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Central blood pressure (BP) does not correspond to bra-
chial BP due to pressure pulse amplification from the aorta 
to the periphery.1 Accumulating studies have suggested that 
central systolic BP (SBP) and pulse pressure (PP) are more 
closely related to subclinical organ damage2–4 and cardiovas-
cular diseases4–7 than brachial BP, indicating a better pre-
dictive ability of central BP.

Low-sodium and high-potassium diets have been well 
documented to lower brachial BP.8,9 Currently, several ran-
domized controlled trails have also examined the effects of 
dietary sodium or potassium intervention on central BP10–14;  
however, the effects of sodium or potassium on central BP 
independent of peripheral BP have not been evaluated. 
Besides, central augmentation index (AIx) response to diet-
ary sodium restriction and potassium supplementation 

remains controversial.11–18 Thus, clarifying the responses 
of central hemodynamics to dietary sodium and potassium 
interventions is needed.

BP responses to sodium intake vary among individuals, 
and this phenomenon was called “salt sensitivity”.19 Previous 
studies have uncovered that insulin resistance20 and meta-
bolic syndrome21 (MS) increase salt sensitivity of brachial 
BP. However, there is no study investigating how metabolic 
traits influence salt sensitivity of central BP up to present. 
Moreover, the relationship between metabolic traits and bra-
chial or central BP responses to potassium supplementation 
has not been evaluated.

Therefore, we conducted this dietary intervention study to 
investigate the responses of central hemodynamics to diet-
ary sodium and potassium interventions, and whether the 
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responses are associated with metabolic traits. The current 
study may be helpful to elucidate whether dietary sodium 
and potassium interventions are more effective among indi-
viduals with more metabolic traits.

METHODS

Study participants

The present study was conducted in rural areas of 
Shandong province in northern China from June to October 
2010. The study participants were a part of the Genetic 
Epidemiology Network of Salt Sensitivity (GenSalt) study. 
Details of the study population and methods for the GenSalt 
study have been published elsewhere.22 In brief, a commu-
nity-based BP screening was conducted among persons aged 
18–60 years to identify potential probands. Those with mean 
brachial SBP of 130–160 mm Hg and/or diastolic BP (DBP) 
of 85–100  mm Hg were recruited, along with their par-
ents, siblings, spouses, and offspring aged 16 years or older. 
Individuals with stage-2 hypertension, secondary hyperten-
sion, a history of clinical cardiovascular disease, diabetes, or 
chronic kidney disease, using antihypertensive medications, 
pregnant, heavy alcohol users, or currently on a low-sodium 
diet were excluded from the study. A  total of 108 partici-
pants were recruited at baseline, among whom 7 did not take 
central hemodynamic measurements during low-sodium 
intervention, 1 during high-sodium intervention, and an-
other one during high-sodium with potassium supplemen-
tation intervention. Thus, 99 participants were eligible and 
included in the current analysis. This study was approved by 
the institutional review board of Fuwai Hospital and partici-
pating institutions. Written informed consent was obtained 
from each participant before data collection.

Dietary intervention

After a 3-day baseline examination, study participants 
received a 7-day low-sodium diet (3  g salt or 51.3  mmol 
sodium per day), followed by a 7-day high-sodium diet 
(18 g salt or 307.8 mmol sodium per day). During these 2 
intervention periods, potassium intake remained consist-
ent. Although not recorded, the potassium intake was moni-
tored by the 24-hour urinary potassium excretion data. In 
the final week, participants maintained a high-sodium diet 
and took a 60 mmol potassium supplement daily. Although 
dietary sodium intake was the same for all study participants 
during each intervention, dietary total energy intake varied 
according to their baseline energy intake level. Participants 
were categorized into 5 energy intake levels (1,600; 2,100; 
2,600; 3,100; and 3,600 kcal/day) based on baseline 24-hour 
Dietary Recall data. All meals were prepared without salt 
by full-time chefs in onsite kitchens. Prepackaged salt was 
added to each participant’s meal by study staff when it was 
served. All participants were required to have their meals at 
the study kitchen under the supervision of the study staff 
during the entire study period, and were instructed to avoid 
consuming any foods that were not provided by the study. 
Besides, 3-timed urinary specimens (1 24-hour and 2 over-
night) were collected at baseline and in each intervention 

