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Abstract

Ion mobility spectrometry (IMS) is a widely used analytical technique providing rapid gas phase 

separations. IMS alone is useful, but its coupling with mass spectrometry (IMS–MS) and various 

front-end separation techniques has greatly increased the molecular information achievable from 

different omic analyses. IMS–MS analyses are specifically gaining attention for improving 

metabolomic, lipidomic, glycomic, proteomic and exposomic analyses by increasing measurement 

sensitivity (e.g. S/N ratio), reducing the detection limit, and amplifying peak capacity. Numerous 

studies including national security-related analyses, disease screenings and environmental 

evaluations are illustrating that IMS–MS is able to extract information not possible with MS alone. 

Furthermore, IMS–MS has shown great utility in salvaging molecular information for low 

abundance molecules of interest when high concentration contaminant ions are present in the 

sample by reducing detector suppression. This review highlights how IMS–MS is currently being 

used in omic analyses to distinguish structurally similar molecules, isomers, molecular classes and 

contaminant ions.
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1. Introduction

Mass spectrometry (MS)-based analyses have become one of the most informative methods 

for studying complex mixtures in the 21st century. However, evaluating complex biological 

and environmental systems with MS-based measurements can be extremely challenging due 

to many molecule types (e.g. proteins, lipids, small molecules, metals, etc.) present in the 

different samples and the wide range of concentrations they exist at. To address these 

challenges and enable more effective MS measurements, advanced sample preparation 

techniques are often employed to separate or fractionate the diverse molecular classes. These 

methods included biphasic and triphasic extractions, depletion of the most abundant proteins 

in blood plasma and serum analyses, and extensive solid phase extractions to remove salts 

and clean up the samples prior to their injection into the MS platform. Unfortunately, even 

the most advanced procedures are not always able to completely clean up the samples and 

limit the detector suppression that can occur when highly concentrated species are present 

with those at much lower abundance. Isomeric molecules of the same elemental composition 

and similar structure can even more challenges for analyses when they cannot be 

distinguished by their fragmentation pattern or with chromatography. Ion mobility 

spectrometry (IMS) is therefore being increasingly utilized to address some of these 

limitations.

Over the last decade, the use of IMS in analytical measurements has rapidly increased with 

applications in national security-related analyses, patient screening, environmental 

monitoring and numerous other areas (1–5). IMS is a gas phase technique that provides 

rapid structural separations based on the balance of two forces that impact the movement of 

an ion, the electric field and the drag force from the collision with buffer gas molecules (6). 

In IMS, compounds of different sizes, shapes, and charges are separated as they travel 

through a buffer gas. Variations on the electric field and stationary state of the buffer gas 

have given rise to multiple IMS-based platforms. Drift tube IMS (DTIMS) (7–9), traveling 

wave IMS (TWIMS) (10), trapped IMS (TIMS) (11), field asymmetric IMS (FAIMS; also 

called differential mobility spectrometry (DMS) or differential ion mobility spectrometry 

(DIMS)) (12, 13) and differential mobility analyzers (DMA) (14, 15) are five of the most 

common forms of IMS used in current analyses of complex samples. DTIMS and TWIMS 

allow all ions to be analyzed simultaneously in the measurements, while TIMS, FAIMS and 

DMA devices are scanned to evaluate specific ions or classes separately. Additionally, the 

measured mobilities for molecular species in DTIMS, TWIMS, TIMS and DMA can be 

converted into rotationally averaged collision cross sections (CCS) (16, 17), which provide 

useful descriptors of the corresponding ions’ 3- dimensional gas-phase structures under the 

given experimental conditions. In DTIMS and DMA, CCS values are calculated directly 

from the measured arrival times to provide structural insight and remove pressure, 

temperature and length dependencies. However, calibration procedures for the CCS values 

are required with TWIMS and TIMS measurements. Due to the alternating high and low 

