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The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular
identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of
these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific
channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their
function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mito-
chondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-
dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium
uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the diffi-
culties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well
as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners.
Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators
will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmaco-
logically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer.
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chloride channel; CPP, cell penetrating peptide; CSA, cyclosporin A; DPC, diphenyl carbonate; EMRE, essential MCU
regulator; GSK-3, glycogen synthase kinase 3; G3139, phosphorothioate oligodeoxyribonucleotide; Hsp, heat shock pro-
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Introduction
A relatively recent and certainly noteworthy development in
the health sciences is the emergence of ‘mitochondrial medi-
cine’, based on the recognition of the key role mitochondria
play in many physiological processes whose alteration con-
tributes to disease, such as metabolism, Ca2+ handling, redox
signalling and cell death (see recent, excellent reviews on this
topic, e.g. Heller et al., 2012; Smith et al., 2012; Edeas and
Weissig, 2013; Szeto et al., 2014; Milane et al., 2015;
Guzman-Villanueva and Weissig, 2017; Masgras et al., 2017).

An important opportunity for intervention to modulate
these processes is offered by mitochondrial ion channels
(reviews on mitochondrial channels; Brini et al., 2017; Citi
et al., 2017; Krabbendam et al., 2018; Mammucari et al.,
2018; O’Rourke, 2007; Ponnalagu and Singh, 2017; Szabo
and Zoratti, 2014; Szewczyk et al., 2009). These channels are
especially important, at least in the contexts of cancer
(Figure 1) (for reviews, see Leanza et al., 2013a, 2014b;
Madamba et al., 2015; Peruzzo et al., 2016; Mazure, 2017;
Szabo and Leanza, 2017; Shoshan-Barmatz et al., 2017b), neu-
rodegeneration (Rodriguez et al., 2013; Rao et al., 2014; Kalani
et al., 2018) and ischaemia (Balderas et al., 2015; Testai et al.,
2015b; Smith et al., 2017). In the present review, we discuss
the recent developments in the field of mitochondrial ion
channels, especially from the point of view of their pharma-
cological targeting. Specifically modulating members of this
varied population may well be a rewarding approach, in par-
ticular in the case of cancer due to the major roles mitochon-
dria play in cancer cell metabolism and in cell death.
Pharmacological manipulation of mitochondrial channels
may lead to cell death independently of upstream elements
of the apoptotic cascade, such as Bax/Bak/Bcl-2 expres-
sion or p53 status, and alterations in signalling pathways
(Fulda et al., 2010; Leanza et al., 2013a, 2014a,b, 2017).
Expression levels of ion channels in general and ofmitochon-
drial channels in particular may vary from one cell type to an-
other, and between healthy and diseased or activated cells.
Examples of drastic variations of this type are provided by

the two-pore acid-sensitive potassium channel,
K2P9.1 (TASK-3) (Mu et al., 2003) and intracellular anion-
selective CIC channels, which also change localization
and function in malignant cells (e.g. Peretti et al., 2015;
Tasiopoulou et al., 2015). Silencing K2P9.1 channels affects
mitochondrial parameters and induces apoptosis in
melanoma cells (Nagy et al., 2014). In the case of the
potassium-selective Kv1.3 channel, a higher expression
correlated with greater sensitivity to chemotherapeutic treat-
ment (Leanza et al., 2014b).

Multiple localizations of some of the ion
channels found in mitochondria
When taking into account the possible pharmacological
modulation of mitochondrial ion channels, one important
distinction must be immediately made between
mitochondria-specific and multiple-location channels. In
fact, a few channels, such as the mitochondrial calcium
uniporter (MCU), the inner membrane anion channel
(IMAC), the magnesium-transporting Mrs2 and the
uncoupling protein (UCP), are specific to mitochondria.
However, most of the other known ones reside in the plasma
membrane as well, and possibly also elsewhere, as detailed in
Table 1. These channels include the voltage-dependent anion
channel (VDAC), the big-, intermediate- and small-
conductance calcium-dependent potassium channels
(KCa1.1 (BKCa), KCa3.1(IKCa) and KCa2.1 (SKCa)] as well
as the voltage-dependent K+ channels Kv1.3, Kv1.5 and
Kv7.4, the two-pore channel K2P9.1, the ATP-dependent K+

channel (KATP; Kir3.4) and the intracellular chloride chan-
nels CIC-4 and CIC-5 (for summarizing review, e.g. Szabo
and Zoratti, 2014). The mechanisms underlying multiple
targeting are being investigated (Singh et al., 2013; Kilisch
et al., 2015; von Charpuis et al., 2015; Sole et al., 2016) but
are still unclear in most cases. The mechanisms accounting
for different localizations of proteins in general vary and
may include differences among isoforms (e.g. due to

Figure 1
A cartoon illustrating the main mitochondrial ion channels discussed in this review and their impact on cancer.
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Table 1
Mitochondrial channels in non-mitochondrial locations

Channel Locationa Proposed functionsb Referencesb

VDAC Plasma membrane Cell volume regulation
Apoptosis
ATP release

Thinnes (1992, 2014, 2015)
Jakob et al. (1995)
Bathori et al. (1999, 2000)

VDAC Endosomes – Reymann et al. (1998)

VDAC Endo/sarcoplasmic reticulum ATP transport
SR/ER-Mito Ca2+ transport/signalling

Jurgens et al. (1995)
Shoshan-Barmatz et al. (1996);
Shoshan-Barmatz and Israelson
(2005)

BKCa
(SLO1, KCa1.1)

Plasma membrane Integration of cell signalling Singh et al. (2012); Yu et al. (2016);
Latorre et al. (2017)

BKCa
(SLO1, KCa1.1)

ER membrane – Ma et al. (2007); Cox et al. (2014)

BKCa
(SLO1, KCa1.1)

Nuclear envelope Control of nuclear Ca2+ signalling Singh et al. (2012); Li et al. (2014)

BKCa
(SLO1, KCa1.1)

Lysosomal membrane Control of lysosomal Ca2+ Wang et al. (2017a,b); Sterea et al.
(2018)

IKCa
(KCa3.1,
KCNN4)

Plasma membrane Cell proliferation, differentiation,
migration
Control of NO synthesis (in vascular
epithelia)

Sforna et al. (2018); Zhan et al.
(2018)
Grgic et al. (2005); Sheng and
Braun (2007); Ruggieri et al.
(2012); Ohya and Kito (2018)

SKCa
(KCa2.x)

Plasma membrane Control of electrical excitability Yang et al. (2015); Kshatri et al.
(2018)

SKCa
(KCa2.x)

ER membrane Control of ER Ca2+ homeostasis Kuum et al. (2012, 2015); Richter
et al. (2016); Honrath et al. (2017a)

Kv7.4 Plasma membrane Control of electrical excitability
Smooth muscle function
Regulation of vascular tone

Chang et al. (2018)
Miceli et al. (2008)
Martelli et al. (2013)

SLO2.1
(KNa1.2)

Plasma membrane Control of electrical excitability and of
synaptic transmission
Anaesthetic preconditioning

Kameyama et al. (1984)
Wojtovich et al. (2016)

Kv1.3 Plasma membrane Control of voltage and Ca2+ fluxes Cahalan and Chandy (2009); Zhao
et al. (2015); Perez-Verdaguer et al.
(2016); Chandy and Norton
(2017); Serrano-Albarras et al.
(2018)

Kv1.3 ER and Golgi – Sole et al. (2009); Zhu et al. (2014)

Kv1.3 Nuclear envelope Regulation of nuclear transmembrane
potential

Jang et al. (2015)

Kv1.5 Plasma membrane O2 sensing Comes et al. (2013)

TASK-3
(K2P9.1)

Plasma membrane Cell excitability
(background current)

Zuzarte et al. (2007); Kilisch et al.
(2015)

ROMK2
(Kir1.1b)

Plasma membrane (renal
epithelia)

Ion homeostasis Zhou et al. (1994); Yoo et al.
(2005); Angsanakul and Sitprija
(2013); Frindt et al. (2013); Welling
(2016)

KATPc Plasma membrane Control of transmembrane potential Noma (1983)

KATPc Nuclear envelope Control of nuclear Ca2+ ‘waves’ Quesada et al. (2002)

KATPc ER Control of Ca2+ load and dynamics Ashrafpour et al. (2008); Salari et al.
(2015)

TRPC3 Plasma membrane Mechanosensitive Ca2+ signalling
Cellular Ca2+ homeostasis

Mizoguchi and Monji (2017);
Yamaguchi et al. (2017); Tiapko
and Groschner (2018)

continues
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alternative splicing), ‘piggybacking’ other proteins, the for-
mation of different heteromers [e.g. in the case of KCa1.1
(BKCa ) channels; Chen et al., 2009], post-translational modi-
fications such as, for example, phosphorylation or
myristoylation, interactions with structures such as, for
example, ‘scaffolds’, the cytoskeleton or, in membranes,
‘lipid rafts’.