period to monitor participants’ compliance with dietary 
interventions. The overnight urinary excretions of sodium 
and potassium were converted to 24-hour values on the basis 
of formulas developed from data obtained in the GenSalt 
study. The results showed good compliance with the inter-
ventions. The mean (SD) 24-hour urinary excretions of 
sodium and potassium were 214.4 (52.0) and 42.0 (10.9) 
mmol at baseline, 55.3 (18.3) and 35.7 (9.1) mmol during 
low-sodium intervention, 234.4 (31.6) and 44.2 (9.3) mmol 
during high-sodium intervention, and 230.3 (24.5) and 77.5 
(10.8) mmol during high-sodium intervention with potas-
sium supplement, respectively.

Data collection

A standard questionnaire was administered by trained 
staff at the baseline examination to collect information on 
demographic characteristics, personal and family medical 
history, and lifestyle risk factors. We adapted the Paffenbarger 
Physical Activity Questionnaire to collect information on 
the physical activity.23 The physical activity information 
obtained from the questionnaire was converted to meta-
bolic equivalent hours per day. Body weight and height were 
measured twice in light indoor clothing without shoes. Body 
mass index was calculated as kilograms per square meter 
(kg/m2). Waist circumference was measured 1 cm above the 
participant’s navel during light breathing. Overnight (≥8 
hour) fasting blood specimens were obtained for measure-
ment of glucose and lipid concentrations. Plasma glucose 
concentration was measured with a modified hexokinase en-
zymatic method (Hitachi automatic clinical analyser, model 
7060, Tokyo, Japan). Concentrations of HDL cholesterol and 
triglycerides were assessed enzymatically with commercially 
available reagents.

Three brachial BP measurements were obtained in 
every morning of the 3-day baseline examination by certi-
fied technicians using a random-zero sphygmomanom-
eter according to a standard protocol. Pulse wave analysis 
was performed using the SphygmoCor CP system (AtCor 
Medical Ltd, Australia) in the morning of baseline exam-
ination and day 6 of each intervention. The radial pressure 
wave was obtained using applanation tonometry at the right 
radial artery, and then converted to central aortic pressure 
wave by a validated generalized transfer function.24 Central 
hemodynamics included central SBP, DBP, PP, forward wave 
amplitude (P1), and augmentation pressure normalized to a 
heart rate of 75 bpm (AP@75). Central AIx was calculated 
as AP/PP×100%, and then normalized to a heart rate of 75 
bpm25 (AIx@75) (Figure 1). Peripheral (that is, radial artery) 
SBP, DBP, PP, and heart rate were also obtained. All partici-
pants were measured in sitting position after 5-minute rest. 
Additionally, participants were advised to avoid smoking, 
consuming alcohol, coffee or tea, and physical activity for at 
least 30 minutes before measurement.

Statistical analysis

Five metabolic traits included abdominal obesity (waist 
circumference ≥90  cm in men and ≥80  cm in women), 
high triglycerides (serum concentration of triglycerides 
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≥150 mg/dl), low HDL cholesterol (HDL cholesterol con-
centration <40  mg/dl in men and <50  mg/dl in women), 
raised brachial BP (SBP ≥ 130 mm Hg or DBP ≥ 85 mm Hg), 
and high glucose (plasma glucose concentration ≥ 100 mg/
dl).26 Participants were divided into 3 groups according 
to the number of metabolic traits: 0 or 1, 2 or 3, and 4 or 
5. The responses of central hemodynamics were defined as 
follows: responses to low-sodium intervention = values on 
low-sodium diet − values at baseline; responses to high-
sodium intervention = values on high-sodium diet − values 
on low-sodium diet; responses to potassium supplementa-
tion = values on high-sodium diet with potassium supple-
ment − values on high-sodium diet.