fields used in FAIMS, no current approach exists to allow CCS values to be obtained, but the 

use of alternating high and low fields does allow FAIMS to separate species that presently 

challenge other IMS methods.
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DTIMS, TWIMS, TIMS, DMA and FAIMS have all shown great utility in separating 

molecular classes and interfering ions of various forms. Additionally, they can be interfaced 

with mass spectrometers (18) to permit simultaneous acquisition of IMS structural and MS 

mass information on a rapid millisecond to second timescale. The CCS values from IMS 

separations are then used to support molecular identifications from the IMS–MS analyses as 

they provide structural insight. Although CCS and m/z are not truly orthogonal identifiers 

due to some correlation between the two characteristics, different molecular classes still 

exhibit distinct ‘trend lines’. This allows potential insight to be garnered about unknown 

analytes based on their position in the m/z versus CCS trend line space (19). Molecular 

dynamics and density function theory (DFT) candidate structures have also been utilized for 

comparison of the experimental CCS values and showed excellent agreement with errors 

often <2%. This agreement is due to the actual molecule properties such as bond types, 

charge position and molecular compaction, which can used be theoretically predict 

structures and further explain the different trend lines. Since IMS is able to quickly separate 

distinct chemical species such as carbohydrates, peptides, lipids, and organic material from 

other components, it enables better analyses for the molecule of choice in complex samples 

(Figure 1) (19, 20). These measurements can then be used to quickly screen conditions while 

gathering information about the classes of molecular species present, differentiating 

molecular isomers and separating contaminates from the compounds of interest. 

Furthermore, these separations can be coupled with liquid chromatography (LC) separations, 

enabling multi-dimensional measurements that address highly complex samples without 

increasing the analysis time (21–23). The additional IMS separation can also be used to 

significantly reduce the LC separation times while maintaining the depth of coverage 

characteristic of much longer traditional LC-MS analyses (24). Examples of how IMS has 

been used to separate molecular structures, isomers, chemical classes and reduce detector 

suppression caused by contaminant ions are illustrated in this review to show its utility in 

omic measurements.

2. IMS–MS in Proteomic Analyses

In proteomics, measurements with high throughput and sensitivity are essential for 

improving the characterization of complex mixtures in both discovery and validation studies. 

Proteomic measurements are typically divided into bottom-up, middle-down and top-down 

approaches. In top-down approaches, intact proteins are separated, detected and identified; 

whereas both bottom-up and middle-down strategies utilize digestion, where the intact 

proteins are broken down and identified by their characteristic peptides. Middle-down and 

bottom-up approaches are differentiated based on the endopeptidase used in the digestion, as 

middle-down analyses often utilize endopeptidase that results in larger peptides (e.g. Lys–C 

or OMP–T) than bottom-up techniques which commonly utilize trypsin or pepsin.

Since IMS–MS provides relative structural information not easily obtained using MS alone, 

it has been utilized in top down proteomic studies since the 1990s to investigate structural 

changes in proteins that could result in different diseases (e.g. misfolding and aggregation) 

(25–27). IMS–MS has been specifically used to study intact proteins related to intrinsically 

disordered proteins implicated in neurodegenerative diseases like Alzheimer’s (amyloid–β 
protein) and Parkinson’s (α–synuclein protein) (28–30). The urge to understand how native 
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protein structures change upon stress is also promoting collision induced unfolding (CIU) 

studies, where energy is imparted on proteins or protein complexes to measure their 

structural changes (31). In most CIU analyses, proteins tend to adopt compact conformations 

at the lowest energies, however, as the energy is increased the proteins and complexes slowly 

begin to unfold. Recent examples of CIU have probed the conformational stability of protein 

complexes and protein-ligand interactions (32, 33), serving as an invaluable tool in the 

repertoire of structural biology techniques.

