Table 2. Common data operations expressed as MLMs.
Operation | Input Space | Output Space | Parameters | Morphism | Empirical Risk Function |
---|---|---|---|---|---|
Data Encoding | Abstract Space | embedding parameters | Injective map: |
trivial (one—hot encoding) or cost function, e.g. from [20] |
|
PCA |
|
x A |
Such that: AAT = I |
||
Linear Regression | x ⋅ p | ||||
Logistic Regression | [0, 1] | Maximum Likelihood |
|||
SVM | {−1, 1} |
slack variables , |
w ⋅ x − b | ∥w∥2 + c∥s∥2 | |
Decision Tree | Set X | {y1, y2, …, yk} for finite k |
splitting criterion | Tree | Gini Impurity Information Gain see [21] |
Standardization | (x − c)diag(s)−1 | KL Divergence, Eq 13 | |||
Adaboost | parameters associated with weak learners |
Exponential Loss [22]: |
|||
Neural Networks | Weights in | F = Fk(Fk−1(Fk−2(…F1(x))))) | Loss functions, examples include Mean Squared Error: ∥Y − F(X)∥2, Cross Entropy: (1 − yi)log(1 − F(xi)) [23] |
||
Model Evaluation | Collection | or | Evaluation parameters Test/validation set |
Performance Metric e.g. Accuracy, Sensitivity, etc. |
Complexity Criterion or other objective e.g. Aikeke Information Criterion |