The channel populations residing in different compart-
ments in general have different tasks, roles and/or
substrates, and it may therefore be useful to pharmacologi-
cally target them specifically in mitochondria or elsewhere.
Unfortunately, the art of subcellular targeting is still in its
infancy – mitochondrial targeting is by far the most devel-
oped – so that little information is available comparing
the effects of inhibiting a given channel in one subcellular
compartment or another. A partial exception is provided
by the plasma membrane, since some of the ion channels
in it are inhibited by membrane-impermeant toxins. The
clearest example may be that of potassium-selective chan-
nel Kv1.3: selective block of the plasma membrane popula-
tion by peptide toxins impairs cell proliferation and
migration (e.g. Chhabra et al., 2014; Aissaoui et al., 2018),
while selective inhibition of the mitochondrial population
by permeant, mitochondriotropic psoralenic compounds
precipitates cell death (Leanza et al., 2017). It ought also

to be mentioned that mitochondria themselves may differ
in structure, properties, functions and proteic composition
depending on their location within the cell (e.g. see Diaz
et al., 1999, 2000; Riva et al., 2005; Boengler et al., 2009;
Baseler et al., 2011; Asemu et al., 2013; Kasumov et al.,
2013; Hollander et al., 2014; Fedorovich et al., 2017), not
to mention cell type and age. It is also important to men-
tion that not all mitochondrial ion channels have been
described/found in all tissues, but they are certainly
observable in healthy tissues, not only in pathological cells
(cell lines). In the present review, we illustrate our current
knowledge on the drugs identified so far that act on
mitochondrial ion channels and comment on some of the
strategies that can be useful to target specifically the
mitochondria-located channels.

Mitochondrial outer membrane (OMM)
channels

VDAC
The VDAC, or ‘mitochondrial porin’, is the most extensively
studied mitochondrial channel (rev.s: Szabo and Zoratti,
2014; Magri et al., 2018; Shoshan-Barmatz et al., 2018). The

Table 1
(Continued)

Channel Locationa Proposed functionsb Referencesb

RyR Sarcoplasmic reticulum Ca2+ dynamics
Excitation/contraction coupling

Allard (2018)
Treves et al. (2017)

RyR Nuclear envelope – Gerasimenko and Gerasimenko
(2004); Marius et al. (2006); Zheng
et al. (2012)

IP3R Endoplasmic reticulum Ca2+ signalling
Signal integration
ER-mitochondria communication

Foskett et al. (2007); Bustos et al.
(2017); Kania et al. (2017)

IP3R Nuclear envelope Ca2+ signalling Mak and Foskett (1994); Stehno-
Bittel et al. (1995); Gerasimenko
and Gerasimenko (2004); Mak et al.
(2013)

IP3R Plasma membrane
(low levels)

Ca2+ entry Mayrleitner et al. (1995); Dellis et al.
(2006)

CIC-4 Plasma membrane – Peretti et al. (2015)

CIC-4 Nuclear envelope – Domingo-Fernandez et al. (2017)

CIC-1 Plasma membrane Volume regulation
Cell migration
Metastasis

Valenzuela et al. (2000)
Novarino et al. (2004)
Wang et al. (2012); Setti et al.
(2013); Peretti et al. (2015)

CIC-1 Nuclear envelope – Valenzuela et al. (1997)
aRefers to subcellular compartments. Organ-, tissue- or cell type-specific or signalling-dependent expression is not addressed. Due to cellular membrane
traffic and protein flux, integral PM proteins are expected to be found also in the ER, Golgi (anterograde transport) and endosomes, lysosomes (deg-
radative retrograde transport). Thus, for example, IKCa, which has a rapid turnover, is abundant in lysosomes (Balut et al., 2010). The presence in these
compartments is therefore not highlighted here, except if evidence exists of a functional presence in the organellar membrane and in the case of VDAC,
a largely mitochondrial channel for which it constitutes confirmation of its presence also in the PM.
bExamples are given.
cKir/SUR assemblies.
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most abundant and most investigated of the three mamma-
lian isoforms (VDAC1, VDAC2 and VDAC3) (for recent
review, see, e.g. Messina et al., 2012) is VDAC1, which is pres-
ent both in the OMM and in the PM (Bathori et al., 2000; De
Pinto et al., 2010), in endosomes (Reymann et al., 1998) and
in the sarco/endoplasmic reticulum (Jurgens et al., 1995;
Shoshan-Barmatz et al., 1996) (Table 1). The effects of the
variousmodulators have nearly always been automatically at-
tributed to their action on mitochondrial porin(s). The possi-
bility of a contribution by populations located elsewhere has
rarely been adequately explored.

VDAC1 is a β-barrel composed of 19 β-strands and of an
N-terminal mobile α-helical segment (for recent review, see,
e.g. Zeth and Zachariae, 2018). The latter contains the major
binding sites for ions and other proteins (Caterino et al.,
2017; Magri and Messina, 2017). As the functions of the
N-terminal peptide and the network of interactions were pro-
gressively characterized, VDAC1 has progressed from a more
or less inert ‘molecular sieve’ in the OMM to a dynamic par-
ticipant in a host of cellular processes. One is that of allowing
and regulating the passage of Ca2+ ions through the OMM
(Gincel et al., 2001; Bathori et al., 2006) and at
ER/mitochondria contact sites (Hajnoczky et al., 2002;
Rapizzi et al., 2002). The binding of Bcl-xL to the N-terminal
segment may modulate this flux. Mitochondrial Ca2+ over-
load may induce cell death, in which VDAC1 is implicated
in various other ways as well. In particular, VDAC can

oligomerize in a Ca2+-driven process, with the involvement
of the N-terminus, and oligomers are proposed to be
implicated in the release of pro-apoptotic factors such as
cytochrome c and apoptosis-inducing factor (AIF) (for recent
review, see Shoshan-Barmatz et al., 2017a). Furthermore,
VDAC1 regulates cell death due to its interactions with anti-
apoptotic members of the Bcl-2 family (i.e. Bcl2 and Bcl-xL)
and with hexokinase (HK) (Shimizu et al., 2000; Arbel and
Shoshan-Barmatz, 2010).

Various chemical compounds interact with and alter the
activity of VDAC1 and may eventually be exploited for ther-
apy in the context of VDAC-related diseases (Figure 2). The
first VDAC blocker to be identified was Konig’s polyanion, a
1:2:3 copolymer of methacrylate, maleate and styrene that
acts at rather low concentrations (27 μg·mL�1 polyanion)
(Colombini et al., 1987). The general anion channel inhibi-
tors DIDS, SITS, H(2) DIDS, 4,40-dinitrostilbene-2,20-
disulfonic acid (DNDS) and diphenyl carbonate (DPC) were
also shown to interact with VDAC1 and to decrease its con-
ductance in electrophysiological experiments with bilayer-
reconstituted VDAC1 (Thinnes et al., 1994; Ben-Hail and
Shoshan-Barmatz, 2016). Furthermore, ubiquinone specifi-
cally binds to VDAC1 through its quinone-head ring (Murai
et al., 2017).

