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Dysregulated Lipid Transport Proteins
Correlate With Pathogenesis and
Outcome in Severe Alcoholic Hepatitis
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Severe alcoholic hepatitis (SAH) has high mortality. Dysregulated lipid transport and metabolism in liver/macrophages
contributes to disease pathophysiology. Paraoxonase/arylesterase 1 (PON1), a liver-specific enzyme, inhibits oxidation
of phospholipids and prevents lipid-mediated oxidative damage. However, its functional contribution in macrophage-
20), alcoholic cirrhosis
(n = 20), and healthy controls was analyzed. Dysregulated pathways were identified, validated, and correlated with
severity and outcomes in 200 patients with SAH. Tohoku-Hospital-Pediatrics-1 (THP1)-derived macrophages were
treated with plasma from study groups in the presence/absence of recombinant PON1 and the phenotype; intracel-
lular lipid bodies and linked functions were evaluated. In patients with SAH, 208 proteins were >1.5 fold differentially
regulated (32 up-regulated and 176 down-regulated; P < 0.01).Validation studies confirmed lower levels of lipid trans-
porter proteins (Ponl, apolipoprotein [Apo]B, ApoAl, ApoA2, and ApoC3; P < 0.01). Low PONI1 levels inversely
correlated with severity and mortality (> > 0.3; hazard ratio, 0.91; P < 0.01) and predicted nonsurvivors (area under

mediated hepatic injury warrants elucidation. Plasma proteome of patients with SAH (n =

the receiver operating characteristic curve, 0.86; cut-off, <18 pg/mL; log rank, <0.01). Low PONT1 levels corroborated
with increased oxidized low-density lipoprotein levels, intracellular lipid bodies, lipid uptake, lipid metabolism, bio-
synthesis, and alternative macrophage activation genes in nonsurvivors (P < 0.01). Importantly, in vitro recombinant
PON1 treatment on THP1 macrophages reversed these changes (P < 0.01), specifically by alteration in expression of
clusters of differentiation 36 (CD36) and adenosine triphosphate-binding cassette subfamily A1 (ABCA1) receptor
on macrophages. Conclusion: Lipid transport proteins contribute to the pathogenesis of SAH, and low PONI1 levels
inversely correlate with the severity of alcoholic hepatitis and 28-day mortality. Restitution of circulating PON1 may
be beneficial and needs therapeutic evaluation in patients with SAH. (Hepatology Communications 2019;3:1598-1625).

evere alcoholic hepatitis (SAH) is a progres-

sive ailment with high mortality and limited

treatment options.(l) Systemic inflammatory

responses, necrosis, fatty degeneration, and oxidative
stress contribute to the progression of SAH.®¥

Fatty degeneration is characterized by accumu-

lation of lipid bodies in macrophages,(z) which shift

lipid homeostasis to lipid peroxidation, resulting in
increased production of reactive oxygen species (ROS)
and inflammation in SAH.% An increase in systemic
inflammation induces the differentiation of circulating
monocytes into M1 (inflammatory macrophages) or
M2 (clusters of differentiation [CD]163" alternatively

activated) macrophages.(é) Recently, we demonstrated
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a higher percentage of a circulating M2 phenotype in
SAH.”® Involvement of M2 phenotypes is known in
lipid accumulation and differentiation.”

Lipid accumulation in macrophages is either
through constitutive uptake by the surface receptors or
by degradation of native/modified lipoproteins.(lo’ll)
A distinguishable change in the circulating lipid con-
tent and/or alternate activation of the macrophages
mediates lipid accumulation.® In macrophages, lipid
accumulates as cytoplasmic lipid droplets (esterified)
to prevent cytotoxic effects or is exported through

319 In patients suffer-

cholesterol efflux pathways.'
ing from chronic alcoholic liver diseases, the former
mechanism often precedes as a result of a continuous
drop in high-density lipoprotein (HDL) concentra-
tion (acceptor for cholesterol).™ Levels of circulating
paraoxonase/arylesterase 1 (PON1) and HDL cor-
relate to inflammation.”® Moreover, oxidation of
low-density lipoprotein (LDL), cholesterol biosynthe-
sis, and inflammatory response are interlinked biolog-
ical processes, the deregulation of which plays a vital
role in the progression of alcoholic liver diseases. 121

Liver plays a key role in cholesterol metabolism
and transport,(lé) and alcohol consumption alters

it. In patients with alcoholic cirrhosis (AC), LDL
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cholesterol, HDL cholesterol, and plasma triglycerides
(TGs) are increased”'® Increased LDL choles-
terol acts as a precursor molecule for the generation
of immunogenic oxidized LDL,(19)
alternate activation of macrophages through activation
of CD36.%”

PON1 is a 384-amino acid enzyme secreted by
the liver.?"? Hepatic PON1 is similar to serum
PONT1 and has been corroborated with hepatic func-
tions.”” Low PON1 levels and activity are asso-
ciated with predisposition to hepatic damage.?**
PONT1 inhibits the end product of lipid peroxidation
(4-hydroxy-2-noneal) and oxidation of phospholipids,
thereby reducing production of monocyte chemo-
attractant protein 1.%628) Animal studies have also
shown a high degree of macrophage oxidative stress in
PON1-knockout mice.?” Thus, even in the absence
of a hyperlipidemic state, PON1 deficiency promotes
lipid accumulation and inflammatory and oxidative
changes in monocytes/macrophages.(30’31) However,
the correlation of circulating PONT1 levels with the
severity of liver diseases and short-term mortality in
SAH is not yet documented, and further data regard-
ing the role of PON1 in the management of lipid-

laden macrophages and its functionality have not

which promotes
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been investigated in SAH. We undertook the present
study to identify markers of short-term mortality in
SAH and to characterize the phenotype of circulating
monocytes/macrophages in SAH and in the presence
or absence of PON1, which was correlated with the
pathogenesis of patients with severe alcoholic hepa-
titis. This study put forward a compendium of pro-
teomic alteration that is specific for patients with
severe alcoholic hepatitis and can serve as a clinical
resource. In addition, results of the study potentiate
the need for therapeutic evaluation for recombinant
PONT1 in severe alcoholic hepatitis.