In both bottom-up and middle-down approaches, extensive LC times (often >100 minutes) 

and high-resolution mass spectrometers with tandem MS capabilities are used to distinguish 

the multiply charged isomeric species. However, even these LC–MS/MS methodologies still 

lack the ability to fully resolve all peptide components, especially when many of these 

important components are at low abundance. Performing LC–MS analyses provides obvious 

benefits in improving the resolution of proteomic measurements without sacrificing analysis 

time and even has the capability to speed up the LC times (24, 34). Furthermore, IMS 

enables a way of separating peptide and contaminant ions if they are extracted together and 

cannot be removed using cleanup methods such as when DTIMS was utilized to separate 

CHAPS and SDS from peptides of interest (35, 36). FAIMS devices have also shown utility 

in separating 1+ contaminant ions from higher charge state proteins and peptides of interest 

so to not fill up the linear ion trap or orbitrap (37). This capability has been extremely 

important in avoiding biases in trap-based mass analyzers, which require automated gain 

control (AGC). Specifically, AGC is used in linear ion traps and orbitraps to limit the 

number of ion charges accumulated to prevent excessive space charge effects and allow high 

measurement accuracy to be achieved. However, any high concentration contaminant causes 

the AGC to greatly reduce trapping time so that lower abundance ions that might be of more 

interest do not have enough time to collect in the trap and provide a reasonable signal for 

detection. LC-IMS- MS measurements have also greatly aided the analysis of complex 

environmental water, soil, and plant material samples which have many diverse types of 

molecular contaminants (36). In processing these environmental samples, organic material is 

typically extracted with the proteins. The three-dimensional measurements are therefore 

particularly useful for separating the peptides from the high concentrations of organic 

material (e.g., humic acid substances in soil and polyphenols in plants), natural contaminants 

(e.g., abundant salts or polymers), and detergents (35, 36). The IMS separation is able to 

move the organic material to a different arrival time area to greatly improve the coverage of 

environmental samples (Figure 2). LC–IMS–MS proteomic measurements have also been 

used to reduce the number of false positives resulting from complex samples due to the extra 

dimension for. Characterization(38).Advantages such as higher sensitivity and throughput 

than LC-MS measurements alone have also been noted in LC-IMSMS studies (39, 40).

The ability of LC-IMS–MS to provide high throughput sensitive analyses and separate 

peptides from contaminants that can arise from glassware and the multiple proteomic 

extraction steps is also extremely important in biological studies. In one study (41), plasma 

was collected from Ebola patients in a field biosafety level-4 laboratory (BSL–4) setting in 

the affected area of Sierra Leone. During the immunodepletion and viral inactivation steps of 

Ebola infected plasma samples, polymers were unavoidably introduced causing problems for 

ion trap-based MS platforms. In the analyses, the AGC function of the QExactive quickly 
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terminated the accumulation of ions due to signal from the polymers dominating the 

samples. However, during the corresponding LC–IMS–MS analyses of the same samples, 

the IMS separation moved the polymers to a different spectral region. Since TOF 

instruments do not require an AGC due to their larger charge capacity, they do not have the 

space-charge issues that can be observed in trap instruments. However, during IMS 

separations when the ions are bunched in the axial direction, TOF detector saturation can 

occur due to the larger number of ions-per-push. This mainly happens with TDC detectors 

and is why many manufactures have moved to ADC-based detectors. Due to the AGC bias 

and sensitivity improvements due to IMS, a drastic increase in the number of proteins 

detected with LC-IMS–MS versus the LC-QExactive was observed (Figure 3A). The 

number of observed enzymes that mapped to the KEGG atlas also greatly increased with the 

LC-IMS–MS analysis (Figure 3B), allowing additional information to be uncovered about 

the mechanistic role these proteins play in the Ebola disease (41).