The phosphorothioate oligodeoxyribonucleotide G3139
(oblimersen) was shown to induce rapid flickering of the
VDAC1 channel activity and even its closure at 1 μM

Figure 2
Chemical structure of some VDAC modulators. For further information, see text.
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concentration without affecting the respiration complexes,
the adenine nucleotide translocator or the ATP synthase
(Tan et al., 2007; Stein and Colombini, 2008). G3139 inter-
feres with metabolite flow through VDAC1 (for review, see,
e.g. Klasa et al., 2002). G3139 targets the first six codons of
Bcl-2 mRNA and is successfully used in anticancer treatments
in combination with other therapeutic agents (including
chemotherapy and radiotherapy), in tumour types ranging
from chronic lymphocytic leukaemia beta cell lymphoma to
breast cancer and many solid tumours (Kamal et al., 2014).
The relevance of the block of VDAC1 activity for the antican-
cer effect of G3139 is not clear. In general, closure of VDAC
would lead to an overall lowering of the cell energy metabo-
lism, subsequently triggering apoptosis.

Other compounds that decrease the conductance of
VDAC are avicins, a class of plant stress-induced metabolites
of triterpenoids displaying selective pro-apoptotic and
cytotoxic activity in cancer cells, as well as antioxidant and
anti-inflammatory properties (see, e.g. Haridas et al., 2007).
Avicins however stimulate tumour cell death via multiple
mechanisms, as they target various cellular components in
addition to VDAC, such as tubulin and topoisomerase. They
increase the OMM permeability to cytochrome c by
inhibiting respiration and by reducing the efficiency of anti-
oxidant systems, leading to a hypersensitivity of mitochon-
dria to oxidative stress. In particular, mitochondria are the
main targets of avicin D and avicin G, which can induce
apoptotic cell death via intrinsic and extrinsic pathways but
also autophagic programmed cell death due to depletion of
cell energy. Avicins could thus be of value as chemical agents
for the treatment and/or prevention of malignancy (Wang
et al., 2010).

The activity of VDAC can also be manipulated by other
plant-derived molecules. Cannabidiol, from the Cannabis
species, has strong in vitro anti-tumour effects in numerous
cancer cells types (Massi et al., 2013), and was shown to
act on VDAC (Rimmerman et al., 2013). Curcumin, a com-
ponent of Curcuma longa with anti-inflammatory and
anti-tumour activity, has also been shown to affect VDAC
function by interacting with its N-terminal domain, at least
in vitro (Tewari et al., 2015). Chrysophanol, emodin, rhein,
aloe-emodin and catechin, identified as the bioactive com-
ponents of the herb Rheum officinale Baill and able to induce
apoptosis in many human cancer cell lines, were shown to
target VDAC-1 through Thr207 and the N-terminal region
of the protein (Li et al., 2017). However, a direct effect on
channel conductance and behaviour has still not been
proven.

The list of chemicals that directly modify VDAC1 activity
by decreasing channel conductance also includes fluoxetine
(Prozac) (Nahon et al., 2005; Thinnes, 2005), a clinically used
antidepressant drug, that also inhibits the opening of the
mitochondrial permeability transition pore, the release of
cytochrome c, and protects against staurosporine-in-
duced apoptotic cell death. Lastly, cyathin-R, a cyathane
diterpenoid, was shown to decrease both channel conduc-
tance and cancer growth, by promoting apoptosis even in
Bax/Bak-deficient cells (Huang et al., 2015). Cyathin-R also
induced VDAC1 oligomerization, and apoptosis was found
to be inhibited by VDAC1-interacting molecules, such as
DIDS and DIDS analogues (H2DIDS, SITS and DPC). These

drugs decrease the channel conductance (Thinnes et al.,
1994) and counteract apoptosis at the early stage, puta-
tively by diminishing VDAC1 oligomerization and thus
preventing cytochrome c release to the cytosol (Keinan
et al., 2010).

The above examples point to an important role for VDAC
in the regulation of apoptosis; however in some cases,
inhibition/decrease of its activity by pharmacological means
leads to apoptosis (e.g. G3139), while in other cases,
the same modulation of VDAC activity results in
protection against cell death (e.g. Prozac). In fact, the role
of VDAC activity/oligomerization in OMM permeabilization
(MOMP)-induced apoptosis seems to be rather complex. Bax
and t-Bid have been proposed to take part in the formation of
OMM pores in apoptotic cells by assembling heteromeric
complexes with VDAC (Tajeddine et al., 2008). Other studies
however indicate a cooperative role of Bak and Bax and
VDAC2, rather than of VDAC1, in MOMP (see, e.g. Cheng
et al., 2003 and for review, Lauterwasser et al., 2016), and also
the involvement of other outer membrane ‘receptors’ for
pro-apoptotic proteins, including cardiolipin (for recent
review, see, e.g. Veresov and Davidovskii, 2014). This may
explain why cells lacking all VDAC isoforms were found to
be still capable of undergoing apoptosis (Baines et al.,
2007). In addition, the interaction of VDAC with other part-
ners such as with the glycolytic enzyme hexokinase is also
important, as it gives a proliferative advantage to cancer cells
(see below).

Unfortunately, one drawback in this field is the absence of
VDAC isoform-specific pharmacological agents. VDAC2
(Gattin et al., 2015) and VDAC3 (Checchetto et al., 2014) also
form ion channels, although the latter one with small con-
ductance. It is worthwhile to mention that a recent work re-
ported the synthesis of an arsenate-based fluorescent probe,
which can preferentially target the mitochondrial VDAC2,
this channel being amember of the membrane-bound vicinal
dithiol protein class (Yang et al., 2018). Even if isoform-
specific small molecule inhibitors are not available, as an
alternative strategy for specific targeting of VDAC isoforms,
peptides copying specific VDAC sequences that canmodulate
the interaction with various pro- and anti-apoptotic proteins
(see below) can be designed and can be therefore useful to
modulate a specific VDAC-related function. Of course this
approach would require an extension of our knowledge on
the isoform-specific interaction partners (if there are specific
ones) for all three isoforms.

Other mitochondrial outer membrane channels
Beside VDAC isoforms, the OMM also harbours a few other
channels such as an unidentified inward rectifying potassium
channel (Kir) (Fieni et al., 2010) and CIC-4, a member of the
intracellular chloride channel family (Ponnalagu et al.,
2016a; Ponnalagu and Singh, 2017). CICs are inda-
nyloxyacetic acid-94 (IAA-94)-sensitive, but several
mitochondrial CIC family members are present also in the
endoplasmic reticulum (Ponnalagu et al., 2016b) making it
difficult to delineate the function of mitochondrial CICs
by pharmacological means. The existence of CICs and Kir

channels, both small-conductance channels, in the OMM
challenges the traditional view that the outer membrane
forms an unspecific size-exclusion filter for the flux of small
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hydrophilic molecules (Becker and Wagner, 2018). In yeast
mitochondria, the recent identification of three novel ion
channels in the OMM with unknown substrate specificity
(Kruger et al., 2017) points to the same conclusion
(Checchetto and Szabo, 2018). Whether homologues of the
yeast OMM channels also operate inmammalian OMM is still
an open question as is the pharmacology of these channels.

Inner membrane ion channels

The permeability transition pore
The permeability transition is a well-known process that oc-
curs in mitochondria: an increased permeability to solutes
of the inner mitochondrial membrane (IMM) caused by the
opening of the permeability transition pore (PTP) (Zoratti
and Szabo, 1995; Bernardi et al., 2015). PTP is a 1.3 nS conduc-
tance unspecific channel located in the IMM whose opening
induces depolarization, loss of ionic homeostasis and block of
respiratory chain activity and ATP synthesis. The expression
‘permeability transition’ to describe these phenomena (con-
sidered as an aspecific, lipid-perturbation effect) was used
for the first time in the late seventies by Haworth and Hunter
(1979). The discovery of the ability of cyclosporin A (CsA)
to inhibit PTP in classical bioenergetics experiments
(Crompton et al., 1988) and the observation of a CsA-
sensitive 1.3 nS ion channel in patch clamp experiments on
mitoplasts, that is, mitochondria devoid of OMM (Szabo
and Zoratti, 1991), completely changed the perspectives
concerning the permeability transition (PT). The observed
channel, the so-called mitochondrial mega-channel (MMC),
reproduced all known pharmacological features of the PTP:
inhibition by CsA, adenine nucleotides, Mg2+, acidic pH
and reducing agents, induction by Ca2+ (Szabo and Zoratti,
2014). PT, that thanks to these studies could be ascribed to a
pore (PTP), changed its ‘status’ from being a supposed
in vitro artefact or lipid perturbation to an important physio-
pathological process involved in cell death, apoptosis resis-
tance in cancer cells, oxidative stress, anoxia and ischaemia
followed by reperfusion, just to name a few (for reviews, see,
e.g. Di Lisa and Bernardi, 2006; Brenner and Moulin, 2012;
Rasola and Bernardi, 2014; Leanza et al., 2014b).

