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Abstract

There is great interest in methods to improve human insight into trained non-linear models. 

Leading approaches include producing a ranking of the most relevant features, a non-trivial task 

for non-linear models. We show theoretically and empirically the benefit of a novel version of 

recursive feature elimination (RFE) as often used with SVMs; the key idea is a simple twist on the 

kinds of sensitivity testing employed in computational learning theory with membership queries 

(e.g., [1]). With membership queries, one can check whether changing the value of a feature in an 

example changes the label. In the real-world, we usually cannot get answers to such queries, so 

our approach instead makes these queries to a trained (imperfect) non-linear model. Because 

SVMs are widely used in bioinformatics, our empirical results use a real-world cancer genomics 

problem; because ground truth is not known for this task, we discuss the potential insights 

provided. We also evaluate on synthetic data where ground truth is known.

I. INTRODUCTION

There is great interest in methods to improve human insight into trained non-linear models 

such as support vector machines (SVMs), deep neural networks, and large random forests; 

one existing approach is to produce a ranking of the most relevant features, a non-trivial task 

for non-linear models. Famous examples of this approach include Breiman’s method for 

ranking features in a random forest by percent increase in misclassification rate when a 

feature is randomly permuted [2] and Guyon’s modified version of her recursive feature 

elimination (RFE) approach tailored to non-linear models [3], which both ranks and 

performs feature selection by measuring loss in weighted sum of distances from the margin. 

In contrast to Guyon’s method, computational learning theory has a long history of 

sensitivity testing by “flipping” or changing the value of a feature, rather than deleting it, 

and posing a membership query to find the effect on the label of the example (e.g., [1]). In 

practice we do not have an oracle for such membership queries.

This paper presents an alternative algorithm to RFE, RFE by Sensitivity Testing (RFEST), 

that employs a trained non-linear model as an approximate oracle for such membership 

queries. Hence our algorithm asks how much accuracy or area under the receiver operating 

characteristic curve (AUC) is lost from a trained model when a variable is flipped, rather 

than how much is lost compared to an existing model when a variable is deleted. Where RFE 
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deletes a variable and Breiman’s algorithm permutes a variable, this simple change to 

flipping the variable makes possible a positive learnability claim. We first prove a probably 

approximately correct (PAC)-like result showing that under certain assumptions this 

algorithm provides an accurate ranking; this result does not rely on any particular type of 

non-linear model or learning algorithm, but only on the condition that the algorithm achieves 

some minimum gain in accuracy over random guessing, as in weak learning. Second, we 

show empirically that RFEST outperforms RFE in ranking (as a surrogate for insight) the 

genetic features associated with breast cancer in a genome-wide association study (GWAS) 

data set and on multiple synthetic data sets labeled by known ground truth, a family of 

arguably the most challenging nonlinear target functions.

As a motivating example, genome-disease association studies (genome-wide or limited) seek 

genetic features associated with disease, i.e., predictive of disease. In many cases it is 

believed that such features may interact with one another in highly nonlinear ways to 

influence disease; nevertheless, for practical reasons almost all association studies use linear 

models and hence can find only features that individually are correlated with disease [4]. 

Consequently, key genetic features may be missed entirely. Because linear and non-linear 

SVMs have been widely used in bioinformatics applications, we will use SVMs as our 

learner for these empirical studies. The theoretical results show the algorithm can use any 

learner capable of building moderately accurate non-linear models.

II. BACKGROUND

A. Feature Ranking and Feature Selection

While feature ranking and feature selection are different problems, they are closely related 

and each is sometimes accomplished by the other. Recursive feature selection can rank by 

maintaining the order in which features are removed; feature ranking, e.g. by information 

gain, is often followed by removal of lower ranked features. Many feature selection 

algorithms utilize linear modeling approaches such as lasso-penalized logistic regression, 

linear SVMs, Naïve Bayes or other weighted-voting schemes among features. An alternative 

is to implement these same approaches after filtering features individually by information 

gain or by many single-variable logistic regression runs [5]. To account for interactions 

between features, the standard approach is to introduce interaction terms, but such terms 

typically are limited to pairs of features, and even then they greatly increase both run-time 

and risk of over-fitting.