High throughput proteomic analyses have also been of great interest for analyzing the 

numerous patients necessary to address human biodiversity. Recently, IMS was even used to 

combine both the discovery and validation steps to simultaneously increase coverage and 

throughput. In this discovery and targeted monitoring (DTM) approach (42, 43), heavy-

labeled peptide standards are spiked into a tryptic digest for highly sensitive and precise 

relative quantitation of the selected target peptides. Global analyses are also performed in 

these studies so that unknown peptides can be characterized based on their LC elution times, 

CCS values, and accurate masses. Results leveraging DTM strategies can provide better 

overall protein sequence coverage and detection of lower abundance peptides.

3. IMS–MS in Small Molecule Metabolomic and Exposomic Studies

The evaluation of small molecules with IMS–MS is also of great interest due to the many 

isomers and nominal mass isobars that co-elute and fragment together when selection 

windows of 0.5 Da or greater are utilized. In metabolomic measurements, small molecule 

metabolites, intermediates and products of metabolism are studied in environmental and 

biological systems (44). The presence of xenobiotic molecules in these metabolomic 

evaluations is also possible as they can be introduced through various sources such as 

chemical manufacturing plants, consumption of foods and drugs, or contact with personal-

care products. The study of these xenobiotic molecules is often called exposomics, but can 

be coupled with metabolomic measurements depending on the polarity of the xenobiotic 

extraction and ion source needed for its detection (e.g. polyaromatic hydrocarbons will not 

be found in polar exactions and analyses with electrospray ionization). The complexity of 

the different biological and environmental matrices and the occurrence of thousands of 

different small molecules therefore requires analytical methods able to screen and identify 

many compounds in a single run. The application of LC–IMS–MS has therefore shown great 

promise for the untargeted analysis of small molecules in biological and environmental 

samples due to its speed and multidimensional analysis dimensions. IMS–MS and LC–IMS–

MS have been utilized in numerous studies to improve both selectivity and coverage of the 

metabolome by providing additional structural information compared to routine MS or LC–

MS-based methods (45). Since different molecular classes fall on distinct trend lines based 

on their CCS and m/z values, IMS has been extremely valuable for separating out many 
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different types of small molecules (Figure 4). To date there have been various CCS databases 

released for different substance classes such as peptides (46–48), N-glycans (49), drug-like 

compounds (48), metabolites (50, 51), lipids (52–54), environmental toxins (55) and various 

biomolecules (56), ultimately aiding in their classification. There is also great effort going 

into the standardization of the CCS values from the same type of instruments as well as 

different IMS techniques (57–59). Considerations into standardizations have related to the 

type of ion mobility spectrometry performed, buffer gas composition, calibration procedures, 

and instrumental parameters such as electric fields, temperature and pressure. Recent 

reviews have demonstrated that addressing these questions requires communal consensus 

between both academic and industrial researchers to advance the application of IMS–MS 

technology and provide a frame of reference for reporting CCS measurements (60).

Previously, LC–IMS–MS small molecule evaluations have been performed for biological 

matrices and environmental samples including wastewater (48). Wastewater, in particular, 

provides many challenges for analytical measurements as anthropogenic compounds such as 

pharmaceuticals, pesticides, or personal-care products can be found in the water cycle. The 

application of LC–IMS–MS for the untargeted analysis of water samples was found to be a 

very useful tool due to its speed and multiple analysis dimensions, which provided better 

identifications than LC–MS alone. Two-dimensional LC systems have even been combined 

with IMS–MS to perform four dimensional separations in the different omic analyses to 

increase the possible peak capacity even further (61). Additionally, for qualitative analysis of 

unknown molecules, the ability to empirically measure CCS values offers the possibility to 

possibly identify substances by the combination of their exact mass and their specific size. 

Molecular modeling (62) and machine learning (63, 64) also provide the capability to 

annotate molecules present in samples and predict possible identities or molecular 

classification for unknown molecules by mapping them to specific trend lines. These 

theoretical approaches have the potential to enable the annotation and identification of many 

small molecules, even though only ~30,000 in databases to date have measured MS/MS 

values.