Despite the fact that the role of PTP in mitochondrial
physiology was intensively studied in the last decades in dif-
ferent pathophysiological contexts, the structure and molec-
ular identity of PTP is still highly debated (Biasutto et al.,
2016; Giorgio et al., 2018), making difficult the ‘smart design’
of a structure-based specific channel modulator. As to date,
the scientific community is converging towards the idea that
PTP is formed by dimers of the FOF1 ATP synthase (Alavian
et al., 2014; Beutner et al., 2017; Bonora et al., 2013; Carraro
et al., 2014; Giorgio et al., 2013; He et al., 2017), even though
the exact mechanism and the site and mode of the actual
pore formation is still unclear. In this respect, as well as
regarding the possibility of designing specific drugs, the
strategies undertaken, involving site-directed mutagenesis
combined with functional assays (Giorgio et al., 2017;
Antoniel et al., 2018), might turn out to be extremely useful.
Indeed, strong support in favour of the identification of the
ATP synthase with PTP/MMC is the finding that modulation

of MMC activity directly recorded by patch clamp in the
native mitochondrial inner membrane by protons was
altered in a single point mutant of the oligomycin sensitivity
conferral protein (OSCP) subunit of the ATP synthase com-
plex (Antoniel et al., 2018). In addition, subunits e, g and
the first transmembrane segment of subunit b have recently
been shown to contribute to channel formation in yeast, by
combining multiple gene deletion with electrophysiology
(Carraro et al., 2018).

Given the central role of the PTP in pathophysiological
contexts, considerable effort was made in the field to discover
new, direct modulators to treat disorders, even in the absence
of a clear molecular identity. Pharmacological targeting of
PTP is not straightforward, since no bona fide pore blockers
are available. In fact, even the action of the relatively specific
CsA, which is effective at sub-μM concentrations, is indirect,
as it is mediated by cyclophilin D, whose expression level
varies among different cells. Furthermore, not only is
cyclophilin D expression important but also its ratio with F-
ATPase OSCP subunits: considering that normally there are
more F-ATP synthase complexes than cyclophylin D mole-
cules in the cells, most of the PTP complexes present are ex-
pected to be insensitive to CsA treatment (Bernardi et al.,
2015). CsA inhibits calcineurin and thus acts as an immuno-
suppressant (Griffiths and Halestrap, 1995). Therefore,
several new, calcineurin-indifferent cyclophilin D inhibitors
have been developed over the past 20 years. The most prom-
ising are sanglifehrin A (Clarke et al., 2002), 9-(N-methyl-L-
isoleucine)-cyclosporin A (Zulian et al., 2014) and MeAla(3)
EtVal(4)-cyclosporin (Tiepolo et al., 2009). Recently,
other factors have also been shown to modulate PTP by
targeting cyclophilin D, such as oestrogen receptor β
(Burstein et al., 2018), isoxazoles (Roy et al., 2015) and
n-phenylbenzamides (Roy et al., 2016). A virtual chemical
screening identified several compounds that were able to
bind to cyclophilin D with a KD of <100 nM (Park et al.,
2017). Synthetic compounds from the diarylquinoline and
organotin families instead target the c-ring of the F-ATPase
and strongly inhibit the enzyme (Pagliarani et al., 2016). A
member of these families, tributyltin, induces mitochondrial
swelling, which has long been associated with the PT, but is
CsA-insensitive, at least according to some authors (see, e.g.
Gogvadze et al., 2002).

Several different classes of compounds acting at sites that
do not involve the PTP pore itself have been characterized for
their ability to antagonize the mitochondrial permeability
transition in an indirect way (Figure 3). Among these sub-
stances are gasotransmitters (NO-donors, H2S-donors and
Co-donors) (for review, see Andreadou et al., 2015) and anti-
oxidants (Javadov and Karmazyn, 2007), just to name a few
classes. Altogether, all the above-mentioned inhibitors, even
though by an indirect effect, were proven to affect PTP activ-
ity in various systems. Some of them might represent good
starting points for the design of more specific pharmacologi-
cal agents able to counteract those degenerative diseases
where PTP opening plays a crucial role.

Conversely, several PTP inducers with different chemical
structures and displaying distinct mechanisms of PTP
activation are promising agents for the treatment of cancer.
Indeed, some of these compounds are already in clinical
trials; others have been tested in vitro in tumour cell lines or
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in vivo in preclinical models for different neoplasms.
Some of these molecules are mastoparan-like peptides (Jones
et al., 2008), 4-(N-(Sglutathionylacetyl)amino)phenylarso-
nous acid (Elliott et al., 2012), ursolic acid (Lu et al., 2014),
betulinic acid (Fulda et al., 1999; Potze et al., 2015), B4G2
(an hydroxybetulinic acid derivative) (Yao et al., 2015),
triterpenoid derivatives (Laszczyk, 2009; Serafim et al.,
2014), curcumin (Qiu et al., 2014), lonidamine (Lena et al.,
2009), ABT-737 (a BH3 mimetic) (Yu et al., 2015), the K+/H+

antiporter salinomycin (Manago et al., 2015; Qin et al.,
2015), berberine (Shen et al., 2014), ebselen (Pavon et al.,
2015), the gold complex AUL-12 (Chiara et al., 2012), icaritin
(Zhou et al., 2015), EM20-25 (Milanesi et al., 2006) and
ferutinin (Ilyich et al., 2018). It has to be stressed that in most

cases, possible side effects can be envisioned as opening of the
PTP might lead to loss of mitochondrial function in healthy
cells as well. Specific targeting of these molecules exclusively
to tumour tissues employing various strategies (for a recent
review, see Ruoslahti, 2017) is a challenge but might be a
worthwhile goal to pursue.

As in the case of VDAC, one might envision not only the
direct modulation of channel activity by small molecules
but also the possibility to fine-tune the activity of the PTP
(proposed to correspond to the ATP synthase) or of its
partners/modulators (for review, see Miura and Tanno,
2012), by post-translational modifications by kinases, such
as hexokinase II (HK II) (Rasola et al., 2010a) or themitochon-
drial glycogen synthase kinase 3 (mGSK-3) (Rasola et al.,

Figure 3
Chemical structure of some modulators of the permeability transition pore. For further information, see text.
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2010a). PTP can be indirectly and negatively modulated in
cancer cells by mGSK-3 phosphorylation of cyclophilin D,
and mGSK-3 can in turn be inhibited by a mitochondria-
located ERK fraction, which is normally under the control
of the often dysregulated oncogene RAS. An active ERK in
mitochondria of cancer cells was shown to lead to mGSK-3
phosphorylation, thus preventing cyclophilin D phosphory-
lation and in turn ‘desensitizing’ PTP (Rasola et al., 2010a).
Similarly, the PTP is inhibited when cyclophilin D is
nitrosylated on specific cysteine residues (Nguyen et al.,
2011) or interacts with the transcription factor STAT-3
(Boengler et al., 2010). Furthermore, chaperones such as heat
shock protein (Hsp) 60, Hsp90 and tumour necrosis factor
receptor-associated protein-1 have been demonstrated to
modulate PTP activity, and these chaperones themselves can
be regulated by post-translational modification (Masgras
et al., 2017; Rasola, 2017). Opening of the PTP can be induced
also by HK II detachment from the OMM: this event can be
controlled by signalling pathways that involve either the
Ser/Thr kinase Akt or GSK-3, even if the mechanism account-
ing for this regulation is still debated (Miyamoto et al., 2008;
Rasola et al., 2010b). Finally, some direct sites of post-
translational modifications, for example, phosphorylation,
acetylation and S-nitrosylation, have also been identified in
the F-ATPase subunits (Bernardi et al., 2015), although they
may hardly offer a more specific way of intervention.