Nonlinear SVMs have the potential to more effectively find complex interactions among 

features, but insight into the important interactions is hard to extract from the learned model. 

This paper addresses that shortcoming by presenting an alternative RFE algorithm and 

demonstrating that the algorithm makes it possible to identify the features that are relevant–

that play a role in the learned nonlinear model, even if individually they are completely 

uncorrelated with the class–while removing those features that are irrelevant or redundant.

Because we do not assume we are in an active learning setting–we do not have access to an 

oracle for membership queries that can label feature vectors with the value of any feature 

altered– our key insight is to use the trained nonlinear SVM itself as such an oracle instead. 
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While this trained model is not the target concept, we assume it is more accurate than 

random guessing and hence provides some information about feature relevance. In homage 

to earlier work on membership queries to test the sensitivity of target concepts to individual 

features, we call our RFE algorithm “RFE by Sensitivity Testing,” or RFEST. The remainder 

of the paper presents the RFEST algorithm and empirical evaluations of it, including novel 

and promising insights that it provides into genetic susceptibility to breast cancer.

B. SVMs, Correlation Immunity, and RFE

SVMs are known for both their strong performance and flexibility based on the chosen 

kernel [6]. The strength of SVMs comes from their ability to effectively learn nonlinear 

separators through use of the kernel trick, a mapping to a higher-dimensional feature space 

resulting in an ability to encode nonlinear separators in the original feature space [7].

Accordingly, it is expected that SVMs can efficiently learn correlation immune (CI) 

functions, which are notable nonlinear Boolean functions. A function is CI if every single-

feature marginal distribution is uninformative, i.e., no feature by itself is correlated with the 

function value, or class, even given the entire truth table or example space. We say a 

function f is correlation immune of order c (or c-correlation immune) if f is statistically 

independent from any subset of variables with a size of at most c. A function is correlation 

immune if and only if every variable has zero gain (with respect to any gain measure) when 

computed from the input data (cf. [8]).

As a result, these functions include some of the most challenging target concepts for most 

classification algorithms, most noteworthy the parity functions. The most famous nonlinear 

separators in machine learning are exclusive-or (XOR) and exclusive-nor (XNOR), which 

are two-feature parity functions. These particular functions arise in practice, for example in 

biology (Table 1) [9]. In Table I, the interpretation of this output is that flies that will survive 

are either male with an active Sxl gene, or female with an inavtive Sxl gene. While a 

nonlinear SVM can learn this function easily given only the relevant variables (i.e. Gender 
Female and Sxl Active), the SVM’s accuracy will degrade dramatically as irrelevant 

variables are added, unless the training set is quite large (see Section IV).

One would expect, for example, that SVMs, with a radial basis function (RBF) kernel or 

polynomial kernel of degree at least two, would learn these functions with ease. 

Unfortunately, for the simplest case of XOR in the presence of even a modest number of 

irrelevant features, or variables, SVMs tend to have a difficult time learning and require a 

large sample size empirically. This problem is not specific to SVMs; it is also known that no 

algorithm based on statistical queries can PAC learn parity functions of log(n) variables [10]. 

We seek a method of feature selection that can remove the irrelevant variables and restore 

classification performance.

A widely used approach to perform such a task is RFE, an embedded-based backward 

selection strategy [11]. RFE constructs an SVM, ranks the features according to the 

constructed SVM, removes the lowest ranked feature or features (e.g., bottom ten percent), 

and repeats until a certain (user-specified) number of features remain. The RFE algorithm 

with a linear SVM simply ranks features with respect to their given coefficients (i.e. from 
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the learned model); this approach assumes features have been normalized to have 

comparable ranges.

Unfortunately, for a nonlinear SVM, feature coefficients cannot be obtained; Guyon et al. [3] 

presented a version of RFE for use with nonlinear SVMs. We propose an alternative RFE 

algorithm, RFEST, and compare these algorithms on synthetic data and a real-world cancer 

genomics problem.

C. Breast Cancer and Single-Nucleotide Polymorphisms

The development of breast cancer is influenced by many genetic and environmental factors. 