Continuous variables were presented as mean ± SD or 
median with interquartile range based on normality of 
data and categorical variables as frequency with percent-
age. Baseline characteristics among 3 groups were com-
pared by 1-way analysis of variance for normal variables 
and by Kruskal–Wallis test for nonnormal variables, using 
Student–Newman–Keuls test for post hoc contrast. Chi-
square test was used to compare differences in categorical 
variables. Central and peripheral hemodynamics between 
2 consecutive interventions were compared by paired t test. 
The responses of central BP independent of corresponding 
peripheral BP were assessed by linear mixed-effects model. 
We performed multivariable linear regression analysis to 
test linear trends of the responses of central hemodynam-
ics as the number of metabolic traits increasing, adjusted 
for age, gender, body mass index, physical activity, smok-
ing and drinking status, as well as baseline 24-hour urinary 
excretion of sodium and potassium. We additionally calcu-
lated the standardized β coefficients of each metabolic trait 
with the central hemodynamics responses to interventions, 
and the false discovery rate was used to adjust the results for 
multiple comparisons. A 2-tailed P < 0.05 was considered 
statistically significant. All statistical analyses were per-
formed with SAS software version 9.4 (SAS Institute, Inc., 
Cary, NC).

RESULTS

A total of 99 participants completed the dietary sodium 
and potassium interventions, and the majority had 4 or 
5 (38.4%) or 2 or 3 (36.4%) metabolic traits. As shown in 
Table 1, participants with more metabolic traits were more 
likely to be women. As expected, brachial SBP and DBP, 
body mass index, waist circumference, fasting concentra-
tion of triglycerides and glucose were significantly higher, 
whereas HDL cholesterol concentration was significantly 
lower, in participants with more metabolic traits. There 
were no significant differences in age, physical activity, and 
24-hour urinary excretion of sodium and potassium by the 
number of metabolic traits.

Central and peripheral hemodynamics at baseline and 
during each intervention are presented in Table 2. Central 
SBP, DBP, PP, AP@75, and AIx@75 significantly decreased 
during low-sodium diet, increased during high-sodium diet, 
and then decreased during high-sodium diet with potas-
sium supplement. Peripheral SBP, DBP, and PP significantly 
decreased during low-sodium diet and increased during 
high-sodium diet. However, only peripheral SBP signifi-
cantly decreased during potassium supplementation. After 
adjustment for corresponding peripheral BP, we observed a 
−2.7 [95% confidence interval (−3.9, −1.5)] mm Hg decrease 
and a 2.0 (1.0, 3.0) mm Hg increase of central SBP, as well as a 
−2.2 (−3.3, −1.0) mmHg decrease and a 1.7 (0.8, 2.6) mm Hg 
increase of central PP, during low-sodium and high-sodium 
intervention, respectively (all P  <  0.001) (Supplementary 
Table S1).

After multivariable adjustment, we observed potential 
linear trends toward significance of central SBP, PP, and P1 
responses to low-sodium intervention, and significant linear 
trends of the responses to high-sodium intervention with the 
increment number of metabolic traits (Figure 2). For example, 
among participants with 0 or 1, 2 or 3, and 4 or 5 metabolic 
traits, the responses of central SBP were −8.1 (−13.7, −2.4), 
−10.5 (−14.7, −6.3), and −14.8 (−19.2, −10.3) mm Hg dur-
ing low-sodium intervention (P for trend = 0.079), and 8.8 
(5.8, 11.8), 9.3 (7.1, 11.6), and 14.0 (11.6, 16.3) mm Hg during 
high-sodium intervention (P for trend  =  0.009). Moreover, 
significant linear trends of central SBP and DBP responses 
to potassium supplementation were also observed (both P 
for trend < 0.05) (Figure 2). In addition, we found that glu-
cose was significantly correlated to central SBP, PP and P1 
responses to low-sodium intervention, and brachial SBP 
was significantly associated with central PP response to 
high-sodium intervention. During potassium supplementa-
tion, waist circumference and HDL cholesterol significantly 
related to the responses of central SBP and DBP, and tri-
glyceride was significantly associated with the response of 
central SBP. However, only waist circumference remained 
significantly associated with central DBP response to potas-
sium supplementation after adjustment for multiple compar-
isons (Supplementary Table S2–S4).

DISCUSSION

The present dietary intervention study in a group of 
northern Chinese individuals suggested that central BP and 

Figure 1.  Typical central aortic pressure waveform from a middle-aged 
subject. Abbreviations: AIx, augmentation index; AP, augmentation pres-
sure; DBP, diastolic blood pressure; PP, pulse pressure; P1, forward wave 
amplitude; SBP, systolic blood pressure.