Patients and Methods

In this prospective study, 220 liver biopsy-proven
patients with SAH were enrolled between January
2014 and January 2016. Patients with hepatocellular
carcinoma (n = 15) and associated with portal vein
thrombosis (n = 5) were excluded. The diagnosis of
SAH was based on histologic evidence and Maddery’s
discriminant function (DF) of »32.%? The diagno-
sis of AC was based on a history of chronic heavy
alcohol intake (with >1 month alcohol abstinence)
and a combination of clinical, biochemical, endo-
scopic, and radiological criteria confirming presence
of cirrhosis.®® Subjects enrolled as healthy controls
(HCs) had no evidence of present/past liver disease.
All the patient groups were managed according to
the standard of care, which included intensive care
monitoring, high-caloric diet (35-40 cal/kg/day),
broad-spectrum antibiotics, and intravenous albumin.
None of the patients received corticosteroids before
the samples were drawn for analysis. Laboratory staff
were unaware of the clinical details of the study groups
at the time of the experiments. Child-Turcotte-Pugh
(CTP), Model for End-Stage Liver Disease (MELD),
sequential organ failure assessment (SOFA), and
Maddrey’s DF were calculated to determine the sever-
ity of liver disease at initial presentation. All patients
with SAH were followed up for a period of at least
1 month or until death. All blood samples were col-
lected at fasting condition, and only baseline samples
were analyzed and correlated with outcomes. The
study was approved by the institutional ethical com-
mittee of the Institute of Liver and Biliary Science,
New Delhi, India, and written informed consent was
obtained in all cases.
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QUANTITATIVE PROTEOMICS

Discovery Phase

Plasma samples from age- and sex-matched
patients with SAH (n = 20), AC (n = 20), and HCs
(n = 20) were depleted of the most abundant proteins
and were trypsin digested overnight at room tempera-
ture. Peptides from each group were labelled using
isobaric tags for relative and absolute quantitation,
fractionated using strong cation exchange chromatog-
raphy, and followed by mass spectrometry analysis (see
details in Supporting Methods S1).

Validation Phase

The validation cohort consisted of 200 patients
with SAH. Proteins differentially regulated and asso-
ciated to lipid metabolism/transport were validated in
this cohort using standard enzyme-linked immuno-
sorbent assay kits. The laboratory research scientists
were blinded to patient identity and the results of the
investigations.

SERUM/PLASMA MEASUREMENTS

Plasma PON1 levels were measured in the study
groups using a standard kit (cat. no. E90243hu; sen-
sitivity, <1.39 ng/mL). Levels of other apolipopro-
teins (ApoAl [EA5201-1; sensitivity, <1.1 pg/mL),
ApoA2 [EA5222-1; sensitivity, <2.5 ng/mL], ApoC1
[EA8011-1; sensitivity, <45 ng/mL], ApoC3 [EA8133-
1; sensitivity, <1.3 ng/mL], ApoB [EA7001-1; sensi-
tivity, <1.2 ng/mL], and ApoE [EA8003-1; sensitivity,
<5 ng/mL]) and oxidized LDL (STA-388; sensitivity,
~150 ng/mL) were measured as per the manufactur-
er’s protocol and correlated to the biochemical profile
of the patients.

IMMUNOHISTOCHEMISTRY

Immunohistochemistry (IHC) was performed
on formalin-fixed paraffin-embedded liver tissues in
5 patients each with SAH and AC. Expression of
PONI1 (cat. no. PA5-28997), LDL receptor (LDLR;
cat. no. PA5-22976), CD36 (cat. no. PA1-16813),
scavenger receptor class B type 1 (SRBI; cat. no.
PA1-16788), adenosine triphosphate-binding cassette
subfamily A1 (ABCA1; cat. no. PA5-22906), ABCG1
(cat. no. PA5-56757), CD68 (cat. no. MA513324),
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tumor necrosis factor alpha (TNF-o; cat. no.
PAA133Hu01), and nucleotide-binding oligomeri-
zation domain-containing protein 1 (NOD1; cat. no.
PAK296Hu-01) was estimated in the membrane and
cytoplasmic space of the positive stained cells and
counted in 10 consecutive high-power fields (40x);
relative quantitation as mean number of cells/10 high-
power field (40x) was recorded.

FLOW CYTOMETRY ANALYSIS

Peripheral blood mononuclear cells (PBMCs)
were isolated and incubated with Fc blocker (CD16/
CD32; BD Biosciences, San-Jose, CA) for 15 minutes
to avoid nonspecific binding and were stained with
a combination of Nile red fluorescein isothiocyanate,
phycoerythrin (PE)-human leukocyte antigen DR
isotype (HLA-DR), PE/cyanine 7/anti-CD11b, and
allophycocanin anti-CID163 antibodies for 30 minutes
at 4°C, washed with phosphate-buffered saline, and

fixed in 0.5% paraformaldehyde. The cells were ana-
lyzed on BD FACS VERSE (BD Biosciences).

GENE EXPRESSION ANALYSIS
Total RNA from PBMCs of patients with SAH

(survivors [n = 10] and nonsurvivors [n = 10]) was
subjected to complementary DNA preparation and
followed by reverse-transcription polymerase chain
reaction (RT-PCR) analysis for genes linked to lipid
uptake (CD36, SRAI1, LDLR, and integrin subunit
alpha M [ITGAM]), lipid metabolism/biosynthesis
(Fas cell surface death receptor [FAS], sterol regula-
tory element binding transcription factor 1 [SREBF1],
peroxisome proliferator activated receptor gamma,
[PPARG], peroxisome proliferator activated receptor
delta [PPARD], nuclear receptor subfamily 1 group H
member 3 [NRIH3], NR1IH2, and fatty acid-binding
protein [FA4BPI]), macrophage alternate activation
(CD163, CD68, matrix metalloproteinase [MMP27],
and transglutaminase 2 [7GM?2]), and inflammation
(T'NE interleukin-6 [IL-6]).