We study how feature selection performs on the variations at single base pairs of the human 

genome, which are known as single-nucleotide polymorphisms (SNPs). In cancer, both 

germline SNPs (the DNA sequence with which a person is born, and which is replicated in 

most of the cells in her body) and somatic mutations (variants that occur in select cells 

during replication and can lead to cancer) are important and are widely studied. To date, 

germline SNPs have received more attention as they can predict a person’s future risk of 

breast cancer [12]. Genome Wide Association Studies (GWAS) seek to find SNPs that are 

associated—correlated—with risk for developing disease.

Currently, GWAS consider SNPs independently and do not take into account possible 

interactions between SNPs. The rationale behind this is that it is infeasible, for example, to 

consider all pairs of the n = 1 million SNPs that are typically measured. The main purpose of 

a thorough investigation of SNPs is to gain a better understanding of how these genetic 

variants act as biological markers. Given a set of SNPs, if we can help identify a subset of 

important SNPs that correlate with a particular effect in patients, then we will be able to 

investigate their interactions. In turn, this will help our decision processes about numerous 

aspects of medical care such as the following: risk of developing a certain disease, 

effectiveness of various drugs, and adverse reactions to specific drugs.

III. ALGORITHMS

A. RFE Algorithm

In our experiments, we compare our RFEST algorithm to the RFE method proposed by 

Guyon et al. [3]. Although variants of RFE have been proposed [13]–[15], the original 

method of Guyon et al. is still widely used in the bioinformatics community [16]–[21]. Due 

to the nature of the data sets used in their paper, Guyon et al. utilized a linear SVM with 

RFE. However, they described how their method can be carried over to handle a nonlinear 

SVM implementation and this is the algorithm that we use as the baseline, which we 

describe next.

For SVMs, the cost function that is being minimized is the following:

J = 1
2αTHα − αT1 (1)

with the following constraints:
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0 ≤ αk ≤ C, ∑
k

αkyk = 0

Here, α is the vector of weights on the training instances learned by the SVM algorithm, yk 

is the class value for the kth training instance xk, and C is a regularization parameter.

Matrix H is the kernel matrix for kernel function K and the set of training instances. 

Specifically, for each pair of training instances xc and xd, H = ycydK xc, xd  [3].

To determine feature relevance, the change in cost function proposed by Guyon is the 

following ranking coefficient:

DJ( j) = 1
2αTHα − 1

2αTH( − j)α (2)

where H(−j) represents a modified version of H that recomputes the matrix without the jth 

feature. In turn, the feature with the smallest value for DJ(j) is removed.

Algorithm 1 RFE Algorithm

Input: data di, j, where i ∈ 1, …, m , j ∈ 1, …, n

repeat

 Train SVM, output α

 Implement DJ(j) according to (2), ∀ features j

 Remove the feature(s) with the smallest DJ(j)

until k features remain (k < n)

Algorithm 1 describes the RFE algorithm for the nonlinear case in more detail [22]. The 

benefit of using RFE over a vanilla approach (e.g. train a new SVM for each candidate 

feature on every iteration) allows for each iteration of the algorithm to train only one SVM 

model. In other words, we assume that the vector α is fixed and consider the change in the 

kernel as a result of removing feature j. Note that for each iteration, H(−j) must be computed 

for each candidate feature j. The qualitative justification behind this cost function is that a 

feature’s value to the learned model is measured by the change in the expected value of error 

when removing that candidate feature [22]. RFE iterates until k features remain, however to 

have a fair comparison to RFEST, the stopping criterion for RFE was set to be until the 

accuracy measurement AUC is less than the max AUC achieved thus far. We describe 

RFEST in the next section.

B. RFEST Algorithm

Our presentation of RFEST and our subsequent proof assume binary features with {−1,1} 

encoding. It can be extended to categorical features with a one-hot encoding, but this and 

possible extension to continuous features are left for future work.
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Standard RFE requires recomputing the H matrix (as described in the previous section) for 

each feature removed and can become computationally intractable with many features. In the 

case where there are thousands of features, Guyon et al. [3] chose to remove half of the 

features at each iteration. Doing so allows for faster convergence to an idealized subset of 

features, but key information may be lost.