4. IMS–MS in the Analysis of Lipidomic and Glycomic Isomers

Both lipidomic and glycomics measurements are also proving increasingly important for 

understanding biological and environmental systems. However, both molecule types 

challenge current techniques due to their many possible isomers. Lipid isomers often occur 

from different fatty acyl positions (sn–1/sn–2 vs. sn–2/sn–1), sn-backbones connectivities, 

double bond positions (positional and conformational), similar fatty acyl groups (14:0/14:0 

vs. 16:0/12:0), S versus R orientations, and distinct but structurally similar headgroups. 

Glycan evaluations are also exceedingly difficult due to the high abundance of isomeric 

species resulting from isomeric monosaccharides (glucose, galactose, mannose, etc.), 

anomericity (α- versus β-linkages), glycosidic linkage position (e.g. α(1–4) linkage, α(1–6) 

linkage, or β(1–4)), and branching versus linear glycan forms in which the monosaccharide 

composition is identical but the connectivity along the monosaccharide chain differs. 

Because of the abundance of structural variability for both lipids and glycans, IMS–MS has 

emerged as a potential solution. While many of the isomeric glycan and lipid groups can be 

separated using specific chromatographic methods, the large variability in chemical 
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properties such as polarity can greatly complicate both global lipidomic and glycomic 

analyses. Furthermore, LC parameter optimization can be very time consuming and costly. 

Since obtaining better resolving power with IMS only consists of buffer gas optimization 

(e.g. lower temperatures or addition of mobile phase modifiers) and it is amenable to a range 

of pre-separation techniques and ionization methods, it is an ideal complement to existing 

methods (65).

To date, numerous instances of IMS–MS have been published demonstrating improvements 

in lipid identification. In one study IMS–MS/MS analyses were utilized to provide a high 

level of structural information for phosphatidylcholines (PCs), including differentiation of 

fatty acyl substituents at the sn–1 versus sn–2 position, and location of fatty acyl double 

bond(s) for PCs in plasma (66). A different evaluation showed that glycero- and 

phospholipid isomers can be separated using high resolution FAIMS–MS/MS with ~75% 

success when forming silver adducts of the target lipids (67, 68). To increase lipid 

identifications, many research groups are compiling their own CCS libraries for lipids, 

similar to what has been done for small molecules/metabolites (56, 69). The work to date 

has illustrated greatly improved selectivity in various lipidomics approaches, including LC–

IMS–MS shotgun approaches (58). Machine- learning algorithm-based CCS prediction has 

also been implemented to generate large-scale CCS libraries in support of lipidomics (69). 

These values are also being utilized with LC elution times, MS vales and MS/MS 

fragmentation patterns for identification, so that the multiple characteristics enable the 

reduction of false positives (52).

To date, elucidating detailed information about glycans and glycoconjugates has been 

limited due to their structural complexity (70). The earliest IMS applications involved 

separation and CCS measurement of small oligosaccharides such as tetrasaccharides, 

hexasaccharides, and cyclic oligosaccharides (cyclodextrins) (26, 71). More challenging 

glycans were then successfully resolved using IMS–MS include anomeric trisaccharides 

(72), high mannose N- glycans (73), and even glycopeptides (74–76). Most IMS–MS studies 

of glycans to date have mainly focused on positive ion mode characterization due to its 

higher ionization efficiency (77–80), but recent reports on negative ion mode are also 

showing great promise (81). Additionally, various salt and metal ions adducts have been 

shown to enhance isomeric separations and provide further opportunities for better glycan 

separations (81, 82). Thus, future evaluations of lipids and glycans are expected to rely 

heavily on IMS analyses for the rapid and sensitive separation their isomers, greatly 

improving their characterization and identification (83).