IMMUNOFLUORESCENCE
ANALYSIS

Human monocyte-derived macrophages (MDMs)
were treated with plasma of patients with SAH,
whereas Tohoku-Hospital-Pediatrics-1(THP1)-derived
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macrophages were treated with plasma of different
study groups in the presence or absence of PONI.
The density and number of lipid bodies stored in the

macrophages was analyzed by Nile red staining. %

THP1 STIMULATION ASSAY:
PLASMA STIMULATION ASSAY

THP1 monocytes were differentiated into macro-
phages by 24-hour incubation with 150 nM phorbol
12-myristate 13-acetate (Sigma), followed by 24-hour
incubation in Roswell Park Memorial Institute 1640
medium. A total of 10° THP1 cells in triplicate were
treated with study plasma samples at a 10% concen-
tration in the presence or absence of PON1 (cat. no.
ENZ-299; Prospec, Israel) at 2.5 units/mL (50 ng/mL)
for the next 24 hours.®” One set of THP1-derived
macrophages was subjected to estimation of Nile red
staining, HLA-DR, CD11b, and CD163, as detailed
above. Total RNA and proteins were isolated from
the other set, and RT-PCR analysis was performed
for a panel of genes linked to lipid uptake, metabo-
lism, biosynthesis, and inflammation. Protein sam-
ples were used for validation of expression of CD36
(cat. no. PA1-16813), SRB1 (cat. no. PA1-16788),
ABCAT1 (cat. no. PA5-22906), ABCG1 (cat. no. PA5-
56757), and beta-actin (cat. no. MA5-15739). In a
separate experiment, we used APOA1 (cat. no. CYT-
037; 100 ng/mL) and HDL (cat. no. MBS173147;
100 ng/mL) in combination with PON1, and expres-
sions of genes linked to lipid uptake, metabolism, bio-
synthesis, and inflammation were evaluated.

MEASUREMENT OF OXIDATIVE
STRESS IN THP1-DERIVED
MACROPHAGES

Production of intracellular ROS in THP1-derived

macrophages treated with the plasma of study groups
in the presence or absence of 2.5 units/mL PON1

was assessed using dihydrorhodamine-123 (Sigma;
Chemical Abstracts Service no. 109244-58-8), as
described.®?

THP1-DERIVED MACROPHAGE
PROTEOMICS

THP1-derived macrophages were treated with
study plasma samples in the presence or absence
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A Partial List of the Proteins Differentially Regulated
8 0
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FIG. 1. Quantitative proteomic analysis identifies significantly down-regulated lipid transporter proteins in SAH. (A) Partial list of
proteins differentially regulated (>1.5-fold; P < 0.05) between SAH, AC, HC, and its GO analysis, which documents enrichment of lipid
transporters in SAH. (B) KEGG enrichment analysis of the up-regulated (n = 32) and down-regulated (n = 176) proteins in patients with
SAH represents significant (P < 0.05) enrichment. (C) Plasma level of PON1 was down-regulated in patients with SAH (median, 23.2;
range, 2.3-139.4) compared to those with AC (median, 44.7; range, 25.8-131) and HC (median, 139.5; range, 46.6-196.0) (P < 0.05).
(D) Plasma level of apolipoproteins (APOB, APOE, APOA1, APOA2, APOC1, APOC3) in SAH compared to AC and HC (P < 0.05
is significant). (E) IHC showing expression of PON1, LDL, CD36, SRA1, ABCA1, and ABCG1 in SAH (n = 5) and AC (n = 5). For
all THC analyses, relative quantization of positively stained cells are expressed as mean number of positive cells/10 high-power field (40x)
and *P < 0.05. Abbreviations: COA, coenzyme A; HBG1, hemoglobin subunit gamma 1; KEGG, Kyoto Encyclopedia of Genes and
Genomes; LBP, lipopolysaccharide binding protein; LPS, lipopolysaccharide; TLR4, toll-like receptor 4.
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FIG. 1. Continued.

of PON1 (2.5 units/mL) for 24 hours and were
subjected to eight-plex proteomic analysis. The
proteomic expression of the study groups was first
normalized by the expression of untreated THP1
macrophages. Effect of plasma exposure on THP1
macrophages in each of the three groups was com-
pared with or without addition of recombinant
PONI. Differentially expressed proteins were sub-
jected to Gene Ontology (GO) enrichment analysis
using GOlorize-Cytoscape®” and pathway anal-
ysis using FunRich®® and Enrichr® (Supporting
Methods S2).

STATISTICAL ANALYSES

Statistical analyses were performed using SPSS,
version 20. Analysis of variance was performed, and

Bonferroni correction was used as post-hoc analysis
for normally distributed continuous variables; Mann-
Whitney U test and Kruskal-Wallis tests were used
for non-normally distributed continuous variables.
Spearman’s correlation was drawn comparing PON1
and lipid transporter proteins against severity assess-
ment scores. Receiver operating characteristic curves
were drawn for SAH to identify cut-off values of PON
1 to predict mortality. Cox regression and Kaplan-
Meier survival analyses were performed to determine
the significance of PON1 in outcome prediction.