Mitochondrial calcium uniporter and other
calcium channels
Mitochondria play a crucial role in intracellular Ca2+ regula-
tion by shaping, remodelling, relaying and decoding Ca2+ sig-
nals, due to their ability to rapidly and transiently
accumulate Ca2+ (Drago et al., 2011). Ca2+ uptake into mam-
malian mitochondria is efficiently blocked by low concentra-
tions of ruthenium red (RR) and Ru360, thanks to the fact
that they lead to a direct inhibition of the uniporter (Moore,
1971; Vasington et al., 1972; Reed and Bygrave, 1974). The
molecular identity of the protein(s) giving rise to uniporter
activity was not known until the last decade. The finding that
a highly Ca2+ selective ion channel replicated all key charac-
teristics of the mammalian mitochondrial uniporter repre-
sented a milestone towards its molecular identification
(Kirichok et al., 2004). Another important step was the publi-
cation of the MitoCarta database (Pagliarini et al., 2008),
which then provided the basis for the identification of several
mitochondrial calcium uniporter complex (MCUC) compo-
nents in mammals, including the central pore forming pro-
tein MCU (mitochondrial calcium uniporter) (Baughman,
2011; De Stefani et al., 2011). At the current stage, in mam-
mals, the MCUC appears to include at least the pore-forming
proteinMCU, anMCU paralogue (MCUb), the essential MCU
regulator (EMRE), the regulatory MICU proteins and, possi-
bly, the mitochondrial calcium uniport regulator 1 (MCUR1).
In other systems, such as plants, MCUC seems simpler and
consists primarily of MCU and MICU (Wagner et al., 2016).
Mammalian MCU activity can be regulated through its
paralogue MCUb (Raffaello et al., 2013), through interaction
with MICU1, the first uniporter component identified
(Perocchi et al., 2010), by two other MICU1 isoforms, namely,
MICU2 and MICU3 (Plovanich et al., 2013) and by post-

translational modifications (Jhun et al., 2016). MICU2 forms
a heterodimer with MICU1 through an intermolecular
disulphide bond and closes the channel at low
extramitochondrial Ca2+ concentrations (Patron et al., 2014;
Petrungaro et al., 2015). Currently, two models coexist that
find MICU1 to act exclusively as a uniporter activator at high
cytosolic Ca2+ concentrations (Patron et al., 2014) or to
gradually disinhibit the uniporter with increasing Ca2+

concentrations in the cytosol (Csordas et al., 2013). Studies
resolving for the first time the 3D structure of proposed
pentameric MCU by a combination of NMR and electron
microscopy allowed the proposal of the hypothesis to
explain the requirement of the presence of EMRE in the
native membrane to observe MCU activity: the outer and in-
ner juxtamembrane helices as well as a loop region in MCU
seem to be unstable regions, which may undergo conforma-
tional changes upon activation by EMRE in order to create
the lateral exit path for Ca2+ in the MCU channel (Oxenoid
et al., 2016). Recently, a more in-depth insight into the struc-
ture of the tetrameric MCU has been obtained, thanks to the
resolution of the structure of MCU by X-ray and cryo-EM
simultaneously by different groups and from different organ-
isms (Baradaran et al., 2018; Fan et al., 2018; Nguyen et al.,
2018; Yoo et al., 2018). EMRE is a metazoan-specific protein
able to mediate MCU-MICU1/MICU2 dimer interaction
and, as shown recently, able to regulateMCU channel activity
depending on the matrix Ca2+ concentration (Sancak et al.,
2013; Vais et al., 2016). Furthermore, the activity of MCU
can be also indirectly regulated, for example, by the
uncoupling protein UCP2, as mitochondria isolated from
UCP2�/�mice showed decreased RR-sensitive calcium uptake
(Motloch et al., 2016).

The importance of the correct regulation of MCU activity
is underlined by the finding that patients carrying a loss-of-
function mutation of MICU1 are characterized by myopathy,
cognitive impairment and an extrapyramidal movement
disorder (Logan et al., 2014). MICU1 has recently been shown
to play a role in Ca2+ overload-induced mitochondrial PTP
opening and also to be a decisive factor for adaptation to
postnatal life and for tissue repair after injury of liver (Antony
et al., 2016). Other studies underline the importance of MCU
expression/activity in the context of the regulation of metab-
olism in various organisms ranging from Trypanosoma to
zebrafish and mice (e.g. Duchen, 2000; Huang et al., 2013;
Prudent et al., 2013; Gorlach et al., 2015; Mammucari et al.,
2018). Themanipulation of MCU expression changedmuscle
function, through a novel Ca2+-dependent mitochondria-to-
nucleus signalling pathway (Mammucari et al., 2015). MCU
function was also shown to affect oxidative phosphorylation
and to ensure correct pacemaker cell function (Wu et al.,
2015). MCU is overexpressed in several type of cancer cells
(e.g. Davis et al., 2013; Peruzzo et al., 2016; Bustos et al.,
2017) and has been implicated in cancer-related processes,
in particular in the control of migration and metastasis (Hall
et al., 2014; Tang et al., 2015; Tosatto et al., 2016; Szabo and
Leanza, 2017).

Given the vast literature demonstrating the fundamen-
tal impact of calcium uptake into mitochondria for many
physiological and pathological processes, it became clear
that either activation (to induce calcium overload and PTP
opening) or inhibition (to decrease ATP production and/or
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to prevent calcium overload) of MCU might be useful in
pathological settings. However, regarding pharmacological
modulation of MCU, the direct inhibitors identified to date
are only RR and Ru-360 (Kirichok et al., 2004; De Stefani
et al., 2011; Wu et al., 2018), which also affect other
cationic channels. No specific activators are known to our
knowledge. It has been proposed that a small heterocyclic
molecule, 5-[(4-methylphenyl)thio]-9H-pyrimido[4,5-b]in-
dole-2,4-diamine (AG311), retards tumour growth by
activating MCU, but a direct proof is still missing (Bastian
et al., 2015). Likewise, the protective effect of Necrox-5
([5-(1,1-dioxo-thiomorpholin-4-ylmethyl)-2-phenyl-1H-indol-
7-yl]-(tetrahydro-pyran-4-ylmethyl)-amine) on myocardial
damage in ischaemic heart disease has been ascribed to its
ability to inhibit MCU (Thu et al., 2012) but also in this case,
a direct electrophysiological proof is missing. A recent work
identified mitoxantrone as an MCU modulator by system-
atic chemical screening (Arduino et al., 2017). Likewise, a
high-throughput screening of 120 000 small-molecule com-
pounds identified the membrane-permeant drug DS1657, an
indolebutyric acid derivative (Sawada et al., 2001), that
dose-dependently inhibited serum-induced mitochondrial
Ca2+ influx in HEK293A cells with an IC50 of 7 μM (Kon et al.,
2017). Formal proof and information about the mechanism
of inhibition is lacking in the latter case. In this respect, elec-
trophysiological lipid bilayer experiments using recombinant
proteins might be useful. MCU produced in a cell-free system
as well as that purified from Escherichia coli using His-tag,
either added to the recording chamber as the purified protein
or following purification and incorporation into liposomes,
showed channel activity in a reproducible manner in more
than 200 experiments performed in different settings (De
Stefani et al., 2011; Raffaello et al., 2013; Patron et al., 2014;
Teardo et al., 2017). However, a recent work using human
MCU expressed in mammalian cells with FLAG-tag
concluded, on the basis of only three experiments, that this
protein does not form channels by itself (Wu et al., 2018).
Further work will be required to clarify the reasons for this
discrepancy. It may be due to different conditions used for
protein solubilization and purification and/or the presence
of cholesterol in the latter system that is known to affect
the activity of several channels (but is largely absent from
the IMM) (Brini et al., 2017).

