly(A) tail length, a possible regulator of 
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mRNA stability and translational efficacy (43–46), was shortened for the AVP mRNA in 

FNDI mice, and this occurred concomitant with a decreased AVP mRNA level. This 

decrease in mRNA level did not appear to occur as a result of nonsense-mediated mRNA 

decay specific to the C98X mutation, because the wild-type AVP mRNA level was also 

decreased (31,47). In contrast, longer poly(A) tail lengths of certain mRNAs, including 

known UPR genes (e.g., XBP1, CHOP and BiP) has been described under ER stress 

conditions (48).

2.2. Insulin-Deficient Diabetes Mellitus

Diabetes mellitus is characterized by abnormally high blood glucose level accompanied by 

absolute or relative insulin deficiency. A limited physiological ER stress response in 

pancreatic ß-cells that is concomitant with normal insulin production may be positively 

adaptive and may even help to support ß-cell proliferation (49), but overall, the intracellular 

and physiological feedback loops resulting from less insulin biosynthesis with less ER stress 

response may actually be even more beneficial as a stimulus to ß-cell proliferation and 

survival (50). Moreover, when highly increased ER stress in ß-cells is imposed by various 

pathological situations [such as mutant proinsulin production, ER dysfunction, or insulin 

resistance], these can often culminate in a profound loss of functional pancreatic ß-cell mass 

(51).

One of the most famous animal models of a secretory protein folding defect causing diabetes 

is the Akita mouse, which exhibits heterozygous expression of a missense mutant 

proinsulin-C96Y from one Ins2 allele leading to a defect in proinsulin disulfide bond 

formation (52). These animals actually express two wild-type copies of the Ins1 gene as well 

as one wild-type Ins2 allele; nevertheless, the animals develop insulin-deficient diabetes 

with a high degree of penetrance (53). In the pancreatic ß-cells of Akita mice, the misfolded 

mutant proinsulin is retained within the ER (54,55). The two interchain disulfide bonds of 

proinsulin, Cys(B19)-Cys(A20) and Cys(B7)-Cys(A7) are known to be required for 

proinsulin export from the ER (56). Thus, ER retention of the product of the Akita mutant 

proinsulin allele, which can never form the Cys(B7)-Cys(A7) disulfide bond, is expected. 

However, what is more remarkable is that the products of the remaining three wild-type Ins 
alleles are also defective for ER export in Akita islets (57). One possibility is that the 

misfolded mutant proinsulin could cause generalized ER dysfunction, blocking all other 

secretory protein traffic (58). At least in the early life of the animal, this does not seem to be 

the case, but rather, the misfolded mutant proinsulin directly engages innocent wild-type 

proinsulin “bystander” molecules in inappropriate intermolecular disulfide bonds (59), 

blocking the ER export of the wild-type proinsulin (60).

The problem in Akita mice has also been found in humans, with the syndrome termed 

Mutant Ins-gene induced Diabetes of Youth, or MIDY (59). Roughly 30 different human 

MIDY mutations have been reported, including an identical substitution to that found in the 

Akita mouse (61). The dominant-negative effect of the misfolded proinsulin on the 

trafficking of wild-type proinsulin is directly related to the relative expression levels of the 

mutant and wild-type molecules (62,63). These aberrant interactions are initiated within the 

ER compartment (64). Wild-type bystander proinsulin that does escape the ER and reaches 
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the Golgi complex can still be processed to insulin and packaged in secretory granules 

(65,66); however, there are relatively few “successful” molecules, and there is insufficient 

insulin to maintain normoglycemia (67).

The Akita mutant proinsulin protein is predisposed to form disulfide-linked dimers, trimers, 

tetramers, and higher order complexes (58). Some of the misfolded Akita mutant proinsulin 

appears to be dissociated from higher order complexes with the help of the ER 

oxidoreductase known as PDI (68) and the atypical hsp70/helper protein known as GRP170 

(69). Failure of these proteins to prevent aggregation of Akita mutant proinsulin can result in 

the misfolded forms accruing to enormous size; in such case, large misfolded proinsulin 

aggregates may be routed to lysosomal degradation by ER-phagy (70).