Results

The clinical and demographic profile of the study
groups (SAH, AC, and HC) is shown in Table 1.
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FIG. 1. Continued.
Patients with severe alcoholic hepatitis in the discovery DISCOVERY PHASE

and validation cohort had similar baseline characteris-
tics (Table 1). Patients with SAH had more severe liver
disease (higher MELD, CTP, DE, and SOFA scores)
and increased levels of leucocyte counts, serum biliru-
bin, prothrombin time (PT)-international normalized
ratio (INR), serum cholesterol, HDL cholesterol, LDL
cholesterol, very low-density lipoprotein (VLDL) cho-
lesterol, and TGs compared to AC (Table 1). In the val-
idation cohort (n = 200), the nonsurvivors (63%) were
clinically more severe and had higher CTP, MELD, DF,
and SOFA scores compared to survivors (37%; Table 1).
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Quantitative proteomics identified 305 proteins
(Supporting Table S1), of which 176 were down-
regulated and 32 were up-regulated in patients with
SAH compared to other groups (fold change [FC]
>1.5; P < 0.05). Most significantly down-regulated
proteins showed lipid transporter activity (Fig. 1A) and
were linked to lipoprotein metabolism, lipid transport,
platelet activation, and homeostasis (P < 0.01; Fig. 1B;
Supporting Tables S2 and S3). Of the up-regulated
proteins, only hemoglobin subunit gamma 1 (HBG1)
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FIG. 2. Plasma levels of lipid transporter proteins correlate to severity and outcome in SAH. (A) Plasma level of PON1 was down-regulated
in nonsurvivors of SAH (median, 13.1; range, 2.3-97) versus survivors (median, 33.4; range, 5.7-139.4; P < 0.01). (B) Plasma levels of
apolipoproteins (APOB, APOE, APOA1, APOA2, APOC1, and APOCS3) in nonsurvivors compared to survivors. (C) PON1 interaction
network and the levels of the ratios of PON1:lipid transporter proteins (PON1:APOB, PON1:APOE, PON1:APOA1, PON1:APOC1,
PON1:APOC3) in nonsurvivors and survivors. (D) Correlation of PON1 and lipid transporter proteins with severity and outcome in SAH;
pink represents P < 0.05. (E) Diagnostic efficacy of PON1 compared to other lipid transporter proteins in predicting severity and mortality in
patients with SAH; P< 0.05. (F) Kaplan-Meier survival analysis of patients with SAH based on PON1 levels of <18 pg/mL versus >18 pg/mL
(log rank <0.01). Abbreviations: ALB, albumin; ALT; alanine aminotransferase; CC, correlation coefficient; CI, confidence interval; LB, lower
bound; MT TP, microsomal triglyceride transfer protein; NS, not significant; Plat_B, platelet_baseline; Sig., significance; UB, upper bound.
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was linked to lipid transport activity (Fig. 1A).
Up-regulated proteins were enriched for lipopolysac-
charide (LPS) and toll-like receptor (TLR) based on
immune activation, complement activation, and IL-6

signaling (Fig. 1B; Supporting Tables S2 and S3).

VALIDATION PHASE

This cohort included 200 patients with SAH, with
a dominance of male patients (95%). In this cohort,
plasma levels of PON1, APOB, APOA1, APOA2,
and APOC3 were significantly lower, whereas
APOC1 and APOE levels were significantly higher
compared to AC (P < 0.05; Fig. 1C,D; Table 1).Total
cholesterol, TGs, HDL cholesterol, LDL choles-
terol, and VLDL cholesterol were also significantly
higher in patients with SAH (P < 0.05; Table 1).
THC results were concordant with plasma results and
showed significantly lower levels of PON1, LDLR,
and ABCA1, whereas the levels of CD36, SRB1, and
ABCG1 were increased in the liver of patients with
SAH (P < 0.05; Fig. 1E). Together, these results sug-
gest that low circulating levels of lipid transporter
proteins are associated with severity of liver diseases.
Further, low tissue expression of PON1, LDLR, and
ABCA1 and a higher expression of the lipid-uptake
receptor (CD36, SRB1) could relate to the observed

steatosis in alcoholics.

DYSREGULATED LIPID
TRANSPORTER PROTEINS ARE
ASSOCIATED WITH EARLY
MORTALITY IN SAH

Circulating PON1 and other lipid transporters,
such as APOB, APOE, APOA1, APOA2, APOCI1,
and APOCS3 levels, were significantly low in nonsur-
vivors compared to survivors (P < 0.05; Fig. 2A,B).
As PON1 directly interacts with lipid transporter
proteins, the ratios of PON1:APOB, PON1:APOE,
PON1:APOA1, PON1:APOC1, and PON1:APOC3
were studied and were found to be significantly lower
in nonsurvivors (P < 0.05; Fig. 2C). Levels of cir-
culating PON1, lipid transporter proteins (APOB,
APOE, APOC1, APOC2, APOA2), and ratio of
PONT1:lipid transporter proteins inversely (#* > -0.3)
correlated with disease severity and directly correlated
with survival in patients with SAH (** > 0.3; P< 0.05;
Fig. 2D). Univariate Cox regression analysis identified

MARAS, DAS, ET AL.

significant parameters that correlated with short-term
mortality (28 days) in SAH (Table 2). Multivariate
Cox regression analysis was performed for parameters
with the original value (Model 1) and parameters with
the derived value (Model 2). Model 1 highlighted sig-
nificant associations of baseline PON1 levels (haz-
ard ratio [HR], 0.934; range, 0.917-0.952), APOB1,
APOCS, platelet, total leukocyte count (TLC), and
INR. Model 2 showed PON1/APOC1 (HR, 0.852),
MELD score (HR, 1.072), CTP (HR, 1.133), and
SOFA score (HR, 1.95) with short-term mortality
(28 days) in patients with SAH (Table 2). In addition,
circulating PONT1 levels showed the highest area under
the receiver operating characteristic curve (AUROC)
of 0.86 (P < 0.001), which was the greatest predictor
of survival in patients with SAH (Fig. 2E). Based on
the AUROC of PON1, a cut-off value of 18 pg/mL
or below showed 80% sensitivity and 85% specificity
for mortality prediction in patients with SAH. The
Kaplan-Meier curve analysis elucidated short-term
(28-day) mortality in patients with SAH with base-
line PON1 <18 pg/mL (log rank, <0.01; Fig. 2F).