5. Conclusions

While IMS–MS was once characterized as an emerging technique in the omics field, it is 

being increasingly integrated into modern omic measurements. Its utility in separating 

peptides and proteins with only minor structural differences has shown to be extremely 

powerful in bottom-up, middle-down and top-down studies. It has also greatly enabled the 

evaluation of isomers, which were previously inseparable or required long chromatography. 

Additionally, the ability of IMS–MS to distinguishing contaminant ions and molecular 
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classes is proving to be essential in all omic analyses of complex environmental and 

biological samples.

The CCS values from IMS measurements are also proving to be important in many omic 

areas. By measuring CCS values for available standards and compiling databases, rapid 

targeted analyses and identification of small molecules, lipids, glycans and peptides are 

possible. These CCS values are also being incorporated into computational methods such as 

theoretical modeling of structures and machine-based approaches, enabling molecular 

insight when no standards are available. Undoubtedly, the increasing utility of IMS–MS 

hinges on increasing its resolving power and successfully coupling it with other pre-

separation, fragmentation and software tools. Fortunately, developments in all these areas are 

taking place to increase the capabilities of IMS–MS measurements. Higher resolution IMS 

and MS instrument platforms such as those possible with structures for lossless ion 

manipulations (SLIM) are becoming available, providing even more confidence in global 

measurements of complex biological samples (84). New fragmentation approaches such as 

ECD are being added to various instrumental IMS platforms and software tools enabling 

rapid analyses are also being developed to push the technology further. Since the analysis of 

the multi-dimensional LC–IMS–MS data has proven to be difficult due to the many 

dimensions (LC, IMS, MS and DIA or DDA MS/MS), the future seems promising with its 

incorporation into numerous software packages including the open source Skyline software 

(85). Thus, IMS–MS capabilities are only expected to increase in the future, making it an 

essential tool for high quality omic analyses.
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Highlights:

• IMS is a widely used analytical technique providing rapid gas phase 

separations

• IMS coupled with MS is rapidly gaining attention for improving omic 

analyses

• IMS–MS is able to extract information not possible with MS alone in 

complex samples

• IMS–MS distinguishes isomers, isobars, molecular classes and contaminant 

ions
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Figure 1. 
The various molecule types present in environmental and biological samples greatly hinder 

comprehensive MS measurements. IMS provides a way of separating these molecule types 

such as glycans, nucleotides, peptides, organic material and lipids based on their structures. 

In this IMS evaluation, glycans traversing the IMS drift cell fastest due to their ring-based 

structures, while lipids are slowest due to their rigid linear backbone.
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Figure 2. 
The LC and IMS separation of the organic material contaminant from peptides in an 

Arabidopsis leaf (top) and a soil sample (bottom). The IMS separation was able to move 

most of the organic material to a different drift space due to the different molecular 

structures. All molecular species are normalized to the highest concentration molecules in 

these plots, illustrating that the leaf peptides did not have as much interference from the 

organic material as the soil did.
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Figure 3. 
Proteins identified in plasma samples contaminated with polymers from Ebola patients were 

compared for a LC-QExactive MS (noted as LC-MS (41)) and LC-IMS-QTOF MS (noted as 

LC-IMS- MS). A) Venn diagrams for the Uniprot protein IDs (left) and those that mapped to 

human metabolic pathways in the KEGG database (right) and identified by LC-MS only 

(red), LC-IMS-MS only (blue), and the overlap of both (green). All proteins were identified 

with at least two peptides and a requirementthat one peptide must be unique (i.e., the case of 

a single peptide matching only one protein in thereference database). B) The specific 

enzymes that mapped to the KEGG atlas using the color schemefrom A), illustrating the 

much higher coverage with the LC-IMS-MS analysis.
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Figure 4. 
The distinct CCS values verses m/z trend lines for the different classes of small molecules 

examined with DTIMS using N2 as the drift gas. The depronated values are shown for all 

molecules except the phosphatidylcholines ([M+H]+) and PBDEs ([M–Br–O]−).
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