American Journal of Hypertension  31(5)  May 2018  585

CBP Responses to Dietary Interventions

Table 2.  Central and peripheral hemodynamics of study participants at baseline and during dietary interventions

Baseline Low sodium High sodium High-sodium + potassium supplementation

SBP, mm Hg

  Central 123.2 ± 17.2 111.6 ± 12.9a 122.6 ± 14.2b 120.0 ± 13.4c

  Peripheral 134.3 ± 20.4 123.1 ± 14.3a 133.2 ± 15.2b 131.1 ± 14.8c

DBP, mm Hg

  Central 84.3 ± 9.1 79.4 ± 8.6a 84.9 ± 8.9b 83.8 ± 8.3c

  Peripheral 83.0 ± 9.0 78.1 ± 8.6a 83.7 ± 8.9b 82.7 ± 8.2

PP, mm Hg

  Central 38.9 ± 14.1 32.2 ± 9.4a 37.7 ± 11.4b 36.2 ± 10.1c

  Peripheral 51.3 ± 17.6 45.0 ± 11.4a 49.6 ± 12.6b 48.5 ± 11.5

Central P1, mm Hg 28.7 ± 10.1 25.0 ± 6.7a 27.7 ± 7.3b 27.4 ± 6.9

Central AP@75, mm Hg 10.1 ± 5.2 7.7 ± 4.4a 9.9 ± 5.0b 8.9 ± 4.6c

Central AIx@75, % 25.5 ± 8.4 22.6 ± 10.7a 25.7 ± 9.5b 23.5 ± 9.3c

Heart rate, bpm 75.9 ± 11.5 78.7 ± 10.4a 76.3 ± 10.1 76.7 ± 8.9

Values are mean ± SD. Abbreviations: AIx@75, augmentation index normalized to a heart rate of 75 bpm; AP@75, augmentation pressure 
normalized to a heart rate of 75 bpm; DBP, diastolic blood pressure; PP: pulse pressure; P1, forward wave amplitude; SBP, systolic blood 
pressure.

aP < 0.05 vs. baseline.
bP < 0.05 vs. low-sodium intervention.
cP < 0.05 vs. high-sodium intervention.

Table 1.  Baseline characteristics of study participants by the number of metabolic traits

Overall (n = 99)

Number of metabolic traits

P0 or 1 (n = 25) 2 or 3 (n = 36) 4 or 5 (n = 38)

Age (years) 53.4 ± 6.6 54.2 ± 5.9 52.2 ± 8.1 54.0 ± 5.3 0.396

Male, n (%) 60 (60.6%) 19 (76.0%) 24 (66.7%) 17 (44.7%) 0.030

Body mass index (kg/m2) 25.1 ± 3.4 22.2 ± 2.2b 25.0 ± 3.2c 27.0 ± 2.8d <0.001

Physical activity (METsa per day) 57.2 ± 19.9 62.5 ± 21.4 58.5 ± 21.2 52.5 ± 16.9 0.132

Current smoking, n (%) 23 (23.2%) 8 (32.0%) 11 (30.6%) 4 (10.5%) 0.061

Current drinking, n (%) 31 (31.3%) 6 (24.0%) 15 (41.7%) 10 (26.3%) 0.240

Brachial SBP (mm Hg) 134.3 ± 20.4 119.7 ± 12.7b 128.4 ± 14.1c 136.2 ± 11.6d <0.001

Brachial DBP (mm Hg) 83.0 ± 9.0 77.2 ± 8.4b 79.8 ± 8.0 84.6 ± 8.0d 0.002

Waist circumference (cm) 87.8 ± 10.6 78.6 ± 7.4b 87.5 ± 10.0c 94.1 ± 8.2d <0.001

HDL cholesterol (mg/dl) 42.6 (35.4~50.9) 49.1 (43.0~52.1)b 44.5 (40.5~58.1) 35.0 (31.6~39.6)d <0.001

Triglyceride (mg/dl) 157.8 (112.5~255.6) 93.8 (82.9~119.8)b 137.8 (119.0~198.6)c 263.5 (201.8~345.8)d <0.001

Glucose (mg/dl) 104.1 (93.9~121.9) 92.3 (88.0~97.8)b 102.0 (95.1~110.2)c 115.4 (105.7~135.9)d <0.001

Urinary excretion (mmol per 24-hour)