Misfolded Akita proinsulin accumulation in the ER provokes ER stress (59) with activation 

of ATF6α and Ire1α-XBP1 pathways (71). CHOP expression is also elevated in the islets of 

Akita mice, and when crossed with mice null for the CHOP portion of the integrated stress 

response pathway, Akita mice exhibited less pancreatic ß-cell death, [although the animals 

still proceeded to insulin-deficient diabetes (72)]. Additionally, genetic ablation of the 

transcription factor C/EBP in ß-cells of Akita mice resulted in improved glycemic control 

with an increase of ß-cell mass (73).

Independent of genetic mutations in the INS gene, a loss of function in one or more branches 

of the tripartite ER stress response can itself cause diabetes mellitus (74). One such branch 

of the ER stress response involves Perk, which is one of four kinases (and the only ER-

localized kinase) that phosphorylates eIF2α to suppress general protein translation (75). 

Mice with global Perk-KO display early-onset diabetes mellitus (at 4 weeks of age). The 

exocrine and endocrine pancreas develop normally before birth and in very early postnatal 

life, and glucose-induced proinsulin biosynthesis is actually robust in the islets of Perk−/− 

mice. However, ER expansion rapidly ensues in both the acinar and islet cells of Perk−/− 

mice, progressing to both exocrine pancreatic insufficiency and insulin-deficient diabetes 

mellitus (76), along with significant skeletal disorders (77). Perk activity in these tissues 

seems to reflect a cell-autonomous requirement both for development and adult function 

(78–83). Similarly, mice with ß-cell-specific expression of a mutation at the eIF2α 
phosphorylation site (Ser51Ala) were also predisposed to insulin deficiency and diabetes, 

especially under conditions of high metabolic demand (84). In the case of both ß-cell Perk 

insufficiency or insufficiency of ß-cell eIF2α phosphorylation, there is strong evidence that 

these conditions lead, directly or indirectly, to increased proinsulin misfolding (81,84–86).

A second branch of the ER stress response involve ATF6α. Global Atf6α−/− mice exhibit 

essentially normal glucose tolerance on a normal chow diet. However, on a high fat diet, 

ATF6α-deficient mice exhibit less insulin secretion and a swollen ER in ß-cells, which 

accompanies higher insulin resistance with hepatic steatosis and ER stress response. Not 

surprisingly, when Atf6α−/− were crossed with Akita mice, the double-mutant progeny 

showed accelerated loss of pancreatic insulin (87).

The third and most evolutionarily conserved branch of the ER stress response is mediated by 

Ire1α. Mice with tamoxifen-inducible ß-cell-specific deletion of Ire1α develop 
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hyperglycemia and hypoinsulinemia that is especially apparent upon feeding, or acute 

glucose stimulation (88). In this mouse model, insulin mRNA translation was reduced 

primarily because of defective induction of genes related to proinsulin biosynthesis, 

including SRP, SRP receptor, the ER translocon, signal peptidase complex, as well as many 

other genes associated with the function and development of the secretory pathway. These 

findings are supported by the work of others who reported that ß-cell-specific deletion of 

Ire1α impairs insulin biosynthesis leading to hyperglycemia (89). Interestingly, such mice 

also exhibit decreased proinsulin folding that could be attributed to lower expression of 

several ER oxidoreductases, including PDI, PDIR, P5, ERp44, and ERp46 (90). Ire1α works 

primarily through the unconventional splicing of the mRNA encoding the XBP1 

transcription factor (91,92). ß-cell-specific XBPI-deficient mice exhibit modest 

hyperglycemia due to the decreased number of insulin granules, impaired proinsulin 

processing with an increase in serum proinsulin : insulin ratio, blunted glucose-stimulated 

insulin secretion, and inhibited ß-cell proliferation. These phenotypes might possibly also be 

related to defects of proinsulin folding in the secretory pathway but more likely, these ß-cells 

may suffer from diminished mRNA expression of many ß-cell differentiation genes as a 

consequence of constitutive Ire1α hyperactivation that can result in more widespread mRNA 

degradation by Ire1α endonuclease activity (93).