LOW PON1 LEVEL PROMOTES
OXIDATION OF LDL AND
MACROPHAGE LIPID LOADING
IN PATIENTS WITH SAH

Low PONI1 level is associated with an increase in
oxidation of LDL.%” The level of oxidized LDL was
significantly higher in patients with SAH and more
so in nonsurvivors (P < 0.05; Fig. 3A). To assess the
association of the increase in oxidized LDL with the
increase in the lipid body content of macrophages, we
evaluated total lipid body content in circulating mac-
rophages (CD11b+CD163+ and CD163+HLA-DR+).
Intracellular lipid body (Nile red staining) content
was significantly higher in CD11b+CD163+ and
CD163+HLA-DR+ macrophages of nonsurvivors
(P < 0.01; Fig. 3B,C). This increase in lipid bod-
ies of macrophages was concordant with the expres-
sion of genes linked to lipid uptake (CD36, SRBI,
LDLR, and ITGAM), lipid metabolism/biosynthesis
(EAS, SREBF1, PPARG, PPARD, NR1H3, NR1H?2,
and FABPI), alternate activation (CDI163, CD6S,
MMP27, and TGM?2), and inflammation (7NF' and
IL-6 with FC >2; P < 0.05; Fig. 3D), with no change
in lipid-export receptor (4BCA1, ABCGI) expression
(Fig. 3D).
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TABLE 2. UNIVARIATE AND MULTIVARIATE
COX REGRESSION ANALYSIS OF THE MOST
SIGNIFICANT PARAMETERS FORTHE
DETERMINATION OF MORTALITY IN SEVERE
ALCOHOLIC HEPATITIS

95.0% Cl for HR

Variable Significance* HR Lower Upper
Univariate Analysis

PON1 0.000 0.967 0.952 0.982
APOB 0.015 0.996 0.993 0.999
APOE 0.049 0.998 0.996 1.000
APOAT 0.248 0.997 0.991 1.002
APOA2 0.000 0.992 0.988 0.997
APOCI1 0.092 0.984 0.965 1.003
APOC3 0.007 0.991 0.985 0.998
PON1/APOB 0.042 0.624 0.395 0.984
PON1/APOE 0.054 0.267 0.070 1.023
PON1/APOA1 0.373 0.920 0.767 1.105
PON1/APOA2 0.121 1.018 0.995 1.042
PON1/APOCT 0.003 0.494 0.312 0.784
PON1/APOC3 0.004 0.129 0.031 0.525
Platelets 0.001 0.481 0.309 0.748
Sodium 0.000 0.928 0.896 0.961

TLC 0.001 1.000 1.000 1.000
Bilirubin 0.102 1.021 0.996 1.046
INR 0.017 1.213 0.920 1.599
CTP 0.000 1.105 1.081 1.130
MELD 0.000 1.118 0.990 1.347
SOFA 0.000 1.469 1.347 1.603
Variable Significance HR 95.0% Cl for HR

Multivariate Analysis (parameters with original value) Model 1

PONT1 0.000 0.934 0.917 0.952
APOB 0.001 0.995 0.992 0.998
APOC3 0.007 0.995 0.991 0.999
Platelet 0.000 0.504 0.346 0.735
TLC 0.000 1.713 1.454 1.972
INR 0.024 1.282 1.033 1.591
Variable Significance HR 95.0% Cl for HR

Multivariate Analysis (parameters with derived values) Model 2

PON1/APOC1 0.047 0.852 0.796 0.895
MELD 0.000 1.072 1.033 1.112
CTP 0.000 1.133 1.098 1.169
SOFA 0.001 1.195 1.075 1.330

*P < 0.05 is significant.
Abbreviation: CI, confidence interval.

Healthy MDMs were treated with plasma samples
of nonsurvivors and survivors of SAH, and the amount
of lipid bodies stored in the macrophages was evalu-
ated by Nile red staining. Mean florescent intensity of
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Nile red stain was significantly higher in macrophages
treated with plasma of nonsurvivors (P< 0.001; Fig. 3E).
Together, these results suggest that the increase in
lipid bodies of the macrophages, more so in nonsur-
vivors, could be associated with an increase in oxida-
tion of LDL and alternate activation of macrophages
(increase in lipid-uptake receptors CD36 and SRB1).

In order to document the association between lipid
droplet accumulation and liver injury, liver biopsy
specimens from 5 patients with SAH were com-
pared to 5 patients with AC for expression of CD68
(macrophage marker),*? TNF-a (marker for inflam-
ma’cion),(41 and NOD1 (marker for metabolic inflam-
mation).“? Results of our study showed a significant
increase in inflammation around macrophages, as doc-
umented by hematoxylin and eosin staining (Fig. 3F).
The size (vacuolated architecture, which is an indi-
cator of lipid accumulation)® and the number of
CD68-positive macrophages were significantly higher
in the liver biopsy of patients with SAH compared
to patients with AC (P < 0.05; Fig. 3F). Further, the
level of TNF-a and NOD1 was significantly higher
in the liver biopsy of patients with SAH compared to
patients with AC (P < 0.05; Fig. 3F). Together, these
results suggest that lipid accumulation in SAH mac-
rophages also contribute to metabolic inflammation
and liver injury.

RESUBSTITUTION OF PON1
RECALIBRATES MACROPHAGE
LIPID HOMEOSTASIS AND
PREVENTS ACCUMULATION OF
LIPID BODIES IN PATIENTS WITH
SAH