  Sodium 214.4 ± 52.0 201.9 ± 49.1 221.2 ± 48.2 216.3 ± 56.9 0.351

  Potassium 42.0 ± 10.9 37.9 ± 7.3 44.0 ± 9.6 42.8 ± 13.3 0.083

Values are mean ± SD or median (IQR) for continuous variables and frequency (%) for categorical variables. Abbreviations: DBP, diastolic 
blood pressure; HDL, high-density lipoprotein; MET, metabolic equivalent; SBP, systolic blood pressure.

aOne MET is equivalent to a metabolic rate consuming 1 kcal per kg of body weight per hour.
b0 or 1 vs. 4 or 5, P < 0.05.
c0 or 1 vs. 2 or 3, P < 0.05.
d2 or 3 vs. 4 or 5, P < 0.05.
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AIx@75 could be lowered by sodium reduction and potas-
sium supplementation, and elevated by sodium-loading. 
Furthermore, we found central SBP and PP responses to 
low-sodium and high-sodium interventions remained sig-
nificant even after adjustment for corresponding periph-
eral BP. Additionally, central BP responses to high-sodium 
intervention and potassium supplementation significantly 
increased as the number of metabolic traits growing, and 
these associations were independent of important covariates.

Previous observational studies have suggested that diet-
ary sodium intake, indicated by 24-hour urinary sodium or 
sodium/potassium ratio, is positively associated with central 
SBP and PP in African27 and Asian28 population. Meanwhile, 

a randomized controlled trial conducted in Dutch adults 
found that high-sodium diet significantly increased central 
SBP, DBP, and PP,11 with which our results are consistent. 
Gates et  al.14 also reported that sodium restriction signifi-
cantly lowered central SBP and DBP. The effect of potassium 
supplement on central BP remains controversial in western 
population, with 1 study observed significant decrease of 
central SBP and DBP,13 however, the other 2 did not.11,12 
In addition, Hu et  al.10 reported that replacing 35% diet-
ary sodium with 25% potassium and 10% magnesium sig-
nificantly lowered central SBP and PP but not DBP after 
12-month intervention in northern Chinese. In Hu’s trial, 
participants’ meals were cooked by themselves with salt 

Figure 2.  Multivariable-adjusteda mean responses of central hemodynamics to low-sodium (LS), high-sodium (HS), and high-sodium with potassium 
supplementation (HS + PS) intervention by the number of metabolic traits for central SBP (a), DBP (b), PP (c), P1(d), AP@75 (e), and AIx@75 (f). aAdjusted 
for age, gender, body mass index, physical activity, smoking and drinking status, and baseline 24-hour urinary excretion of sodium and potassium. Error 
bars show 95% confidence intervals. Abbreviations: AP@75 and AIx@75, augmentation pressure and augmentation index normalized to a heart rate of 
75 bpm; DBP, diastolic blood pressure; PP: pulse pressure; P1: forward wave amplitude; SBP, systolic blood pressure.
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substitute or usual salt provided by the study, thus the inves-
tigators failed to assess the exact consumed amount of the 
salt substitute or salt. While our study had a better quality 
control strategy that all meals were prepared by full-time 
chefs and prepackaged salt was added to each participant’s 
meal by study staff. The present study suggested that both 
sodium reduction and potassium supplementation lowered 
central SBP, DBP, and PP in northern Chinese population.

Although previous studies have suggested a potential 
decrease of central BP by dietary sodium reduction, whether 
the effects are independent of corresponding peripheral 
BP has not been investigated. In our analysis, we observed 
an approximate 2 mm Hg response of central SBP and PP 
during dietary sodium intervention after adjustment for 
corresponding peripheral BP. These findings could provide 
additional evidence to the opinion that central BP may serve 
as a better intervention target in clinical practice.1

Despite of the doubt of central AIx being used as an indi-
cator of arterial stiffness, it independently predicts cardiovas-
cular events and mortality.29 Therefore, interventions to lower 
central AIx could be of significance. Previous studies have 
evaluated the effects of short-term dietary sodium intervention 
on central Aix; however, the results differ cross studies.11,14–16 
The inconsistency across studies may lie in the different sample 
characteristics,14,16 magnitude of sodium reduction,11,14 and 
length of intervention period.15,16 Besides, most studies in 
western population11–13,18 and a meta-analysis17 found no sig-
nificant effect of potassium supplement on central AIx. In the 
present study, however, we found central AIx@75 significantly 
decreased during low-sodium intervention and potassium 
supplementation, indicating that dietary sodium and potas-
sium interventions may be helpful to lower central AIx.

