Skip to main content
. 2019 Dec 2;14(12):e0225577. doi: 10.1371/journal.pone.0225577

Table 4. Results for different workflows of logistic regression on hospital readmissions data, with standard deviations over n = 10 runs.

LR Workflow ROC AUC Sensitivity Specificity Accuracy
No Transformation 0.49 (0.023) 0.58 (0.031) 0.48 (0.021) 0.49 (0.022)
No Transformation, SMOTE 0.64 (0.033) 0.62 (0.029) 0.67 (0.039) 0.66 (0.037)
No Transformation, ROSE 0.53 (0.041) 0.54 (0.044) 0.51 (0.045) 0.52 (0.045
PCA 0.58 (0.017) 0.68 (0.022) 0.45 (0.029) 0.49 (0.028)
PCA, SMOTE 0.49 (0.037) 0.64(0.035) 0.44 (0.034) 0.47 (0.034)
PCA, ROSE 0.45 (0.061) 0.50 (0.059) 0.55(0.065) 0.54 (0.063)
Mapper, No Transformations 0.61 (0.048) 0.62 (0.052) 0.53 (0.049) 0.55 (0.050)
Mapper, No Transformations, SMOTE 0.67 (0.066) 0.60 (0.055) 0.60 (0.064) 0.60 (0.062)
Mapper, No Transformation, ROSE 0.62 (0.073) 0.69 (0.076) 0.59 (0.078) 0.61 (0.078)
Mapper, Node PCA 0.55 (0.065) 0.62 (0.058) 0.50 (0.059) 0.52 (0.058)
Mapper, Node PCA, SMOTE 0.69(0.071) 0.62 (0.069) 0.78 (0.065) 0.75 (0.066)
Mapper, Node PCA, ROSE 0.61 (0.084) 0.58 (0.082) 0.63 (0.087) 0.62 (0.086)