Other mitochondrial Ca2+ channels might contribute to
the mediation of Ca2+ fluxes into/out of this organelle,
particularly in specialized tissues where the MCU may play
a secondary role. Potential candidates mediating calcium
flux include the transient receptor potential cation TRPC3
channel (Feng et al., 2013; Wang et al., 2015, 2017a,b) and
the mitochondrial ryanodine receptor (mRyR1). A low
level of RyR1 is detectable in heart mitochondria and
provides rapid transport of Ca2+ that is insensitive to
ruthenium red (Beutner et al., 2001, 2005). The TRPC3
channel, whose structure has been recently resolved (Tang
et al., 2018), is specifically inhibited by ethyl-1-(4-(2,3,3-
trichloroacrylamide)phenyl)-5-(trifluoromethyl)-1H-pyrazole-
4-carboxylate (Pyr3) that was shown to alter mitochondrial
membrane potential and ROS production when applied to-
gether with dexamethasone (Abdoul-Azize et al., 2016). How-
ever, TRPC3 and RyR1 show multiple localizations within the
cell, making it difficult to ascribe the observed physiological

effects to the regulation of these channels only in
mitochondria.

Mitochondrial inner membrane potassium
channels
IMM K+ channels studied by electrophysiology are the
calcium-dependent channels – big-conductance potassium
channel (mtBKCa) (Singh et al., 2012), intermediate-
conductance K+ channel (mtIKCa) (De Marchi et al., 2009)
and small-conductance K+ channel (mtSKCa) (Dolga et al.,
2013), voltage-gated shaker type K+ channel Kv1.3 (Szabo
et al., 2005) and the ATP-dependent potassium channel
(mtKATP) (Inoue et al., 1991). An interesting new develop-
ment in the field is the discovery that mtBKCa behaves as a
mechanosensitive channel in electrophysiological experi-
ments (Walewska et al., 2018). Biochemical/genetic evidence
indicates the presence of the pH-sensitive two-pore potas-
sium channel K2P9.1 (TASK-3) (Pocsai et al., 2006;
Toczylowska-Maminska et al., 2014), of Kv1.5 (Leanza et al.,
2012b), of Kir1.1 (ROMK2) (Foster et al., 2012), of the so-
dium-activated K+ channel KNa1.1 (SLO2) (Wojtovich
et al., 2011; Smith et al., 2018) and of Kv7.4 (Testai et al.,
2015a,b) and another pH sensitive K+ channel (Kajma and
Szewczyk, 2012) (for recent reviews, see, e.g. Szabo and
Zoratti, 2014; Laskowski et al., 2016; Augustynek et al.,
2017). Almost all of the above-mentioned IMM K+ channels
identified thus far are considered to be the mitochondrial
counterparts of well-known plasma membrane (PM) chan-
nels and many of them even display multiple subcellular lo-
calizations in the ER, nucleus, Golgi and PM membranes in
addition to mitochondria (Table 1) (for review, see, e.g.
Laskowski et al., 2016; Brini et al., 2017). Nevertheless,
mtKATP seems to have a different composition from its PM
counterpart: a splicing variant of the renal outer medullary
potassium channel (ROMK) has been proposed to form the
ion-conducting subunit (Foster et al., 2012) and indeed, the
ROMK protein is present in the IMM (Bednarczyk et al.,
2018). Since ROMK apparently does not have a wide tissue-
expression while mtKATP activity has been observed in vari-
ous tissues, a contribution of other pore-forming proteins to
mtKATP channel activity cannot, as yet, be fully excluded.

IMMK+ channels have been proposed to contribute to the
regulation of matrix volume, in addition to influencing the
mitochondrial transmembrane potential (ΔΨm) and ΔpH,
calcium transport, production of ROS and mitochondrial dy-
namics. Activation of a mitochondrial calcium-dependent K+

channel modulates K+ uptake and matrix volume and has
been proposed to increase bioenergetic efficiency (Aon et al.,
2010). Alternatively, a protective mechanism involves activa-
tion of different IMM K+ channels that induces a slight
uncoupling effect that would in turn decrease energetic
efficiency (Cardoso et al., 2010). Activity of the evolutionarily
conserved ATP-dependent K+ channel mitoKATP (Garlid
et al., 2009; Lefer et al., 2009), of BKCa (Frankenreiter et al.,
2017), of the voltage-gated channel Kv7.4 (Testai et al.,
2015a,b) as well as of the SK channels (Dolga et al., 2013)
has been linked to ischaemic preconditioning, ischaemic
postconditioning and cytoprotection in general. For this lat-
ter channel, a recent work reveals that a neuroprotective
mechanism involves attenuation of [Ca2+]m uptake upon SK
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channel activation and that respiration and complex I activ-
ity upon pharmacological activation or overexpression of mi-
tochondrial KCa2.2 (SK2) channels resulted in reduced
mitochondrial ROS formation (Honrath et al., 2017a,b). How-
ever, in general, the exact basis of K+ channel openers’
cytoprotective effects still remains to be elucidated (for recent
reviews, see, e.g. Honrath et al., 2017a; Krabbendam et al.,
2018). Importantly, in the case of mtBKCa, a cGMP-
dependent protective effect in the cases of acute cardiac dam-
age and adverse long-term events that occur after myocardial
infarction has been demonstrated also in vivo, thanks to
tissue-dependent knockout of BKCa in the cardiac tissue in
mice (Frankenreiter et al., 2017).

Interestingly, many of the K+ channels found in the IMM
(in addition to the PM and other membranes) are highly
overexpressed in cancer cells/tissues. For example, the two-
pore leak channel K2P9.1(TASK-3) is overexpressed five- to
100-fold in 44% of breast tumours and is also highly
expressed in lung, colon and ovarian cancers (Peruzzo et al.,
2016). Its overexpression promotes tumour formation and
confers resistance to hypoxia in vitro, suggesting that its up-
regulation plays a pathologically important role in human
breast cancer (Mu et al., 2003). IKCa (also called KCa3.1) is
expressed in almost all migrating cells and various studies
point to its important role in the control of proliferation in
human breast cancer, in hepatocellular carcinoma, in chronic
lymphocytic leukaemia (B-CLL) and in lung cancer (for re-
view, see Schwab et al., 2012). mtIKCa is functional in
HCT116 colon carcinoma and HeLa cells (Sassi et al., 2010),
is inhibited by TRAM-34 and clotrimazole (De Marchi
et al., 2009) and regulates oxidative phosphorylation in pan-
creatic ductal adenocarcinoma cells (Kovalenko et al., 2016).
In vitro data suggest that inhibition of IKCa and likely of
mtIKCa by membrane-permeant inhibitors sensitizes mela-
noma cells to B-Raf inhibitors, such as vemurafenib, and
induces release of mitochondrial ROS (Bauer et al., 2017).

More information is available about mtKv1.3: it has been
demonstrated to have a crucial role in apoptosis in various
cancer cells (Leanza et al., 2012b; Szabo et al., 2008). The
Kv1.3 channel is overexpressed in various cancer
tissues/cells (Pardo and Stuhmer, 2014) and is important for
anti-tumour immunity (Eil et al., 2016). Membrane-permeant
inhibitors of the Kv1.3 channel such as clofazimine and
psoralen derivatives act by inducing intrinsic apoptosis via
the following chain of events: stopping the depolarizing K+

influx causes IMM hyperpolarization, with ensuing increased
ROS level, PTP activation, swelling, loss of Δψm, loss of cyto-
chrome c and further ROS release (Leanza et al., 2015;
Checchetto et al., 2018). These drugs also killed pathological
cells in the absence of Bax and Bak, independently of p53 sta-
tus and of Bcl-2 overexpression thanks to the direct targeting
of mt function and permeability at the level of the inner
membrane. In vivo experiments in melanoma and pancreatic
ductal adenocarcinoma orthotopic models corroborated the
effectiveness of Kv1.3 inhibitors and showed their selective
action only on pathological cells. Specificity depends on the
synergy between different factors such as high Kv1.3 expres-
sion and altered basal redox state in cancer cells (Leanza
et al., 2017).