Finally, defective proinsulin folding also occurs (to a lesser degree) in ß-cells in the absence 

of any MIDY or known genetic defect of ß-cell ER stress response (Figure 2). Interestingly, 

in db/db mice, aberrant disulfide-linked proinsulin complexes – not unlike to those seen in 

Akita mouse islets – have been observed as one of the earliest molecular defects during the 

prediabetic progression to type 2 diabetes (86). The db/db animals have a global leptin 

receptor defect, which is also expressed in pancreatic ß-cells, but a similar mouse model 

bearing leptin receptor deficiency limited to the hypothalamus but not the pancreatic islets, 

still yields early onset proinsulin misfolding with aberrant disulfide-linked complexes (86). 

These recent findings support the notion that pancreatic ß-cell stress and dysfunction during 

the development of type 2 diabetes may represent an endocrine disorder promoted by 

defective folding (of proinsulin) in the secretory pathway (Figure 2).

2.3. Congenital Hypothyroidism with Deficient Thyroglobulin Transport

Thyroglobulin (Tg), the thyroid hormone precursor encoded by the TG gene, is the most 

highly expressed gene product in the thyroid gland (94). The Tg protein acquires N-linked 

glycosylation, conformational maturation, and homodimerization in the ER. The primary 

functions of Tg in all vertebrates are iodide storage and thyroid hormonogenesis (95). The 

N-terminal two-thirds of the protein contains three regions known collectively as Tg region 

I-II-III (96) that include multiple cysteine-rich repeat motifs. The carboxyl-terminal region 

of Tg has homology with acetylcholinesterase (AChE) and is known as the Cholinesterase-

Like (ChEL) domain (97–99).

Mutations of the TG gene, especially in homozygotes or compound heterozygotes, can cause 

congenital hypothyroidism (95,100). Curiously, however, two rodent models of congenital 

hypothyroidism bearing homozygous Tg missense mutations in the ChEL domain show very 

similar thyroid ultrastructure, but ultimately lead to interesting and important pathological 
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differences in thyroid anatomy. The L2263P mutation in the ChEL domain causes congenital 

goitrous hypothyroidism in homozygous cog/cog mice (101). As a result of primary 

hypothyroidism, the mice are exposed to chronic TSH stimulation leading to the formation 

of a grossly large goiter [indeed the name “cog’ stands for congenital goiter (102)]. The 

cog/cog mice have a highly distended thyrocyte ER with massive accumulation of mutant Tg 

protein within the ER lumen (103). This is accompanied by induction of the ER stress 

response that dramatically upregulates the protein levels of ER molecular chaperones 

including GRP94, BiP, ERp72, ERp57, and calreticulin (104). Importantly, despite the 

defect, as the mice grow to full adulthood, they gradually achieve near-normal serum T4 

levels, which parallels the growth of the large goiter (102).

The G2300R mutation in the ChEL domain of rat Tg (numbering based on the length of the 

mature protein — just 35 residues from the site of the mutated amino acid encoded by the 

cog mutation) also results in congenital hypothyroidism in rdw/rdw rats (105,106) with a 

highly dilated thyrocyte ER filled with mutant Tg, accompanied by absence of Tg secretion 

into the thyroid follicle lumen (107). Once again, a marked elevation of ER molecular 

chaperones GRP94, BiP and hsp70 is observed (108). However, despite highly elevated 

levels of circulating TSH (as a result of primary hypothyroidism), these rats develop a 

hypoplastic thyroid gland (109). Thus, the two single missense mutations fall closely within 

the same domain of Tg, yet the latter mutation has been shown to be associated with thyroid 

cell death suggesting a toxic gain-of-function (110), which could provide a pathophysiologic 

mechanism to explain the absence of goiter (Figure 3).