There are two main differences between RFE and RFEST. The first is that RFEST flips the 

binary features, rather than deleting them. Note that flipping a feature means that if its 

current value is −1, then it is changed to have the value 1, and vice versa.

The second difference is in the construction of the cost function. An SVM classifier can 

classify a dataset with the accuracy measurement AUC. In addition, for each feature j, we 

create a modified version of the training set by flipping feature j in each example, and then 

calculate the AUC of the same SVM classifier on this modified training set. We call the 

calculated value AUCflipped. The ranking coefficient used by RFEST is the following:

R( j) = AUC − AUC f lipped (3)

The interpretation of R(j) is as follows. For each j, if AUCflipped < AUC, then the jth feature 

is relevant because the model classified the instances at a lower AUC with j flipped. In 

contrast, if AUCflipped ≥ AUC, then the jth feature is irrelevant because the model classified 

the instances with the same or higher AUC with j flipped. Therefore, the feature 

corresponding to the smallest R(j) will be removed. This process does not retrain a classifier 

for every candidate feature to be removed and we no longer compute H(−j).

For our experiments, a nonlinear SVM with an RBF kernel was used. The reason for doing 

so is because the RBF kernel implicitly computes interaction terms for all subsets of input 

features. It has been shown that searching in exponentially growing sequences for the hyper-

parameters, namely cost C and gamma γ, is a good method for identifying their respective 

parameter values [23]. Therefore, the best configuration for C and γ was chosen using grid 

search.

To determine the final subset of features, RFEST stops when the AUC at any given iteration 

is less than p% of the max AUC achieved thus far. This parameter controls the tradeoff 

between model interpretability and model efficacy. That is, a lower choice for p encourages 

a small number of features, whereas a larger choice encourages a better performing model. 

For our experiments, we set p = 95% (see Section IV). Alternatively, other heuristics can be 

implemented with RFEST. One approach would be to stop when AUC decreases (i.e. a hill-

climbing search). Another would be to apply a simulated annealing method, where if the 

AUC decreases, we continue searching with a small probability. As the search continues, the 

probability decreases. Search methods such as simulated annealing or the approach RFEST 

currently uses are aimed towards avoiding a local optimum. We use our current search 

method since it avoids having to set additional parameters.

RFEST may suffer if the SVM model we use is overfitted to a given instance, since the 

model might then be sensitive to the value of every feature. For this reason, we used a ten-
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fold cross validation and allocated the dataset into separate training, tuning, and testing sets 

to produce an unbiased estimate of the efficacy of our approach. The algorithm below 

summarizes RFEST.

Algorithm 2 RFEST Algorithm

Input: allocated data di, j, i ∈ 1, …, m , j ∈ 1, …, n , into separate train, tune, and test

repeat

 Train SVM on train, test on tune and output AUC

 Implement R(j) according to (3), ∀ features j

 Remove the feature(s) with the smallest R(j)

until AUC is less than p% of the max AUC achieved

return SVM model built from train and tune and AUC from test

We next demonstrate the theoretical efficacy of using the quantity R(j) to rank features, by 

considering a classification problem on n binary features, where examples are labeled 

according to the parity of a subset of the features. We show if a nonlinear machine learning 

algorithm can learn a sufficiently accurate model M, then with high probability, using a 

polynomial-size sample to compute the R(j) values with model M will result in those values 

being higher for relevant features than for irrelevant features. Thus if any irrelevant features 

are present, the feature with the lowest R(j) value, removed by RFEST, will be irrelevant.

RFEST is a generic method. Because of the interpretation behind the ranking coefficient 

R(j), this allows us to use any accuracy measurement. Therefore, for simplicity and clarity of 

our analysis, we prove our theorem for a related measure, R( j), which is the same as R(j) 
except that it is defined in terms of accuracy rather than AUC. Although we state the 

theorem here only for the parity function and uniformly distributed examples, we prove a 

more general theorem in the Supplementary Material. That theorem applies to a somewhat 

broader class of functions and product distributions.