To further assess the role of PON1 in the reca-
libration of macrophage lipid homeostasis, THP1-
derived macrophages were treated with the study group
plasma in the presence or absence of recombinant
PON1 (rePON1) (Fig. 4A). SAH plasma treatment
on THP1-derived macrophages significantly increased
the frequency of CD11b+CD163+ subtype and its
lipid body content, which was significantly reduced
with rePON1 treatment (P < 0.01; Fig. 4B). The fre-
quency of the CD11b+HLA-DR+ macrophage subset
was unchanged, but the level of intracellular lipid bod-
ies was significantly reduced with rePON1 treatment
(P < 0.01; Fig. 4C). Treatment with rePON1 signifi-
cantly reduced the intracellular lipid body, oxidative
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FIG. 3. Decreased PON1 levels associated with an increase in lipid oxidation and accumulation in macrophages in SAH. (A) Plasma
oxidized LDL levels in SAH (median, 227; range, 150-430) compared to AC (median, 175; range, 200-100) and HC (median, 172;
range, 185-96), and nonsurvivors of SAH (median, 256; range, 183-430) compared to survivors (median, 198; range, 155-310); P < 0.05 is
significant. (B) Accumulation of lipid bodies in CD11b+CD163+ macrophages in SAH (median, 4.6%; range, 1.01%-22.7%) compared to
AC (median, 3.07%, range, 1.02%-4.51%) and HC (median, 1.85%; range, 1.01%-2.22%), and accumulation of lipid bodies in nonsurvivors
of SAH (median, 10.93%; range, 2.44%-22.70%) compared to survivors (median, 2.24%; range, 0.85%-7.62%); P < 0.05 is significant.
(C) Accumulation of lipid bodies in CD11b+HLA-DR+ macrophages in SAH (median, 24.55%; range, 4.65%-68.60%) compared to AC
(median, 6.38%; range, 3.79%-8.41%) and HC (median, 0.87%; range, 0.10%-2.22%), and accumulation of lipid bodies in nonsurvivors
of SAH (median, 45.95%; range, 16.60%-68.60%) compared to survivors (median, 18.70%; range, 4.65%-39.00%); P < 0.05 is significant.
(D) Relative expression of linked genes to lipid uptake, transport, metabolism, biosynthesis, macrophage activation, and inflammation in
PBMC:s of nonsurvivors versus survivors. (E) Immunofluorescent analysis of Nile red staining of healthy MDMs treated with plasma
samples of nonsurvivors and survivors of SAH. Mean florescent intensity of Nile red staining represents the amount of lipid bodies stored.
(F) IHC showing expression of CD68, TNF-a, and NOD1 in SAH (n = 5) and AC (n = 5). For all IHC analyses, relative quantization
of positively stained cells are expressed as mean number of positive cells/10 high-power field (40x); *P < 0.05. Abbreviations: EPO,
erythropoietin; FITC, fluorescein isothiocyanate; H&E, hematoxylin and eosin; LB, lipid body.

burst, and expression of genes linked to oxidative stress
and inflammation (P < 0.01; Fig. 4D; Supporting
Fig. S1). SAH plasma treatment on THP1 mac-
rophages significantly induced the expression of
CD36, SRBI (lipid uptake), and FAS (lipid biosyn-
thesis), whereas expression of ABCAI, ABCGI1 (lipid
export), and sterol regulatory element binding protein
(SREBP1) were reduced (P < 0.01; Fig. 4E). Treatment
with rePONI1 solo or in combination with APOA1
or HDL (Supporting Fig. S2) significantly reduced
the gene expression of lipid-uptake receptors (CD36,
SRBI), lipid biosynthesis (FAS, SREBP1, PPARGI,
PPAR-§, liver X receptor [LXR]-a, LXR-f}, and lipo-
protein lipase [LPL]), and inflammation (IL-6 and
TNF-a; P < 0.01) (Fig. 4E; Supporting Fig. S2). Protein
levels of SRB1 and CD36 (lipid-uptake receptor) were
also reduced and ABCA1 was increased with rePON1
treatment (P < 0.05; Fig. 4F). Together, these results
suggest that PON1 treatment alone or in combination
with HDL and APOA1 reduces lipid body accumula-
tion through inhibition of CD36 and SRB1 and induc-
tion of ABCA1 in macrophages.