Most of the evidence supporting the involvement of the
above K+ channels in protection against ischaemic/

reperfusion damage (Szewczyk et al., 2010; Laskowski et al.,
2016) or induction of apoptosis (Szabo et al., 2012) is pharma-
cological (for a review summarizing the pharmacology of
these channels, see, e.g. Szabo and Zoratti, 2014) (Figure 4).
Unfortunately, other cellular targets possibly accounting for
the observed effects have been identified (Augustynek et al.,
2017). Activators of BKCa, such as Ca2+, diCl-DHAA (12,14-
dichlorodehydroabietic acid), NS1619, 17-oestradiol and
hypoxia, or inhibitors of this channel like charybdotoxin,
iberiotoxin and paxillin do not only seem to act on the
mitochondrial mtBKCa channel (Szewczyk et al., 2009).
CGS7184 (ethyl1-[[(4-chlorophenyl)amino]oxo]-2-hydroxy-
6-trifluoromethyl-1H-indole-3-carboxy-late), a synthetic
BKCa channel opener, directly activates the ryanodine recep-
tor calcium release (RyR2) channel in the sarcoplasmic retic-
ulum (Wrzosek et al., 2012). CGS7184 and CGS7181, in
contrast to NS1619 and NS004, were also able to induce cell
death in neurons (Augustynek et al., 2018). Furthermore,
SERCA, complex I of the respiratory chain and ATP-synthase
inhibition are involved in pleiotropic effects of the BKCa
channel activator NS1619 on endothelial cells (Lukasiak
et al., 2016). One of the most specific BKCa activators
identified so far is NS11021 (N0-[3,5-bis(trifluoromethyl)phe-
nyl]-N-[4-bromo-2-(2H-tetrazol-5-yl-phenyl]thiourea; how-
ever, possible intracellular off-target effects of this drug have
not been studied in detail to our knowledge. KATP channel
activators instead might act as uncouplers (Szewczyk
et al., 2010) and KCa3.1 (IKCa) as well as KCa2.1 (SKCa)
modulators may well have off-target effects, similarly to those
affecting BKCa channels. In the case of mtK2P9.1 (TASK-3)
channels, no highly specific modulators are available but
dihydropyrrolo[2,1-α]isoquinolines compounds that are able
to inhibit these K2P (TASK) channels could become possible
candidates for developing new, selective inhibitors (Noriega-
Navarro et al., 2014).

One possible solution to the issue of pleotropic effects of
the drugs due to multiple localization of the channels within
the cells is chemical targeting of the most specific modulators
of these channels to mitochondria by virtue of addition of a
functional lipophilic cation (e.g. triphenylphosphonium
group) that drives the accumulation of a certain drug into
mitochondria (Murphy and Smith, 2007). This strategy has
been successfully applied also in vivo in the case of mtKv1.3
(see below). In summary, the relationship betweenmitochon-
drial potassium transport and diseases linked to altered mito-
chondrial function is still only partially explored, but the data
available so far point to IMM K+ channels as possible targets
for therapeutic applications against various pathologies,
including ischaemia and cancer, and possibly neurodegenerative
diseases (see, e.g. Matschke et al., 2018).

Inner mitochondrial membrane chloride
channels
In addition to CIC-4 in the OMM, CIC-1 (Yang et al., 2009)
and CIC-5 (Ponnalagu et al., 2016a,b) have been located to
the IMM where the latter plays a role in regulating the
release of mitochondrial ROS from respiratory chain
complexes. Indeed, the emerging view is that mitochondrial
chloride channels also have a role in cardiac function and
cardioprotection from ischaemia–reperfusion (IR) injury.
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Chloride intracellular channels (CIC) are non-classical ion
channels lacking a signal sequence for membrane targeting.
Interestingly, CIC-like proteins exist even in bacteria
(Gururaja Rao et al., 2017; Ponnalagu and Singh, 2017).
Among CICs in mammals, CIC-1, CIC-4 and CIC-5 are
abundant in the heart. In contrast to CIC-1 and CIC-4
(found in the OMM, see above), CIC-5 does not show co-
localization to the endoplasmic reticulum (Ponnalagu et al.,
2016b). Again, as yet, no isoform-specific modulators
of CICs are available (for recent review, see Ponnalagu
and Singh, 2017). As to the long-studied IMAC, due to the
uncertainties regarding its molecular identity, only general

modulators have been identified (for review, see Ponnalagu
and Singh, 2017).

Successfully applied strategies for in vivo
subcellular targeting of small molecule
modulators of mitochondrial ion
channels

Thanks to the highly negative matrix side membrane
potential across the IMM, mitochondria can be massively

Figure 4
Chemical structure of some modulators of other mitochondrial ion channels: (A) MCU; (B) Kv1.3; (C) KCa1.1 (BKCa); (D) KCa3.1(IKCa); (E) K2P9.1
(TASK-3). For further information see text and, for example, Augustynek et al. (2017).
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‘loaded’ with positively charged, membrane-permeant
compounds, achieving concentration gradients of up to
1000-fold. This concept has been used in many studies since
its inception 60 years ago (Liberman et al., 1969) (for reviews,
see, e.g. Ross et al., 2005; Horobin et al., 2007; Hoye et al.,
2008; Murphy, 2008; Smith et al., 2008, 2011; Zielonka
et al., 2017). Molecules directed to mitochondria must
obviously be capable of entering the cell and be at least
moderately lipophilic. If mitochondrial targeting is
associated with the presence of a positive charge, as is
generally the case, the charge is therefore distributed by
resonance over a lipophilic structure. Since the seminal study
of Liberman, Skulachev and colleagues (1969), this has most
often been the triphenylphosphonium group, connected to
the rest of the molecule by a linker, commonly an alkyl
chain. Other moderately lipophilic positively charged
groups that have been used for this purpose have been
mainly heteroaromatic systems, including rhodamines (e.g.
Chernyak et al., 2013), berberine and palmatine (Chernyak
et al., 2013), pyridinium (Beckham et al., 2013; Hou et al.,
2014), indolium (Huang et al., 2017) and cyanines.
Constructs comprising a number of positively charged
guanidinium groups have also been found to be effective
mitochondria-targeting devices (Fernandez-Carneado et al.,
2005; Maiti et al., 2007). These constructs may be
considered as non-peptidic penetrating agents.

The dication dequalinium – more generally a family
of compounds comprising two quinolinium moieties
linked by an aliphatic chain spacer –was used early on to
obtain mitochondria-targeted nanocarriers (DQAsomes),
intended principally as a tool for mitochondrial transfection
(e.g. Weissig, 2015). Interaction with the mitochondria was
proposed to be mediated by cardiolipin (Weissig and
Torchilin, 2000; Weissig et al., 2001). Dequaliniums are
known inhibitors of K+ channels (Castle et al., 1993;
Galanakis et al., 1996; Malik-Hall et al., 2000), and – unsur-
prisingly at this point – they are toxic for leukaemia cells
(Galeano et al., 2005; Sancho et al., 2007; Garcia-Perez et al.,
2011). Toxicity has been linked to redox unbalance (Sancho
et al., 2007; Garcia-Perez et al., 2011). DQAsomes are at any
rate only one example of the several nanostructured devices
that have been devised to selectively transport cargo to mito-
chondria (reviewed by: Marrache et al., 2015; Ma et al., 2016;
Paleos et al., 2016; Sato et al., 2016). The underlying principle
generally is the use of positive charges to promote delivery to
mitochondria.

To minimize the possibility of interference with the
pharmacological activity, one may resort to prodrugs in
which the mitochondria-targeting portion is shed, hopefully
after performing its task. In some such studies, the strategy
has relied on the incorporation, into the linker portion of
the molecule, of a hydrolyzable bond system such as a carba-
mate group ( Leanza et al., 2017; Peruzzo et al., 2017; Teixeira
et al., 2017; Venturini et al., 2017; Mattarei et al., 2018). Insur-
ance that the regeneration of the active principle takes place
only, or mostly, at mitochondria may be a desirable feature.
This may be achieved by exploiting a mitochondrial enzyme,
such as nitroreductase (Chevalier et al., 2016) or aldehyde
dehydrogenase ALDH-2 (Ripcke et al., 2009), or a reactive
compound plentiful in mitochondria, such as H2O2

(McQuaker et al., 2013).