Theorem III.1.—Let f be a Boolean target concept, defined on n Boolean features, which 

labels examples according to the parity of a fixed subset of the n features. Suppose a 

machine learning algorithm is used to learn a classifier M for f. Suppose further that M has 

true error rate ϵ < 1/2, with respect to the uniform distribution. Then there is a quantity t that 

is polynomial in n, ln1
δ , and 1

(1/2) − ϵ , with the following property: for all 0 < δ < 1, if the R( j)

values for all n features are computed using M and a new independent sample of size t, also 

drawn from the uniform distribution, then with probability at least 1 – δ, the computed R( j)
values for all the relevant features will be higher than the computed R( j) values for the 

irrelevant features.

We note that Theorem III.1 does not contradict the known result that parity functions are not 

PAC-learnable from statistical queries because it is preconditioned on having an SVM model 

with accuracy better than random guessing.
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IV. EXPERIMENTAL RESULTS

A. Data

We implemented RFEST and Guyon’s RFE algorithm tailored to a nonlinear SVM, and we 

evaluated it on two types of data. The first consists of synthetic data that takes the form of a 

parity function on two variables, which is a CI function of order two. Correlation immune 

functions of order four, five, and six were also evaluated. There are many different CI 

functions, so for orders four, five, and six, ten functions for each order were randomly 

chosen. For functions of order c, the associated target concept was defined on n features. Of 

those n features, c were randomly chosen and corresponded to the c variables of the CI 

function, and the remaining features were irrelevant. Therefore, the task of both feature 

selection algorithms was to find the c variables that determined the class label. Feature 

values for all instances were chosen from a uniform distribution and the range of the number 

of instances was 100 to 2000.

The second dataset presented in this paper indicates that Emca4, a genetic determinant of 

susceptibility to 17β-estradiol (E2)-induced mammary cancer in the rat, has been mapped to 

rat chromosome 7 (RNO7) [24]–[26]. Data presented herein indicate that Emca4 harbors 

multiple genetic determinants of mammary cancer susceptibility and tumor aggressiveness 

that are orthologous to breast cancer risk loci mapped to chromosome 8q24–24 in genome 

wide association studies (GWAS) [12], [27]–[31].

The proceeding algorithm(s) used 76 of the SNPs in the designated region that are in the 

Hunter GWAS data set of 1145 breast cancer cases and 1142 controls [32]. All patients that 

had incomplete SNP data (630 patients) were omitted from our analysis. The data was made 

available via dbGaP’s Cancer

Genetic Markers of Susceptibility (CGEMS) Breast Cancer GWAS.

B. Synthetic Data Results

A learning curve was created to show the average AUC for n total features, where n ∈ {20, 

50, 100} (i.e. the average AUC of the ten different functions for each order, respectively). 

For each n, we trained datasets that contained m examples, where m ∈ {100, 200, 300,…, 

2000}. In addition, a learning curve was plotted to represent the average number of features 

that were kept using the same number of features and examples as stated above (i.e. the 

average number of features retained of the ten different functions for each order, 

respectively). To make the comparison fair, 10% percent of the total number of features 

remaining at a given iteration were removed. In [3], the authors removed half of the features. 

However, we believe removing 10% of features at each iteration gave more accurate results 

since the number of features to begin with was not as large as the number in Guyon’s paper.

In Figure 1 we show the synthetic data results for 20 total features across the CI functions of 

order two, four, five, and six. The performance (in terms of AUC) of both algorithms 

increased as the number of training examples increased, which is to be expected. However, 

RFEST achieved an AUC of 1.0 at a faster rate than RFE. In fact, for orders five and six, 

RFE failed to attain an AUC of 1.0.
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The average number of features retained across the various orders was also calculated 

(second column of Figure 1). The goal was to output only the relevant features. For example, 

in the case of the parity function, we set the relevant features to be randomly chosen among 

the 20 features in our dataset, and the remaining features were irrelevant. For the CI function 

of order four, four randomly chosen features were set as the relevant variables, and the 

remaining features were irrelevant. The creation of the remaining CI functions followed a 

similar format. All feature values were chosen with respect to a uniform distribution.

Observe that in Figure 1, RFE was not able to retain the relevant features across all orders. 