Currently, 167 hypothyroidism-inducing mutations have been identified in the human TG 
gene (111). Although most of the patients coming to medical attention with homozygous or 

compound heterozygous TG mutations develop goiter, patients homozygous for G2300D 

(i.e., mutating the same residue as that found in rdw/rdw rats) also lack goiter development 

(112). These data suggest that that goitrous/non-goitrous phenotype might be linked to the 

biochemical or biophysical properties of the protein encoded by the particular mutant 

allele(s). Two human mutations replacing cysteine by either arginine or serine (C1245R and 

C1977S) have also been found to be retained in the ER (113). TG mutations are reported not 

only in human and rodents but also in Afrikander cattle (R697X) (114–117), Dutch goats 

(Y296X) (118–120), and other species. It is highly likely that mutant Tg retention in the ER 

is a common feature in most if not all forms of congenital hypothyroidism with deficient Tg.

3. DISCUSSION

In this review, we have discussed three representative protein conformational diseases of the 

endocrine system, including FNDI, insulin-deficient diabetes mellitus, and congenital 

hypothyroidism with deficient Tg. Here, we wish to highlight some of the interesting 

potential differences between the various conformational diseases.

There is a single AVP gene in both humans and mice (two alleles; with oxytocin encoded by 

a separate gene), and heterozygosity is sufficient to bring about the FNDI phenotype (22,23). 

There is one INS gene in humans (two alleles) but two such genes in mice (four alleles), and 

heterozygosity in the Ins2 locus alone is sufficient to bring about insulin-deficient diabetes 
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mellitus in Akita mice or Munich mice (86). Although the pathogenesis of some autosomal 

dominant conformational diseases have been hypothetically attributed to haploinsufficiency, 

this idea can be excluded for either FNDI or MIDY, because other AVP and insulin 

heterozygous alleles that cause pure loss-of-function, lack any disease phenotype (121,122). 

This leaves at least two possibilities. In one case, the gene product of the mutant allele could 

directly associate with product of the wild-type allele, resulting in a protein complex that 

together is incompetent for exit from the ER, which leads to insufficient successful 

prohormone to move through the secretory pathway to become mature hormone. In a second 

case, the product of the mutant allele could form a species that brings about cytotoxicity, 

with either cell death or de-differentiation of the specialized secretory cells, including 

diminished expression of the normal allele through mRNA destabilization (123,124)(47) 

under ER stress — all resulting in hormonal insufficiency in the heterozygous state.

The two possibilities stated above are not mutually exclusive. In MIDY, not only is there 

direct evidence that misfolded mutant proinsulin directly associates with wild-type 

proinsulin (57), but there is also evidence that the eventual consequence of this behavior is 

the loss of functioning pancreatic beta cells, suggesting a state of proteotoxicity (60,125). In 

fact, the recruitment of wild-type proinsulin into misfolded protein complexes with mutant 

proinsulin implies that the ER-retained wild-type proinsulin, despite absence of any 

mutation, itself may be a significant contributor to beta cell proteotoxicity (65). A very 

similar confluence of circumstances appears to occur in FNDI, with both association 

between mutant and wild-type forms of pro-AVP (41) as well as an ultimate deficiency of 

AVP-replete neurons (126). Thus, we believe that a dominant-negative effect of the mutant 

protein by oligomerization with the wild-type could be a general mechanism in a variety of 

autosomal dominant conformational diseases (63).

Nevertheless, not all degenerative diseases caused by a mutant misfolded protein are 

inherited in an autosomal dominant fashion. Autosomal recessive retinitis pigmentosa (a 

non-endocrine conformational disease) results in progressive loss of photoreceptor cells that 

may lead to blindness, and several mutant genes linked to this phenotype encode proteins 

that traverse the secretory pathway [e.g., CRB1 (127)]. Similarly, alpha-1-antirypsin 

deficiency in patients bearing the Z-allele exhibits recessive inheritance such that most 

heterozygotes are generally healthy, yet homozygous ZZ patients commonly develop 

hepatocyte cell death with ultimate progression to cirrhosis (128). Thus, we in the endocrine 

research community should remain aware of the possibility of discovering non-dominant 

degenerative endocrinopathies.

The thyroglobulin (Tg) mutations described in this review highlight that a dominant versus 

recessive phenotype may be very much dependent upon the specific misfolding encoded by 

the mutant allele. Both the cog/cog mouse and the rdw/rdw rat have loss of Tg function with 

dramatic intracellular accumulation of Tg in the ER (129,130). Nevertheless, 

hypothyroidism in both cases is a recessive trait, as with most other TG mutations (95). 