EFFECT OF PON1 TREATMENT ON
THP1-DERIVED MACROPHAGES
UNDER SAH-LIKE CONDITION:
MACROPHAGE PROTEOMIC
ANALYSIS

To understand the effect of rePON1 treatment on
THP1-derived macrophages under an SAH-like con-
dition, an eight-plex quantitative proteomic analysis was
undertaken. A total of 1,817 proteins were identified,
of which 406 were differentially regulated (FC >1.5;
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P < 0.01; Supporting Table S4) when THP1-derived
macrophages were exposed to study group plasma, with
or without rePON1. Treatment with rePON1 sig-
nificantly induced 64 proteins in HC plasma-treated
macrophages, 82 in AC plasma-treated macrophages,
and 29 in SAH plasma-treated macrophages (Fig. 5A).
Treatment with rePON1 significantly inhibited 126
proteins in HC plasma-treated macrophages, 78 pro-
teins in AC plasma-treated macrophages, and 128 pro-
teins in SAH plasma-treated macrophages (Fig. 5A).
Proteins induced by rePON1 treatment were linked
to antigen processing, response to metal, transporter
activity, and arginine/nitrogen metabolism (P < 0.01)
(Fig. 5B; Supporting Table S5). Proteins suppressed
by rePONT1 treatment were linked to RAS signaling,
insulin receptor signaling, and catalytic/hydrolase/
acyl transferase activity (Fig. 5C; Supporting Table S5).
Treatment of rePONT1 significantly reduced the expres-
sion of proteins linked to lipid transport, lipoprotein
metabolism, and inflammatory signaling pathways
(IL-1, interferon-gamma [IFN-y], and TNF signal-
ing) in SAH plasma-treated macrophages (P < 0.01)
(Fig. 5D; Supporting Table S6). rePON1 was also
able to significantly reduce cell death by reducing
FAS (CD95), activation of BAD, telomere extension,
Rac family small guanosine triphosphase 1 (RAC1),
TNF-related apoptosis-inducing ligand (TRAIL),
Nef signaling, and alternate energy metabolism (glu-
tamine degradation, glycerol-3-phosphate shuttle,
glucokinase regulation) in SAH plasma-treated mac-
rophages (P < 0.01) (Fig. 5E; Supporting Table S6).
These results were cross-validated by quantifying the
messenger RNA expression of the identified proteins,
which showed similar expression trends (Supporting
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FIG. 4. PON1 substitution modulates macrophage lipid homeostasis and prevents accumulation of lipid bodies in patients with SAH.
(A) Workflow to estimate the effect of PON1 substitution in THP1 macrophages treated with plasma samples of SAH, AC, and HC.
(B) Frequency of CD11b+CD163+ macrophages in SAH plasma (median, 17.41%; range, 14.30%-19.40%) compared to SAH+PON1
(median, 13.55%; range, 6.98%-14.70%), AC plasma (median, 13.55%; range, 8.39%-19.90%) compared to AC+PON1 (median, 13.70%;
range, 7.63%-19.00%), and HC plasma (median, 8.20%; range, 6.79%-8.82%) compared to HC+PON1 (median, 6.86%; range, 6.20%-
9.10%). Lipid body content:SAH plasma (median, 90%; range, 85.50%-92.90%) compared to SAH+PON1 (median, 83.90%; range,
72.80%-87.90%), AC plasma (median, 82.70%; range, 80.20%-85.20%) compared to AC+PON1 (median, 76.05%; range, 72.40%-78.60%),
and HC plasma (median, 86.80%; range, 83.90%-87.80%) compared to HC+PON1 (median, 77.65%; range, 73.30%-81.80%); P < 0.05 is
significant. (C) Frequency of CD11b+HLA-DR+ macrophages was not significant in SAH plasma compared to SAH+PON1 or in AC
plasma compared to AC+PON1 and HC plasma compared to HC+PONI1. The lipid body content was SAH plasma (median, 67.35%;
range, 63.6%-70.3%) compared to SAH+PON1 (median, 57.7%; range, 55.2%-63.4%), AC plasma (median, 65.55%; range, 63.1%-67.3%)
compared to AC+PON1 (median, 65.55%; range, 63.1%-67.3%), and HC plasma (median, 64.35%; range, 61.6%-68.8%) compared to
HC+PON1 (median, 61%; range, 59.7%-64.9%). (D) Validation of accumulation of lipid bodies by Nile red staining in macrophages
treated with SAH, AC, or HC plasma in the presence and absence of PON1 (P < 0.05 is significant. Scale 20x.), and percentage intensity
of oxidative burst calculated by DHR in THP1 macrophages treated with SAH and AC plasma in the presence and absence of PON1
(*P < 0.05). (E) Relative expression of linked genes to lipid uptake, transport, metabolism, biosynthesis, and inflammation in THP1
macrophages treated with SAH, AC, or HC plasma (upper panel). The effect of PON1 on the expression of these genes is shown in the
lower panel (bright red, green, and blue are the expressions on PON1 treatment). (F) Relative protein expression of CD36, SRA1, ABCA1,
and ABCG1 in THP1 macrophages treated with SAH, AC, or HC plasma in the presence or absence of PON1; *P < 0.05. Abbreviations:
DHR, dihydrorhodamine; EPO, erythropoietin; FACS, fluorescence-activated cell sorting; FITC, fluorescein isothiocyanate; FSC, forward
scatter; LXT, luxate-like; MFI, mean fluorescence intensity; NS, not significant; PMA, phorbol 12-myristate 13-acetate; SSC, side scatter.

Fig. S1; Supporting Table S7). Taken together, these
results validate the beneficial effects of rePON1 treat-

accumulation of lipids in the macrophages through
induction of lipid-uptake receptor (CD36, SRA1). This

ment on macrophages. Treatment of rePON1 reduces
lipid storage and biosynthesis, reduces inflammation,
reduces apoptosis, and alters energy metabolism in
macrophages.

Discussion

In the present study, we observed a significant
decrease in the circulating levels of lipid transporter
proteins in patients with severe alcoholic hepatitis that
correlated with disease severity and outcome. Low

plasma levels of PON1 promote oxidation of LDL and

results in an increase in oxidative stress and inflamma-
tion that correlates with the pathophysiology of SAH.
PONT1 resubstitution was able to reverse these phe-
nomena and was found to be beneficial for the mac-
rophages in an in vitro setting. The plasma proteome
of patients with SAH was distinct from that of AC
and healthy controls, allowing us to identify that lipid
transporters are decreased and lipid transport/metabo-
lism is deranged in patients with SAH.

Our results show that of the 305 differentially
expressed proteins in patients with SAH, 32 up-
regulated proteins are linked to nuclear factor (NF)-xB
signaling, toll-like receptor signaling pathway, toll/
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FIG. 4. Continued.

IL-1 receptor domain-containing adaptor-inducing
IFN- (TRIF)-mediated cell death, glycosaminoglycan
metabolism, and caspase activation. The 176 down-
regulated proteins are linked to lipoprotein metabo-
lism and HDL-mediated lipid transport, biosynthesis
of amino acids, glycolysis/gluconeogenesis, cell cycle,
and intrinsic pathway for apoptosis. Many previous

1614

studies support our proteomic findings with respect
to a significant increase in NF-«B signaling, toll-like
receptor signaling pathway, and inflammation.*>"% A
seminal feature of our study is reduction in levels of
plasma PON1 and other APO lipoproteins. This cor-
related with a reduction in tissue levels of PON1, LDL,
and ABCA1 and an increase in tissue levels of CD36,
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FIG. 4. Continued.

SRA1, and ABCG1 in patients with SAH. These
results potentiate that lipid metabolism and transport
are decreased in patients with SAH. Further increases
in the hepatocyte/macrophage expression of lipid-
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uptake receptors (CD36, SRA1) and decreases in the
lipid-export receptor (ABCA1) indicate accumulation
of lipid bodies in macrophages, as seen in severe alco-
holic hepatitis.
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To document an association of lipid transporter
proteins with severity and outcome in patients with
SAH, circulating levels of lipid transporter proteins
were compared between nonsurvivors and survi-
vors. Our data demonstrate that the level of PON1
and lipid transporter proteins (APOB, APOE,
APOA1, APOA2, APOC1, and APOCS3) and the
ratio of PONI to lipid transporter proteins were
significantly low and inversely correlated to sever-
ity indices (MELD, SOFA, and CTP) and directly
correlated to survival in patients with SAH. In
addition, we also show that plasma PONI lev-
els <18 pg/mL at baseline correlate with 28-day
mortality in patients with SAH. This observation
clearly suggests that PON1 levels could be used in
addition to the MELD score for an accurate diag-
nosis of patients who have less likeness for survival
in SAH.