For orders four, five, and six, the algorithm stopped prematurely, outputting nearly all of the 

original features. In the case of the parity function, there are several instances where the RFE 

algorithm outputted only a small subset of features that included the relevant variables, 

however, it failed to return solely those that are relevant. Unlike RFE, RFEST was able to 

retain solely the relevant variables for each order. For the parity function, only 200 instances 

were required. For orders four, five, and six, 400, 400, and 300 instances were needed to 

return a subset of only the relevant features, respectively. This is a significant difference.

Figure 2 shows the synthetic data results for 50 total features across the CI functions of order 

two, four, five, and six. In a similar format to Figure 1, the first row represents the AUC 
achieved and features retained, respectively, for RFE. The second row represents the results 

for RFEST. As compared to Figure 1, there is a general decrease in AUC across all orders, as 

the number of irrelevant features increases. However, after a certain number of training 

examples, RFEST outperformed RFE. The max average AUC achieved for RFE and RFEST 

for all orders are represented in Table II.

In addition to the significant difference in performance (as shown in Table II), there is a 

distinct difference in the number of features returned. Across all orders and all varying 

training examples, RFE was not able to find the subset of relevant variables. However, 

RFEST was able to do so with the corresponding max average AUC’s and training examples 

from Table II. This observation is also shown graphically in the second column of Figure 2.

Lastly, Figure 3 shows the synthetic data results for 100 total features across the CI functions 

of order two, four, five, and six. Similar to the results in Figures 1 and 2, RFEST 

outperformed RFE in both prediction performance and the ability to retain fewer relevant 

features. The max average AUC results for RFE and RFEST can be found in Table III. For 

100 total features, at approximately 900 training examples, there is a significant difference 

between the prediction performance (across CI function orders two, four, and six) for RFE 

and RFEST (as shown in Table III). That is, with fewer training examples, RFEST achieved 

higher max average AUCs compared to RFE.

Observe that in Figure 3, as the number of training examples increased, RFEST was able to 

return a smaller subset of features, whereas, RFE returned more than half the number of 

original features. Note that RFEST demonstrated more fluctuation with 100 total features. 

This finding suggests that there are CI functions in which RFEST may not be the more 

robust method, in terms of its ability to return relevant features.
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C. Germline Genomic Data for Breast Cancer Results

There is great interest in associating variations in the human genome with disease risk. 

Much of this work focuses on associating with any given disease the variations in SNPs. 

Most such work assumes the SNPs, and the variations in disease risk that they cause, are 

independent of one another; in general this assumption is wrong and results in lost accuracy.

We may examine variations in the germline DNA with which a person is born or variations 

that arise from somatic mutations in individual cells, such as in the development of cancers 

and which may vary widely even within the same tumor. One particular disease for which 

both types of variations have been studied is breast cancer. For predicting disease risk, 

germline genomic data is the more natural choice to use.

The data we investigate contains 76 SNPs, translating to 152 binary features, in a particular 

region of the human genome that is orthologous to a region of the rat genome known to 

modulate breast cancer risk. We use the CGEMS data set of SNP genotypes for 1145 breast 

cancer cases and 1142 healthy age- and gender-matched controls [32]. Applying RFEST to 

this data, as run in the previous section, produces a cross-validated AUC of 0.56 with only 

nine features, which outperforms linear SVM and nonlinear SVM cross-validated runs with 

the original input data (0.53 and 0.54, respectively). Likewise, RFEST outperformed RFE as 

RFE (as run in the previous section) returned an AUC of 0.53 with 122 features, no better 

than either a linear or nonlinear SVM run. We also implemented RFE with the stopping 

criterion stated in Algorithm 1. That is, since RFEST returned nine features, RFE also 

iterated until nine features remained but returned an AUC of 0.51.

While all runs were performed by eliminating 10% of features at a time, our novel algorithm 

is also effective (when compared to RFE) when removing 20% or even 30% of the 

remaining features at a time. Removing 10% of the features at a time not only resulted in an 

AUC of 0.56 but most notably retained only nine features. With such a small set of features, 

one can then exhaustively generate all pairs (and even more) of interaction terms. A linear 

SVM model was built with the remaining nine features and all interaction terms. In turn, the 

top 13 features were all pairs of SNPs rather than individual SNPs. This suggests that 

interactions play a major role in the effect of SNP variations in this region on breast cancer 

risk, as has been suspected. Studies are under way to further evaluate these nine selected 

SNPs.