The lipophilic or amphipathic character of mitochondria-
targeted constructs, necessary to allow permeation of cell
membranes, also confers affinity for the membranes
themselves, leading to extensive binding, in particular of tri-
phenylphosphonium (TPP)-comprising compounds (James
et al., 2007; Ross et al., 2008). Association with membranes
may pose difficulties but also be a bonus if the targeted pro-
teins, like ion channels, reside in mitochondrial membranes.
This strategy has been successfully applied recently in the
case of the mitochondrial potassium channel Kv1.3. MtKv1.3
mediates an inward potassium flux to the mitochondrial ma-
trix and likely modulates coupling between ATP synthesis
and mitochondrial respiration. In vivo evidence has been ob-
tained suggesting that inhibition of mtKv1.3 by pharmaco-
logical means represents an unconventional but promising
strategy to selectively eliminate cancer cells. The Kv1.3 (and
mtKv.3) channel is overexpressed in various cancer
tissues/cells, and mtKv1.3 was identified as a novel target of
Bax (Szabo et al., 2008, 2011). Psora-4, PAP-1 (5-(4-
phenoxybutoxy)psoralen) and clofazimine, three distinct
membrane-permeant inhibitors of Kv1.3 channels (Cahalan
and Chandy, 2009), induced death in multiple human and
mouse cancer cell lines by triggering a series of events involv-
ing hyperpolarization, ROS release, activation of PTP and ap-
optosis (Szabo and Zoratti, 2014). In contrast, membrane-
impermeant, selective and high-affinity Kv1.3 inhibitors
ShK or margatoxin did not trigger cell death, suggesting a
crucial role for the mitochondrial Kv1.3 versus PM Kv1.3
channel. In preclinical mouse models for melanoma (Leanza
et al., 2012a) and for pancreatic ductal adenocarcinoma
(PDAC) (Zaccagnino et al., 2016), an i.p. injection of
clofazimine significantly reduced tumour size while no ad-
verse effects were observed in several healthy tissues.
Clofazimine is a clinically used drug with anti-inflammatory
and immunosuppressive activities (Cholo et al., 2012). This
drug also inhibits the transporter ABCB1 (MDR1, P-
glycoprotein 1) (Van Rensburg et al., 1994) and may acti-
vate the tumour suppressor p53 (Casey et al., 2009; Patil,
2013). Therefore, a more specific drug, acting exclusively on
themitochondrial counterpart of Kv1.3, was required tomore
efficiently and specifically target this channel. Two
mitochondriotropic derivatives of PAP-1, the most specific
membrane-permeant inhibitor, were designed and synthe-
sized and shown to drastically reduce tumour growth at a
low concentration in animal models for melanoma and
PDAC, without causing in vivo side effects such as
cardiotoxicity and immune depletion (Leanza et al., 2017).
These mitochondria-targeted mtKv1.3 inhibitors, therefore,
can be considered especially promising molecules for the
treatment of several types of cancer, provided the tumour
cells express high levels of mtKv1.3. A recent study identified
some TPP-related compounds that might even eradicate
cancer stem cells (Ozsvari et al., 2018).

An alternative strategy to target mitochondria may still
exploit transmembrane potential differences but make use
of peptides rather than of lipophilic charged groups like TPP
(reviewed by: Yousif et al., 2009b; Frantz and Wipf, 2010;
Zielonka et al., 2017). This approach may be considered to
be related to the use of so-called ‘cell-penetrating peptides’
(CPPs) to overcome the barrier posed by the plasma mem-
brane (reviewed by: Borrelli et al., 2018; Guidotti et al.,
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2017; Kalafatovic and Giralt, 2017). CPPs are short sequences
of amino acids, typically comprising basic residues along
with hydrophobic ones, which are taken up by cells mostly
via endocytotic pathways (clathrin- or caveolin-mediated,
macropinocytosis) – entailing a subsequent escape from the
endosome – or via processes involving a degree of membrane
disorganization, for example, the formation of transient
pores, which can result in toxicity (reviewed by: Cleal et al.,
2013; LeCher et al., 2017; Walrant et al., 2017).

Reaching the cytosol in principle allows a second-stage
delivery to other subcellular compartments (Cerrato et al.,
2017; Ngwa et al., 2017). This has been achieved in a
mitochondria-specific manner with the so-called
Szeto–Schiller peptides, in particular SS-31 (e.g. Szeto, 2006,
2014) (for other examples, see Cerrato et al., 2017; Zielonka
et al., 2017). These devices, which interact with cardiolipin,
have antioxidant effects. Peptides can in principle serve to
transport small-molecule cargos linked via peptide bonds
(Yousif et al., 2009a; Jean et al., 2016). A variation on the
theme involves gramicidin S, a natural peptidic antibiotic
with a marked affinity for mitochondrial membranes (Kanai
et al., 2007; Frantz and Wipf, 2010).

Mitochondrial leader peptide sequences in principle
offer a specific approach, as they are recognized and ac-
cepted by the mitochondrial protein import system (MPTS),
which, incidentally, needs a transmembrane potential to
operate (Wiedemann and Pfanner, 2017). The attempts to
deliver cargo to mitochondria in this manner have been
few (Vestweber and Schatz, 1988, 1989; Flierl et al., 2003),
but the idea has been adapted to favour interactions of mul-
tifunctional nanocarriers with mitochondria (Kawamura
et al., 2013).

With regard to mitochondrial ion channels, peptides
have been used to functionally modulate VDAC. The most
relevant case may be that of its interaction with hexokinase,
which results in inhibition of apoptosis, promotion of
glycolysis and cancer cell survival (Nakashima, 1989; Zaid
et al., 2005; Galluzzi et al., 2008; Krasnov et al., 2013). The in-
teraction was mapped to the N-terminal portion of VDAC,
and detachment of hexokinase was accomplished by
methyljasmonate, a plant hormone (Goldin et al., 2008).
More efficient are specific peptides based on the relevant
sequences and made into membrane-penetrating peptide
that antagonized the interaction and had pro-apoptotic ef-
fects in vitro (Arzoine et al., 2009; Prezma et al., 2013). A recent
paper reports that two VDAC1 N-terminal sequences fused to
a cell-penetrating sequence from the Drosophila
antennapedia-homeodomain or to a human transferrin re-
ceptor (hTfR)-recognition sequence, respectively, were able
to attack glioblastoma, a notoriously elusive target, also in
an in vivo murine xenograft model. At least the transferrin-
based construct was able to cross the blood brain barrier and
was thus effective in an orthotopic model upon i.v. adminis-
tration as the free compound or as an inclusion in PLGA
nanoparticles (Shteinfer-Kuzmine et al., 2017). The same
group provided evidence that a cell-penetrating peptide de-
rived from VDAC1 is also highly effective against hepatocel-
lular carcinoma in a preclinical model (Pittala et al., 2018).

It should also be mentioned that the pH difference
between the mitochondrial matrix and cytoplasm (more
alkaline in the matrix) may be exploited to drive the

accumulation of permeant weak acids into mitochondria.
Normally, however, this difference is in the order of only 0.5
units, permitting a concentration difference of about three.
This approach therefore has not been much used, but it
should be kept in mind.

Conclusions
The field of mitochondrial ion channels can be likened to a
vast stretch of territory comprising some freshly ploughed,
fertile, already productive land and a dense thicket waiting
to be cleared to put the ground to further good use. To do so
will involve imaginative research to design specific drugs or
specifically targeted drugs and to reach amore detailed under-
standing of their distinct localization-dependent functions,
of the partnerships – with proteins and lipids – involved in
the execution of these functions, of the signalling pathways
affected, of the mechanisms regulating ion channel localiza-
tion and of their possible modulation, of possible species
and/or tissue specificities for each of these aspects. Subcellu-
lar targeting of drugs is clearly a new frontier of pharmacolog-
ical science and the practical exploitation of mitochondrial
channels for the improvement of public health is one of the
goals the metaphorical pioneers/researchers have set for
themselves. As in many other cases, the effectiveness and
specificity of drug delivery is a major hurdle.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Harding
et al., 2018), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2017/18 (Alexander et al.,
2017a,b,c,d,e,f).
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