Table 4. Results for different workflows of logistic regression on hospital readmissions data, with standard deviations over n = 10 runs.
LR Workflow | ROC AUC | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
No Transformation | 0.49 (0.023) | 0.58 (0.031) | 0.48 (0.021) | 0.49 (0.022) |
No Transformation, SMOTE | 0.64 (0.033) | 0.62 (0.029) | 0.67 (0.039) | 0.66 (0.037) |
No Transformation, ROSE | 0.53 (0.041) | 0.54 (0.044) | 0.51 (0.045) | 0.52 (0.045 |
PCA | 0.58 (0.017) | 0.68 (0.022) | 0.45 (0.029) | 0.49 (0.028) |
PCA, SMOTE | 0.49 (0.037) | 0.64(0.035) | 0.44 (0.034) | 0.47 (0.034) |
PCA, ROSE | 0.45 (0.061) | 0.50 (0.059) | 0.55(0.065) | 0.54 (0.063) |
Mapper, No Transformations | 0.61 (0.048) | 0.62 (0.052) | 0.53 (0.049) | 0.55 (0.050) |
Mapper, No Transformations, SMOTE | 0.67 (0.066) | 0.60 (0.055) | 0.60 (0.064) | 0.60 (0.062) |
Mapper, No Transformation, ROSE | 0.62 (0.073) | 0.69 (0.076) | 0.59 (0.078) | 0.61 (0.078) |
Mapper, Node PCA | 0.55 (0.065) | 0.62 (0.058) | 0.50 (0.059) | 0.52 (0.058) |
Mapper, Node PCA, SMOTE | 0.69(0.071) | 0.62 (0.069) | 0.78 (0.065) | 0.75 (0.066) |
Mapper, Node PCA, ROSE | 0.61 (0.084) | 0.58 (0.082) | 0.63 (0.087) | 0.62 (0.086) |