It has been shown that incorporating, as risk factors, germline SNPs associated with breast 

cancer can significantly improve prediction and even mammography-based diagnosis of 

breast cancer, even though breast cancer is estimated to be only 30% heritable [33]. In this 

section we have shown that avoiding the independence assumption regarding SNPs, by using 

a nonlinear SVM with our novel RFE algorithm, makes it possible to associate with breast 

cancer risk new SNPs and their interactions, and that this association can enable more 

accurate breast cancer risk prediction than could be made from these SNPs without taking 

interactions into account.

A post-hoc analysis of these nine selected SNPs confirmed our collaborating biologist’s 

suspicion that interactions (rather than specific SNP values) were the most important 
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modulator of breast cancer risk in this genomic region, and revealed which interactions were 

crucial to the underlying task (i.e. breast cancer diagnoses).

V. DISCUSSION & CONCLUSION

In this paper, we explored the difficulties that accompany feature selection and learning 

decidedly nonlinear target concepts. In addition, we discussed the challenges that are faced 

in using Guyon’s RFE algorithm [3]. Such a problem occurs in significantly lower AUC 
than the novel RFE algorithm.

We introduce a new algorithm, RFEST, for a nonlinear machine learning algorithm and 

demonstrate its efficacy both theoretically (refer to Theorem III.1 and Supplementary 

Material) and empirically (see Section IV). The RFE algorithm is an embedded-based 

approach but RFEST behaves like a wrapper-based approach. It uses a nonlinear SVM as a 

black box to determine feature relevance. In principle, with this approach one can use any 
machine learning algorithm to remove irrelevant or redundant features. Refer to this 

repository for the code implementation on a sample dataset.

RFEST differs from RFE in two important ways: it flips rather than eliminates each feature 

to test sensitivity and measures loss in model efficacy instead of the loss in weighted sum of 

distances from the margin. These differences result in substantial improvements across CI 

functions and a real-world breast cancer genomics problem.

Extending the feature types used by RFEST is left for future work. Lastly, if one knew that 

the input data contained many correlated features, then applying a filter algorithm before 

RFEST will aid in removing redundant features.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
From left to right are results for 20 total features. The first column represents the AUC 
achieved across different training examples and the second column shows the number of 

features that were retained, with respect to the AUC achieved from the first column. The first 

row shows the results for RFE. The second row shows the results for RFEST.
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Fig. 2. 
From left to right are results for 50 total features. The first column represents the AUC 
achieved across different training examples and the second column shows the number of 

features that were retained, with respect to the AUC achieved from the first column. The first 

row shows the results for RFE.The second row shows the results for RFEST.
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Fig. 3. 
From left to right are results for 100 total features. The first column represents the AUC 
achieved across different training examples and the second column shows the number of 

features that were retained, with respect to the AUC achieved from the first column. The first 

row shows the results for RFE.The second row shows the results for RFEST.
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TABLE I

A TRUTH TABLE FOR DROSOPHILA (FRUITFLY) SURVIVAL BASED ON GENDER AND SXL GENE 

ACTIVITY.

GENDER FEMALE SXL ACTIVE SURVIVAL

0 0 0

0 1 1

1 0 1

1 1 0
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TABLE II

MAX AVERAGE AUC RESULTS FOR 50 TOTAL FEATURES.

RFE RFEST

ORDER AUC TRAINING
EXAMPLES

AUC TRAINING
EXAMPLES

2 0.889 1600 1.0 400

4 0.773 1800 1.0 600

5 0.649 2000 1.0 900

6 0.710 2000 1.0 900
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TABLE III

MAX AVERAGE AUC RESULTS FOR 100 TOTAL FEATURES.

RFE RFEST

ORDER AUC TRAINING
EXAMPLES

AUC TRAINING
EXAMPLES

2 0.557 1100 1.0 900

4 0.624 1700 1.0 1600

5 0.548 1800 0.704 1500

6 0.611 1800 1.0 1400
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