The association between MS and salt sensitivity of bra-
chial BP has been demonstrated in previous studies. In 56 
Japanese patients, Uzu et al.30 reported a significant higher 
prevalence of salt-sensitive hypertension among patients 
with MS than those without (70.6% vs. 36.0%, P = 0.017). In 
301 participants from Venezuela, Hoffmann and Cubeddu31 
observed significant greater responses of SBP and DBP to 
salt restriction among those with more metabolic traits, 
which was subsequently confirmed by Chen et al. in a large 
population of China.21 However, no study has investigated 
the relationship between metabolic traits and central BP 
responses to dietary sodium intervention so far. We are the 
first to find central SBP and PP responses to high-sodium 
intervention increase as the number of metabolic traits 
grows. Moreover, we for the first time reported that central 
SBP and DBP responses to potassium supplementation were 
also greater among those with more metabolic traits. Our 
findings may have potential clinical relevance, that is, diet-
ary sodium reduction and potassium supplementation are 
especially effective in lowering central BP among individuals 
with metabolic traits clustering.

The underlying mechanism of the associations between 
metabolic traits and salt sensitivity of BP is not fully under-
stood. Insulin resistance and obesity are the most important 
mechanisms involved in MS.26 Previous studies have sug-
gested that insulin resistance–related hyperinsulinemia, sym-
pathetic overdrive, and rennin–angiotensin system activation 

contribute to sodium retention, and thereby increasing BP 
responses to sodium intake.32–34 Besides, the enhanced salt 
sensitivity of BP in obesity has been noted35 and might be 
explained by increased renal tubular reabsorption of sodium 
in obsess individuals.36 The variation in BP responses to potas-
sium supplementation among individuals has been reported by 
the GenSalt collaborative research group, and the responses are 
associated with baseline brachial BP levels.37 The present study 
further demonstrated that central BP responses to potassium 
supplementation varied according to the number of metabolic 
traits, which could be partly interpreted by the positive effect of 
potassium on salt-induced insulin resistance.32

Our study is the first free-living population-based dietary 
intervention study in which the central hemodynamics 
responses to dietary sodium and potassium interventions were 
examined according to metabolic risk status. We excluded 
patients with chronic kidney disease, who had increased salt 
sensitivity, and adjusted for important covariates in analysis 
to minimize study bias. The compliance with dietary inter-
ventions was excellent as measured by 24-hour urinary ex-
cretion of sodium and potassium. Nevertheless, 3 potential 
limitations should be addressed. First, the 24-hour sodium 
measured was lower than the prescribed sodium intake dur-
ing high-sodium intervention, probably due to the fact that 
urinary sodium is usually less than dietary sodium intake.38 
However, some participants may not have finished their 
meals, so 24-hour urinary sodium excretion was estimated 
using a regression coefficient when only an overnight urine 
was collected. Second, our study might slightly underestimate 
the associations between metabolic traits clustering and cen-
tral BP responses to dietary sodium intervention. To avoid 
potential adverse effects of a high-sodium diet, we excluded 
patients with stage 2 hypertension. Since hypertensive patients 
are more likely to have MS and salt sensitivity, the exclusion of 
stage 2 hypertensive patients is prone to bias the associations 
toward the null. Third, central and peripheral hemodynamics 
were measured only once in each intervention period, and the 
30-minute abstention from smoking, consuming alcohol, cof-
fee or tea, and physical activity prior to measurements was not 
long enough. However, the lack of restrictions which could 
affect the hemodynamic parameters is more likely to bias the 
results toward the null. Further studies with repeated meas-
urements are needed to validate our findings.

In summary, the current study suggested that central BP 
and AIx@75 could be lowered by sodium reduction and potas-
sium supplement, and elevated by sodium-loading. Moreover, 
we for the first time revealed significant effects of dietary 
sodium intervention on central SBP and PP independent of 
corresponding peripheral BP, which supports the opinion that 
central BP is a superior intervention target over peripheral BP. 
In addition, we found the responses of central BP increased 
with the number of metabolic traits, indicating that dietary 
sodium and potassium interventions are especially beneficial 
among individuals with metabolic traits clustering.

SUPPLEMENTARY MATERIAL

Supplementary data are available at American Journal of 
Hypertension online.
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