Amazingly, in the homozygous cog/cog mouse, the thyroid gland continues to grow (129) 

even as evidence of chronic, continuous ER stress persists (131). In many ways, this is more 

remarkable than the rdw/rdw rat thyroid, which develops loss of the specialized secretory 

cells (132) [with a complete loss of circulating endogenous thyroxine (133)] as would be 
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predicted from most models of cytotoxic failure from chronic continuous ER stress (134). In 

heterozygous rdw/+ rats, cross-dimerization between the wild-type and mutant gene 

products might lead to rescue of the latter (135)(63). Alternatively, in these and other 

endocrine proteinopathies, clean-up mechanism(s) for misfolded secretory proteins might be 

the critical contributor to cell survival (136) despite hormone deficiency from loss of 

function.

Finally, we must consider that endocrine disorders caused by defects of protein folding in 

the secretory pathway may yield insights not only into the pathogenesis of rare diseases, but 

also may provide clues about secretory cell dysfunction in common, polygenic endocrine 

diseases that lead to inadequate peptide hormone secretion.
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Figure 1. Conceptual diagram of FNDI progression based on misfolding of the AVP precursor 
protein in the ER.
In the ER, mutated pro-AVP (truncated at the NPII region) causes ER stress by forming 

aggregates that also encompass the non-mutant (wild-type) precursor (black box). At an 

early stage of the disease, ERAD, ERAC formation, autophagy, and reduction of AVP 

mRNA (light blue boxes) each help to prevent loss of functional AVP neurons, but 

ultimately, FNDI ensues as a consequence of limited AVP secretion (pink box). At the end 

stage of the disease, there is a net loss of immunostainable AVP neurons, which may make 

the central DI phenotype irreversible (large arrow at bottom).
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Figure 2. Conceptual diagram of the fate and sensing of proinsulin folding in pancreatic ß-cells.
Newly-synthesized proinsulin may achieve the native state (in green), and when it meets all 

ER quality control requirements, the native proinsulin is allowed anterograde transport 

through the Golgi complex to secretory granules, where insulin is made and stored for 

release in response to glucose challenge. Newly-synthesized proinsulin may misfold into 

forms bearing non-native intramolecular or intermolecular disulfide bonds. These forms are 

“off pathway” (in red) and it is currently unknown if they can be returned to proper folding. 

Additionally, similar to that seen for mutant pro-AVP (see Figure 1), misfolded proinsulin 

can recruit innocent bystander (wild-type) proinsulin into aberrant protein complexes. The 

misfolding of proinsulin in pancreatic ß-cells can be detected by ER stress sensor proteins 

(red dotted lines). The activities of all three ER sensors (IRE1, PERK and ATF6) contribute 

to a proper ER folding environment for proinsulin (blue dotted lines). When the misfolded 
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proinsulin accumulates in the ER (as has been observed for MIDY mutants, and in early type 

2 diabetes) some of the misfolded molecules are likely to be degraded via ERAD and ER-

phagy, but excessive accumulation of misfolded proinsulin is likely to trigger ß-cell failure.
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Figure 3. Conceptual diagram of the fate of the thyroid gland in rodents with homozygous 
expression of one of two distinct misfolded mutant Tg gene products: the cog/cog mouse, or the 
rdw/rdw rat.
The Tg-L2263P mutation (cog mouse) is only 35 residues away from that of the rdw rat (Tg-

G2300R). Both point mutations are located in the amino-terminal portion of the ChEL 

domain (yellow box), and both cause severe thyroidal ER stress (red rectangle) and primary 

hypothyroidism with TSH elevation (beige rectangle). However, the adult cog/cog mice 

exhibit a significant goiter (sky blue) whereas the adult rdw/rdw rats exhibit a hypoplastic 

thyroid gland (dark blue). Published data to date suggest thyrocyte proliferation in cog/cog 
mice and thyroid cell death in rdw/rdw rats, suggesting the possibility that the Tg-G2300R 

mutant protein may confer a toxic gain-of-function (purple box).
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