PONT is secreted from the liver® and is known
to work in association with HDL.®® As an enzyme,
PON1 plays dual roles, one to protect the hepato-
cytes/macrophages from oxidative stress (antioxidant)

and the other to reduce the plasma lipids (LDL) and
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channel their transportation for cholesterol metabo-
lism.“¥ In our study, low PONT1 levels in nonsurvivors
was directly associated with the increase in plasma level
of oxidized LDL. The decrease in circulating PON1
levels could be due to severe hepatic injury, altered
HDL synthesis, or low lecithin to cholesterol acyl
transferase (LCAT) levels. 40 A significant decrease
in the plasma levels of LCAT was shown in our study
(Fig. 1A), which could be one of the reasons for low
PONT1 levels observed in patients with SAH.“#” An
increase in the oxidation of circulating lipids (LDL)
induces its uptake and processing by macrophages
through micropinocytosis, phagocytosis, and scav-
enger receptor-mediated pathways.*” Further, the
ingested lipids are converted into cholesterol fatty
acid esters and are stored in the cytosol as lipid drop-
lets.*® In our study, LDL oxidation and lipid body
accumulation was higher in CD11b+CD163+ and
CD11b+HLADR+ macrophages and was signifi-
cantly more so in nonsurvivors. This increase in lipid
body content of macrophages was validated by Nile
red staining®” and was in line with the increase in
expression of lipid-uptake receptors, lipid metabolism/
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FIG.5. Continued.

biosynthesis, macrophage alternate activation, and
inflammation genes.

We investigated the influence of PON1 resubsti-
tution in the modulation of lipid homeostasis and
lipid body accumulation. We subjected THP1-derived
macrophages to plasma taken from patients and HCs,
in the presence or absence of rePON1. PON1 replen-
ishment significantly reduced CD11b+CD163+ cell
number as well as the amount of lipid bodies stored
in them. We did not find any change in the number of
CD11b+HLA-DR+ macrophages, but the lipid bod-
ies stored in them were significantly reduced. This was
validated by Nile red staining. The addition of PON1

MARAS, DAS, ET AL.

< 5.00E-7

P value

also reduced the level of oxidative burst and genes
linked to oxidative stress in SAH plasma-treated mac-
rophages compared to AC-treated macrophages.(so)
PONT1 is known to inhibit monocyte to macro-
phage differentiation and CD36 expression in mac-
rophages.(SD In our study, THP1 macrophages treated
with SAH plasma showed a significant induction of
genes linked to lipid-uptake receptors (CD36, SRB1)
and lipid biosynthesis (FAS), which were reduced
with PON1 treatment alone or in combination with
APOA1 and HDL, respectively. PON1 treatment also
reduced protein levels of lipid-uptake receptors (SRB1,
CD36) and increased expression of lipid exporter
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(ABCA1) in SAH plasma-treated macrophages.
This suggests that PON1 with or without HDL and
APOA1 modulates macrophage oxidative stress and
inflammation inherent in patients with SAH.

To investigate the beneficial effects of PON1, global
proteomic analysis was performed; this showed that
PONI1 resubstitution in SAH or AC plasma-treated
macrophages significantly induced antigen processing,
posttranslational regulation, response to metal, protein
transporter activity, and arginine/nitrogen compound
metabolism. Further, PON1 treatment significantly
decreased lipid metabolism (chylomicron-mediated

1620

lipid transport, fatty acid, triacylglycerol metabolism,
free fatty acid biosynthesis, sphingosine 1-phosphate,
and ceramide signaling pathway), inflammation and
immune regulation (IL-1 signaling, IFN-y pathway,
TNF receptor signaling, inflammasome), apoptosis and
cell death (RAC1, TRAIL, and Nef-signaling path-
way; activation of BAD, translocation to mitochondria,
telomere extension), and pathways linked to alternate
energy metabolism (glutamine degradation, glycerol-3-
phosphate shuttle, regulation of glucokinase) (Fig. 6).
The added value of this study is that by using

advance mass spectrometry we were able to identify
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FIG. 6. Causality for PON1-mediated decrease in accumulation of lipid bodies, oxidative stress, and inflammation. Paradigm for the role
of PON1 treatment in SAH plasma-treated macrophages. In patients with SAH under low PON1, lipid transport and metabolism is
perturbed. This is followed by an increase in plasma LDL oxidation, which significantly induces circulating macrophages for lipid uptake
by increasing expression of CD36 and SRB1. Lipid bodies accumulate in the macrophages due to a decrease in lipid metabolism and lipid
export receptor ABCA1. Increase in the content of lipid bodies increases inflammation and oxidative stress and cellular apoptosis (TRAIL,
BAD-mediated apoptosis) and shifts macrophages to alternate energy metabolism. Resubstitution of PONT1 recalibrates the macrophage—
lipid homeostasis by mediating a decrease in lipid uptake receptor and an increase in lipid export receptor, thereby neutralizing macrophage
inflammation and oxidative stress, apoptosis, and a shift in energy metabolism. Abbreviation: ACAT, acyl-coenzyme A:cholesterol
acyltransferase.

and validate circulating lipid transporter levels as subtle change in the circulating levels of lipid trans-
a surrogate for prediction of short-term mortality porters correlates to disease severity indicators, such as
in severe alcoholic hepatitis. We also showed that a MELD, and also results in recalibration of macrophage
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lipid homeostasis, thereby decreasing its functionality.
Thus, routine assessment of PON1 in clinics could
aid traditionally used severity scores for the prediction
of likelihood of mortality, and replenishing key lipid
transporters (PON1) could also improve macrophage
functionality, severity, and outcome in severe alcoholic
hepatitis.

In summary, PON1 reduces lipid storage (through
inhibiting CD36, SRB1) and biosynthesis, reduces
hepatic inflammation and cellular apoptosis, and alters
energy metabolism in SAH macrophages. These novel
observations underline the potential therapeutic role
of PON1 in the treatment of severe alcoholic hepatitis.
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